JPH02255555A - Production of high density oxide superconductor - Google Patents

Production of high density oxide superconductor

Info

Publication number
JPH02255555A
JPH02255555A JP1075166A JP7516689A JPH02255555A JP H02255555 A JPH02255555 A JP H02255555A JP 1075166 A JP1075166 A JP 1075166A JP 7516689 A JP7516689 A JP 7516689A JP H02255555 A JPH02255555 A JP H02255555A
Authority
JP
Japan
Prior art keywords
substrate
oxide superconductor
base material
relative density
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1075166A
Other languages
Japanese (ja)
Other versions
JP2701161B2 (en
Inventor
Hiromasa Shimojima
浩正 下嶋
Keizo Tsukamoto
恵三 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP1075166A priority Critical patent/JP2701161B2/en
Publication of JPH02255555A publication Critical patent/JPH02255555A/en
Application granted granted Critical
Publication of JP2701161B2 publication Critical patent/JP2701161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To increase relative density and critical current density by impregnating an oxide superconducting base material with a soln. contg. a specified starting material blend and by carrying out drying, dewaxing and sintering. CONSTITUTION:A Ba-La-Cu-O or Ba-Y-Cu-O type oxide superconducting base material is impregnated with a soln. contg. 10-100g/l starting material blend having the same ratio among the metallic elements as the superconducting base material. The impregnated material is dried, dewaxed by heating to 400-600 deg.C and sintered at a temp. at which superconductivity is rendered. This temp. is decided according to the compsn. of the base material.

Description

【発明の詳細な説明】 〔イ、産業上の利用分野〕 本発明は相対密度を高くすることによって、電流密度を
向上させた酸化物超伝導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [A. Field of Industrial Application] The present invention relates to a method for producing an oxide superconductor in which current density is improved by increasing relative density.

〔口、従来の技術〕[Mouth, conventional technology]

酸化物超伝導体は膜やテープ線材として、各種の電気機
器に利用する試みがなされている。
Attempts have been made to use oxide superconductors in various electrical devices as films and tape wires.

それらの製造方法は、たとえば膜の場合は金属や緻密質
セラミックスの表面に、酸化物超伝導体の原料が粉末の
ときには泥漿物として、可溶物のときには溶液として、
それぞれ適当な方法で塗布し、乾燥したのち焼成して酸
化物超伝導膜を製造し、またテープ線材の場合は、酸化
物超伝導粉末を金属製パイプに充填し、冷間圧延加工機
でそのパイプを引き伸ばしながら加圧してテープ状にし
たのち焼成して該線材を製造していた。
For example, in the case of membranes, they can be applied to the surface of metals or dense ceramics, when the raw material for oxide superconductors is powder, it is as a slurry, and when it is soluble, it is as a solution.
An oxide superconducting film is produced by coating each of them using an appropriate method, drying and firing, and in the case of tape wires, the oxide superconducting powder is filled into a metal pipe and then rolled using a cold rolling machine. The wire rod was produced by stretching the pipe and applying pressure to form it into a tape shape, which was then fired.

〔ハ6発明が解決しようとする課題〕 酸化物超伝導体は、その相対密度が高ければ高いほど電
流密度は高くなり、それだけ応用範囲も拡大する。
[C.6 Problems to be Solved by the Invention] The higher the relative density of an oxide superconductor, the higher the current density, and the wider the range of applications.

