JPH02255546A - Double-layer crystallized glass material - Google Patents

Double-layer crystallized glass material

Info

Publication number
JPH02255546A
JPH02255546A JP7711089A JP7711089A JPH02255546A JP H02255546 A JPH02255546 A JP H02255546A JP 7711089 A JP7711089 A JP 7711089A JP 7711089 A JP7711089 A JP 7711089A JP H02255546 A JPH02255546 A JP H02255546A
Authority
JP
Japan
Prior art keywords
softening point
glass powder
powder
glass
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7711089A
Other languages
Japanese (ja)
Inventor
Yoshito Seto
瀬戸 良登
Yoshihiro Nakagawa
中川 義弘
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7711089A priority Critical patent/JPH02255546A/en
Publication of JPH02255546A publication Critical patent/JPH02255546A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To prevent the generation of cracks by fusing and integrating a front layer formed of a crystallized glass material consisting of glass contg. alumina and a back layer formed of a crystalline glass material consisting of low melting glass and high melting crystalline glass. CONSTITUTION:This double layer crystallized glass material is formed by fusing and integrating the front layer and the back layer consisting of the crystalline glass material formed by fusing of the low melting glass powder and the high melting crystalline glass. The above-mentioned front layer is formed by the low melting glass powder, high melting glass powder and alumina powder which are fused and crystallized after the softening and fusing of the low melting glass. The above-mentioned low melting glass powder has the essential components consisting, by weight %, of 65 to 80% SiO2, 5 to 15% CaO, 10 to 30% Na2O+K2O, <=10% MgO, and <=10% Al2O3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建材や壁材等として使用される結晶化ガラス
材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystallized glass material used as a building material, wall material, etc.

(従来の技術) 近年、天然石材やガラス材とは質感のやや異なる結晶化
ガラス材が内外装材として多方面で使用されつつある。
(Prior Art) In recent years, crystallized glass materials, which have a slightly different texture from natural stone and glass materials, are being used in many fields as interior and exterior materials.

前記結晶化ガラス材の好適な製造方法上して、特願昭6
1−291203号において開示されているように、低
軟化点ガラス粉末および高軟化点ガラス粉末からなる混
合粉末に有機バインダ(例えば、ポリビニルアルコール
)を添加して混合した後、これを厚板成形用金型に入れ
て常温で加圧成形(常温加圧成形)し、得られたガラス
粉末成形体に緻密化促進および結晶化のための熱処理(
結晶化熱処理)を施す方法がある。この場合、結晶化熱
処理の前段階で300〜400°Cで数十時間加熱処理
されて脱バインダ処理がなされる。一方、有機バインダ
を用いることなく、混合粉末を成形用金型に入れて、低
軟化点ガラス粉末の軟化点以上でかつ高軟化点ガラス粉
末の軟化点以下の温度で緻密化しつつ加圧成形(熱間加
圧成形)し、得られたガラス粉末成形体に結晶化熱処理
を施す方法がある。
Regarding a preferred method for producing the crystallized glass material, Japanese Patent Application No. 6
As disclosed in No. 1-291203, an organic binder (e.g., polyvinyl alcohol) is added and mixed to a mixed powder consisting of a low softening point glass powder and a high softening point glass powder, and then this is used for thick plate forming. The glass powder is placed in a mold and pressure-molded at room temperature (room-temperature pressure molding), and the resulting glass powder compact is heat-treated to promote densification and crystallization.
There is a method of applying crystallization heat treatment). In this case, before the crystallization heat treatment, the binder is removed by heat treatment at 300 to 400° C. for several tens of hours. On the other hand, without using an organic binder, the mixed powder is put into a mold and densified at a temperature above the softening point of the low-softening point glass powder and below the softening point of the high-softening point glass powder, and then press-molded ( There is a method in which the glass powder compact is subjected to crystallization heat treatment to the obtained glass powder compact.

この方法によれば、低軟化点ガラス粉末がバインダとし
ての作用をなすため、有機バインダの添加が不要となり
、またガラス粉末の緻密化の過程で粉末の間に存在した
空気は未軟化の高軟化ガラス粉末等の粒子表面に沿って
外部へ容易に排出され、気泡や気孔のほとんど存在しな
い極めて緻密な結晶化ガラス材が容易に得られるという
利点がある。
According to this method, since the low softening point glass powder acts as a binder, there is no need to add an organic binder, and in the process of densification of the glass powder, the air that exists between the powders becomes unsoftened and highly softened. It has the advantage that it is easily discharged to the outside along the surface of particles such as glass powder, and an extremely dense crystallized glass material with almost no bubbles or pores can be easily obtained.

(発明が解決しようとする課題) 前記加圧成形法により製造された結晶化ガラス材は緻密
で、研摩により良好な光沢が得られ、外内装用建材とし
て優れた品質を有する。しかも、lmX1m程度の大形
の定寸材料も容易に製造することができるという利点が
ある。そして、定寸外材を必要とする場合は、出荷時あ
るいは施行時に定寸材より高速カッターを用いて適宜切
断して使用される。
(Problems to be Solved by the Invention) The crystallized glass material produced by the above-mentioned pressure molding method is dense, has good gloss when polished, and has excellent quality as an interior/exterior building material. Furthermore, there is an advantage that large size materials of about 1 m x 1 m can be easily manufactured. If a non-standard size material is required, the standard size material is appropriately cut using a high-speed cutter at the time of shipping or installation.

しかしながら、第3図に示すように、結晶化ガラス材2
1を高速切断する時に切断用回転歯22の抜ける下面よ
り切断方向に沿って局部的欠損23が入り易いという問
題がある。前記下面は回転歯22の外周との間隔が小さ
くなっており、クラックが入り易く、このクラックが進
展して欠損に到るものと考えられる。
However, as shown in FIG.
There is a problem in that when cutting 1 at high speed, local defects 23 tend to occur along the cutting direction from the lower surface where the cutting rotary teeth 22 come off. The distance between the lower surface and the outer periphery of the rotary teeth 22 is small, and it is thought that cracks are likely to occur, and the cracks propagate and lead to breakage.

尚、結晶化ガラス材の裏面には、通常、破損時に同村の
細片が飛散するのを防止するために、合成樹脂皮膜が被
着されるが、かかる皮膜が形成されていても、前記欠損
を防止することはできない。
Note that a synthetic resin film is usually applied to the back side of the crystallized glass material in order to prevent the fragments from scattering in the event of breakage, but even if such a film is formed, the defects cannot be prevented.

本発明はかかる問題点に鑑みなされたもので、高速切断
しても切断端面に局部的欠損の生じない結晶化ガラス材
を提供することを目的とする。
The present invention was made in view of such problems, and an object of the present invention is to provide a crystallized glass material that does not cause local defects on the cut end surface even when cut at high speed.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の結晶化ガラ
ス材は、低軟化点ガラス粉末と高軟化点ガラス粉末およ
びアルミナ粉末とが低軟化点ガラス粉末の軟化融着後に
融着一体化し結晶化してなる結晶化ガラス材で形成され
た表層と、低軟化点ガラス粉末と高軟化点結晶性ガラス
粉末とが融着一体化し結晶化してなる結晶質ガラス材で
形成された裏層とが融着一体化してなることを発明の構
成とするものである。
(Means for Solving the Problems) The crystallized glass material of the present invention, which has been made to achieve the above object, is characterized in that a low softening point glass powder, a high softening point glass powder, and an alumina powder soften the low softening point glass powder. A surface layer formed of a crystallized glass material formed by fusion and crystallization after fusion, and a crystalline glass material formed by fusion and crystallization of a low softening point glass powder and a high softening point crystalline glass powder. The structure of the invention is that the formed back layer is fused and integrated.

この際、低軟化点ガラス粉末は主成分が重量%で 5iOz   : 65〜80%     CaO: 
5〜15%NazO十KzO: 10〜30% MgO
:10%以下Az、o、:10%以下 であり、 高軟化点ガラス粉末は主成分が重量%で5t(h  :
 65〜80%、  AlzOx  :25%以下Na
zO+KzO:  5〜15% であり、 高軟化点結晶性ガラス粉末は主成分が重量%で5i(h
  : 25〜55%  Alt(h  :  5〜2
0%CaO:25〜65% であるものを使用するのがよい。
At this time, the main component of the low softening point glass powder is 5iOz in weight%: 65 to 80% CaO:
5-15% NazO + KzO: 10-30% MgO
: 10% or less Az, o, : 10% or less, and the main component of the high softening point glass powder is 5t (h:
65-80%, AlzOx: 25% or less Na
zO+KzO: 5 to 15%, and the main component of the high softening point crystalline glass powder is 5i (h
: 25~55% Alt(h: 5~2
It is preferable to use one containing 0% CaO: 25 to 65%.