しかし、従来法では超伝導酸化物が板状結晶であるうえ
に、焼成過程でその結晶がランダム方向に成長して空隙
が生じるため、製造された酸化物超伝導体の相対密度が
著しく低い。たとえば前記膜の相対密度は50%前後で
あったし、また冷間圧延加工機で高圧をかけてテープ線
材を製造しても、その芯材である酸化物超伝導体の相対
密度はせいぜい75%どまりであった。このように、従
来法によって製造された酸化物超伝導体の構造はポーラ
スであったため、結局高い電流密度の電流を流すことが
できないという欠点があった。そのため、相対密度を高
める製造方法について、従来から多くの研究者が模索し
て来たが、未だ実用化に到っていない。
However, in the conventional method, the superconducting oxide is a plate-like crystal, and the crystals grow in random directions during the firing process, creating voids, so the relative density of the produced oxide superconductor is extremely low. For example, the relative density of the film was around 50%, and even if a tape wire is produced by applying high pressure with a cold rolling machine, the relative density of the oxide superconductor that is the core material is only 75%. It was only %. As described above, since the structure of the oxide superconductor manufactured by the conventional method was porous, there was a drawback that a current with a high current density could not be passed through the structure. For this reason, many researchers have been searching for a manufacturing method that increases the relative density, but this has not yet been put to practical use.

〔二3課題を解決するための手段〕 そこで本発明者らは、酸化物超伝導体の空隙に同組成の
超伝導酸化物を満たす方法について追求した結果、いっ
たん所望形状の酸化物超伝導体を製造し、それと同じ金
属元素比からなる溶液を含浸せしめることによって相対
密度が思いがけない程改善されることを知見して、下達
するような発明を完成させた。
[Means for Solving Problems 23] Therefore, the present inventors investigated a method of filling voids in an oxide superconductor with a superconducting oxide having the same composition. He discovered that the relative density could be unexpectedly improved by manufacturing and impregnating it with a solution consisting of the same metal element ratio, and completed a similar invention.

すなわち、本発明は成形された酸化物超伝導基体(以下
基体という)に、該基体の金属元素比と同一金属元素比
の原料配合物を含む溶液を含浸させ、次いで乾燥し、脱
脂したのち、焼成してつくる相対密度の高い酸化物超伝
導体の製造方法を提供することを要旨とするものである
That is, in the present invention, a molded oxide superconducting substrate (hereinafter referred to as the substrate) is impregnated with a solution containing a raw material mixture having the same metal element ratio as that of the substrate, then dried, degreased, and then The object of the present invention is to provide a method for producing an oxide superconductor having a high relative density and produced by firing.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の基体の材質はBa−La−Cu−0系、Ba−
Y−CuO系、5a−Er−Cu−0系、B1−5r−
Ca−Cu−0系、B1−Pb5r−Ca−Cu−0系
、T jl!−Ba−Ca−Cu−0系等、公知の酸化
物超伝導体であり、具体的化合物でいえばLa+、5B
ao、2CL104  、  YBazCu30. 、
 ErBa2CuiOx 。
The material of the substrate of the present invention is Ba-La-Cu-0 series, Ba-
Y-CuO system, 5a-Er-Cu-0 system, B1-5r-
Ca-Cu-0 system, B1-Pb5r-Ca-Cu-0 system, T jl! It is a known oxide superconductor such as -Ba-Ca-Cu-0 system, and specific compounds include La+, 5B
ao, 2CL104, YBazCu30. ,
ErBa2CuiOx.

Bi25rzCazCu30x +  Bl+、4Pb
o、hSrzCazC1l+Ox +T l zBaz
cazcuzOXなどが例示される。
Bi25rzCazCu30x + Bl+, 4Pb
o, hSrzCazC1l+Ox +T l zBaz
Examples include cazcuzOX.

基体の製法は、意図する上記超伝導酸化物になるように
原料を調整し、形成し、焼成する公知の製法にしたがっ
て行えばよく、本願ではこれについて特に限定しない。
The substrate may be manufactured according to a known manufacturing method in which raw materials are adjusted, formed, and fired to form the intended superconducting oxide, and this application is not particularly limited thereto.

またその形状も同様に限定するものではないが、後述す
る含浸を良好にするため、厚さは薄いものが好ましい。
Further, the shape is not similarly limited, but in order to improve the impregnation described later, it is preferable that the thickness is thin.

次に、含浸工程について説明する。Next, the impregnation step will be explained.