(作  用) 表層の結晶化ガラス材は、低軟化点ガラス粉末と高軟化
点ガラス粉末およびアルミナ粉末とが低軟化点ガラス粉
末の軟化融着後に融着一体化し、結晶化したものである
から、低軟化点ガラス粉末同士の軟化融着時に、ガラス
粉末の間に存在した空気は未軟化状態の高軟化点ガラス
粉末やアルミナ粉末の粒子表面に沿ってガラス粉末の外
部へ排出される。このため、両ガラス粉末の融着体中に
は気泡が残留し難く、その結果、本発明の結晶化ガラス
材中には、気泡や気孔が可及的に排除されたものとなる
(Function) The crystallized glass material in the surface layer is a product in which low softening point glass powder, high softening point glass powder, and alumina powder are fused and crystallized after softening and fusing of the low softening point glass powder. When low softening point glass powders are softened and fused together, air existing between the glass powders is discharged to the outside of the glass powder along the particle surfaces of the unsoftened high softening point glass powder or alumina powder. Therefore, it is difficult for air bubbles to remain in the fused product of both glass powders, and as a result, air bubbles and pores are eliminated as much as possible in the crystallized glass material of the present invention.

本発明で特に例示した低軟化点ガラス粉末は通常のソー
ダ石灰ガラスの組成であり、一方、高軟化点ガラス粉末
は、SiO□含有量を低軟化点ガラス粉末と同範囲とし
たものであるので、低軟化点ガラス粉末の軟化点以上で
かつ同粉末の結晶化開始温度以下の温度でも軟化融着し
た低軟化点ガラス粉末から未軟化状態の高軟化点ガラス
粉末へNaやに等の綱目修飾イオンの拡散移行が起こり
易い。
The low softening point glass powder particularly exemplified in the present invention has the composition of ordinary soda lime glass, while the high softening point glass powder has a SiO□ content in the same range as the low softening point glass powder. , from a low softening point glass powder that is softened and fused even at a temperature above the softening point of the low softening point glass powder and below the crystallization initiation temperature of the same powder, to an unsoftened high softening point glass powder, a wire modification such as Na resin is performed. Ion diffusion transfer is likely to occur.

その結果、高軟化点ガラス粉末の成分拡散域は軟化温度
が降下し、軟化融着した低軟化点ガラス粉末と高軟化点
ガラス粉末とは融着一体化し易い。
As a result, the softening temperature decreases in the component diffusion region of the high softening point glass powder, and the softened and fused low softening point glass powder and high softening point glass powder are easily fused and integrated.

前記低軟化点および高軟化点ガラス粉末の主成分限定理
由を下記に示す。単位は重量%である。
The reasons for limiting the main components of the low softening point and high softening point glass powders are shown below. The unit is weight %.

0低軟化点ガラス粉末 Sing : 65〜80% 65%未満では結晶が析出し難く、一方80%を越える
と軟化点が高くなり、熱処理において高温加熱が必要と
なり、製造上好ましくない。
0 Low softening point glass powder Sing: 65 to 80% If it is less than 65%, crystals are difficult to precipitate, while if it exceeds 80%, the softening point becomes high and high temperature heating is required in heat treatment, which is not preferable in terms of manufacturing.

CaO: 5〜lO% 5%未満では軟化点が高くなり、一方10%を越えると
結晶が析出しにくくなる。
CaO: 5-1O% If it is less than 5%, the softening point will be high, while if it exceeds 10%, crystals will be difficult to precipitate.

NazO+ K2O: 10〜30% 10%未満では軟化点が高くなり、一方30%を越える
と結晶が析出しにくくなる。
NazO+K2O: 10-30% If it is less than 10%, the softening point will be high, while if it exceeds 30%, crystals will be difficult to precipitate.