基体の金属元素比と同一金属元素比の原料配合物を含む
溶液とは、可溶性化合物等を原料として用い、それら原
料を適宜に組み合わせて、基体の金属元素比と同一の金
属元素比になるように配合し、得られた原料配合物を溶
媒に溶解させてつくられる溶液という意味である。
A solution containing a raw material mixture with the same metal element ratio as that of the substrate is a solution that uses soluble compounds as raw materials and combines these raw materials appropriately so that the metal element ratio is the same as that of the substrate. It means a solution made by dissolving the obtained raw material mixture in a solvent.

基体を構成する金属元素が複数であることは前に示した
。通常、−化合物に多数の金属元素を含むものを原料に
すると配合が難しいので、1〜2の金属元素を含む化合
物を原料とし、それらを組み合わせて金属元素比を調整
し、配合するのが好ましい。
It was previously shown that there are multiple metal elements constituting the base. Normally, it is difficult to blend compounds containing many metal elements as raw materials, so it is preferable to use compounds containing one or two metal elements as raw materials, combine them to adjust the metal element ratio, and then blend them. .

金属元素を含む可溶性化合物には有機系のものとしてナ
フテン酸塩、オクチル酸塩、ステアリン酸塩、アセチル
アセトナート、アルコキシド等が、無機系のものとして
硝酸塩、酢酸塩等が挙げられる。
Examples of soluble compounds containing metal elements include organic compounds such as naphthenates, octylates, stearates, acetylacetonates, alkoxides, etc., and inorganic compounds such as nitrates and acetates.

次に溶媒について説明する。具体的には、有機系のもの
として、ブタノール、トルエン、キシレン、ピリジン等
が、無機系のものとして水が示され、これら溶媒を単独
または混合して用いる。
Next, the solvent will be explained. Specifically, examples of organic solvents include butanol, toluene, xylene, pyridine, etc., and examples of inorganic solvents include water, and these solvents are used alone or in combination.

溶解方法は、予め全原料を配合後、溶媒に投入撹拌して
溶解させるほか種々考えられるが、本願では溶解方法に
ついては特に限定しナイ。
Various methods of dissolution can be considered, such as blending all the raw materials in advance and then adding them to a solvent and stirring to dissolve them, but in this application, the dissolution method is not particularly limited.

溶液の濃度は基体の大きさや空隙の状態、使用する溶媒
の粘性など含浸に影響する多くの因子と関連するので、
それらを勘案して、実験的に決めるしかないが、目安と
してその濃度はおよそ工0〜100g/6である。
The concentration of the solution is related to many factors that affect impregnation, such as the size of the substrate, the state of the voids, and the viscosity of the solvent used.
Taking these into consideration, it can only be determined experimentally, but as a guide, the concentration is approximately 0 to 100 g/6.

溶液を基体に含浸させる方法は、とぶ漬け、ハケ塗り、
スプレー等慣用の方法にしたがう。
Methods for impregnating the substrate with the solution include tobuzuke, brush coating,
Follow conventional methods such as spraying.

含浸を十分かつスピーデイに行なうには、溶液を加温し
て(粘性を下げる)、さらに基体寸法が大きい場合には
基体も加温して行なうか、または減圧下で行なうかある
いは両者を併用して行なうのが好ましい。
To achieve sufficient and speedy impregnation, it is necessary to heat the solution (to lower the viscosity) and, if the substrate size is large, to also heat the substrate, or to perform it under reduced pressure, or to use a combination of both. It is preferable to do so.

次に乾燥および脱脂工程について説明する。Next, the drying and degreasing steps will be explained.

?8液を含浸した基体は、常法にしたがって、乾燥した
のち、有機物の分解揮散を目的として温度400〜60
0℃で脱脂処理を行なう。
? After drying the substrate impregnated with the liquid 8 according to a conventional method, the substrate is heated to a temperature of 400 to 60°C for the purpose of decomposing and volatilizing organic matter.
Perform degreasing treatment at 0°C.

以上説明した含浸−乾燥一説脂の工程は繰り返すことに
よって焼結体の相対密度が高くなる傾向にあるが、20
回以上は相対密度がさほど改善されないので、費用効果
の点から20回以内で行なうのが望ましい。繰り返し回
数は10〜15回程度が最も好ましい。
The relative density of the sintered body tends to increase by repeating the impregnation-drying-degreasing process described above.
From the viewpoint of cost effectiveness, it is desirable to carry out the process no more than 20 times, since the relative density will not improve much if the process is repeated more than once. The most preferred number of repetitions is about 10 to 15 times.

脱脂された基体は常法により焼成される。焼成温度は基
体の組成に応じ、超伝導性能を呈する温度で行なう。
The degreased substrate is fired in a conventional manner. The firing temperature is determined depending on the composition of the substrate and is set at a temperature that exhibits superconducting performance.

以下、本発明を実施例に基づいて説明する。Hereinafter, the present invention will be explained based on examples.

〔ホ、実施例〕[E, Example]

1)基体の製造 BizOs、PbO+5rCOz、CaC0zおよびC
uOの各粉末を金属元素比Bt:Pb:Sr:Ca:C
u=Q、7:0.3:1:1:1.5 (元素比)の割
合に配合し、メタノールに添加して十分混合したのち、
乾燥させた。得た混合粉末に可塑剤(ジブチルフタレー
ト)、バインダー(ポリビニルブチラール)、分散材(
オレイン酸エチル)および溶剤(キシレン)を加えて、
再び混合してスラリーをつくった。
1) Substrate manufacturing BizOs, PbO+5rCOz, CaC0z and C
Each powder of uO has a metal element ratio of Bt:Pb:Sr:Ca:C
u = Q, 7:0.3:1:1:1.5 (element ratio), added to methanol and mixed thoroughly,
Dry. A plasticizer (dibutyl phthalate), a binder (polyvinyl butyral), and a dispersant (
Add ethyl oleate) and solvent (xylene),
Mix again to form a slurry.

スラリーは脱泡後、塗工機によってシート成形し、乾燥
し、500℃1時間脱脂したのち、個所して5X20X
0.2mの成形体を得た。
After defoaming, the slurry is formed into a sheet using a coating machine, dried, degreased at 500℃ for 1 hour, and then divided into 5X20X
A 0.2 m molded body was obtained.

引き続き、850℃1時間焼成したのち、放冷してBi
b、 4Pbo、 1srzcazcu+ox組成から
なる超伝導基体を製造した。
Subsequently, after firing at 850°C for 1 hour, the Bi
A superconducting substrate having a composition of: b, 4Pbo, 1srzcazcu+ox was manufactured.

2)含浸用の溶液の製造 原料としてのナフテン酸ビスマス、ナフテン酸鉛、ナフ
テン酸ストロンチウム、ナフテン酸カルシウムおよびナ
フテン酸銅をBi :Pb:Sr:Ca:Cuの元素比
が0.7:0.3:1:1:1.5になるように配合し
た。
2) Bismuth naphthenate, lead naphthenate, strontium naphthenate, calcium naphthenate, and copper naphthenate as raw materials for producing a solution for impregnation are prepared in an elemental ratio of Bi:Pb:Sr:Ca:Cu of 0.7:0. The ratio was 3:1:1:1.5.

その原料配合物を濃度20 g / lに溶媒トルエン
に溶解させて、含浸用の溶液を製造した。
The raw material formulation was dissolved in the solvent toluene to a concentration of 20 g/l to prepare a solution for impregnation.

3)含浸、乾燥および脱脂 その溶液中に前記基体を1時間とぶ漬けしたのち、10
0℃で乾燥し、soo’ci時間脱脂した。
3) Impregnation, drying and degreasing After soaking the substrate in the solution for 1 hour,
It was dried at 0°C and degreased for an hour.

このどぶ漬け、乾燥、脱脂工程を繰り返し、その回数を
表1に示した。
This soaking, drying, and degreasing process was repeated, and the number of times is shown in Table 1.

4)焼成および測定 脱脂された各基体を850℃IO時間電気炉で焼成した
のち、炉内放冷して酸化物超伝導体を得た。
4) Firing and measurement Each degreased substrate was fired in an electric furnace at 850° C. for IO hours, and then allowed to cool in the furnace to obtain an oxide superconductor.

得られた酸化物超伝導体について、相対密度、臨界温度
および臨界電流密度を測定し、その結果を表1に示した
。測定方法は相対密度が水中重量法により、臨界温度お
よび臨界電流密度は四端子法により行なった。
The relative density, critical temperature, and critical current density of the obtained oxide superconductor were measured, and the results are shown in Table 1. The relative density was measured by the underwater gravimetric method, and the critical temperature and critical current density were measured by the four-probe method.

なお、従来法で製造された基体についても、上記測定を
行ない、得た結果を同表に併記した。
Note that the above measurements were also performed on the substrate manufactured by the conventional method, and the obtained results are also listed in the same table.

表 ■ は、従来法によるそれより著しく相対密度が高い。table ■ has a significantly higher relative density than that obtained by conventional methods.

そのため、臨界電流密度も飛躍的に改善された。Therefore, the critical current density was also dramatically improved.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超伝導基体に、該基体の金属元素比と同一金属元
素比の原料配合物を含む溶液を含浸させ、乾燥させ、脱
脂したのち、焼成する高密度酸化物超伝導体の製造方法
A method for producing a high-density oxide superconductor, which comprises impregnating an oxide superconducting substrate with a solution containing a raw material mixture having the same metal element ratio as that of the substrate, drying, degreasing, and firing.
JP1075166A 1989-03-29 1989-03-29 Method for producing high-density oxide superconductor Expired - Lifetime JP2701161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075166A JP2701161B2 (en) 1989-03-29 1989-03-29 Method for producing high-density oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075166A JP2701161B2 (en) 1989-03-29 1989-03-29 Method for producing high-density oxide superconductor

Publications (2)

Publication Number Publication Date
JPH02255555A true JPH02255555A (en) 1990-10-16
JP2701161B2 JP2701161B2 (en) 1998-01-21

Family

ID=13568345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075166A Expired - Lifetime JP2701161B2 (en) 1989-03-29 1989-03-29 Method for producing high-density oxide superconductor

Country Status (1)

Country Link
JP (1) JP2701161B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230461A (en) * 1988-03-11 1989-09-13 Asahi Glass Co Ltd Production of superconductor of oxide
JPH01298057A (en) * 1988-05-26 1989-12-01 Agency Of Ind Science & Technol Production of high-temperature superconducting ceramic compact

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230461A (en) * 1988-03-11 1989-09-13 Asahi Glass Co Ltd Production of superconductor of oxide
JPH01298057A (en) * 1988-05-26 1989-12-01 Agency Of Ind Science & Technol Production of high-temperature superconducting ceramic compact

Also Published As

Publication number Publication date
JP2701161B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
US4962088A (en) Formation of film superconductors by metallo-organic deposition
JPH06500426A (en) Method for forming high temperature oxide superconductor tape
JPH02255555A (en) Production of high density oxide superconductor
US4877768A (en) Processes for the preparation of copper oxide superconductors
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH06139849A (en) Manufacture of bi oxide superconducting molding
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JPH0199279A (en) Manufacture of superconducting ceramic substrate
JPH07196321A (en) Production of part made of high tc superconductive material
JPH0443843B2 (en)
JPH06162843A (en) Manufacture of bi oxide superconductor
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JP2822328B2 (en) Superconductor manufacturing method
JPH0624825A (en) Cast compound for ceramic green tape
JPS63276820A (en) Manufacture of oxide superconductor
JPH0238359A (en) Production of superconductor
JPH05262597A (en) Production of superconducting film of bi-based oxide
JPH01238190A (en) Manufacture of superconductor thick film
JPH05330900A (en) Production of ceramic superconductor
JPH07109170A (en) Production of bi-based oxide superconductor and material for forming the same
JPH01126208A (en) Production of superconducting thin film
JPH01109611A (en) Manufacture of superconductive material in pyrolysis method
JPH04295082A (en) Bi-containing oxide superconductor and its production