MgO:  10%以下 10%を越えると結晶が析出しにくくなる。尚、2%以
上にすることにより、結晶の成長が遅くなり、十分な軟
化融着による緻密化が行われ易くなる。
MgO: 10% or less If it exceeds 10%, crystals will be difficult to precipitate. Note that when the content is 2% or more, crystal growth is slowed down and densification by sufficient softening and fusion is facilitated.

Aj!z03:10%以下 A j! 203は含有量が増えるほど軟化点が高くな
るので10%以下にするのがよい。
Aj! z03: 10% or less A j! Since the softening point of 203 increases as the content increases, it is preferable to keep it at 10% or less.

0高軟化点ガラス粉末 5rOt : 65〜80% 65%未満ではSin、結晶は析出し難く、一方80%
を越えると軟化点が高くなり過ぎ、低軟化点ガラス粉末
との成分の拡散が起こりにくくなる。
0 high softening point glass powder 5rOt: 65-80% If it is less than 65%, it is difficult for Sin and crystals to precipitate, while at 80%
If it exceeds this, the softening point becomes too high and diffusion of components with the low softening point glass powder becomes difficult.

AI!、□03:25%以下 A I!、203はガラス軟化点を上昇させる作用をな
すが、25%を越えると5in2結晶が析出しにくくな
る。
AI! , □03: 25% or less AI! , 203 has the effect of raising the glass softening point, but if it exceeds 25%, it becomes difficult for 5in2 crystals to precipitate.

Na、0  +K2O:5〜15% 5%未満では軟化点が高くなり過ぎ、低軟化点ガラス粉
末との成分の拡散が起こりにくくなる。
Na, 0 + K2O: 5 to 15% If it is less than 5%, the softening point becomes too high and diffusion of the components with the low softening point glass powder becomes difficult.

一方、15%を越えると軟化点が低くなり過ぎ、軟化温
度が低軟化点ガラス粉末の結晶化開始温度以下になるお
それが出てくる。
On the other hand, if it exceeds 15%, the softening point becomes too low, and there is a possibility that the softening temperature becomes lower than the crystallization start temperature of the low softening point glass powder.

低軟化点および高軟化点ガラス粉末の主成分は以上の通
りであり、その他、物性を低下させない範囲で適宜のガ
ラス成分の含有が許容されるが、適正な物性を保持する
には主成分の合計が90%以上とするのがよい。
The main components of the low softening point and high softening point glass powders are as described above, and the inclusion of other appropriate glass components is permitted within a range that does not deteriorate the physical properties, but in order to maintain appropriate physical properties, the main components must be It is preferable that the total is 90% or more.

高軟化点ガラス粉末と共に使用されるアルミナ粉末は、
その粉末粒界で軟化状態の低軟化点ガラス粉末との間で
成分の拡散が生じて融着し、結晶化(主として、Naz
O・A 12 zO+  ・2SiOz  晶による結
晶化)して強固に結合することができ、かつ線膨張率が
低軟化点ガラス粉末に比べて10%以上低いため、結晶
化後の冷却過程で、結晶化ガラス材に圧縮応力を残留さ
せることができ、結晶化ガラス材を強化することができ
る。また、結晶化ガラス材自体の熱膨張率を低下させる
ことができるため、耐熱衝撃性に優れたものとなる。
Alumina powder used with high softening point glass powder is
At the powder grain boundaries, components diffuse and fuse with the softened low softening point glass powder, resulting in crystallization (mainly Naz
O・A 12 zO+ ・2SiOz crystallization) can be strongly bonded, and the coefficient of linear expansion is more than 10% lower than that of low softening point glass powder. Compressive stress can be left in the glass-ceramic material, and the glass-ceramic material can be strengthened. Furthermore, since the coefficient of thermal expansion of the crystallized glass material itself can be lowered, it has excellent thermal shock resistance.

次に、裏層を形成する結晶質ガラス材についてその作用
を説明する。該結晶質ガラス材は結晶が多量に存在し、
非晶質のガラス部分が少量しか存在しない材質であり、
結晶部分がクランクの進展を阻止する作用をなす。結晶
化ガラス材に生じるクランクは、非晶質のガラス部分に
発生し、同部分内を進展するものと考えられる。このた
め、クラックの発生起点となる裏面を結晶質ガラス材で
被覆することによりクランクの発生およびその後の進展
、欠損形成を有効に防止することができる。
Next, the effect of the crystalline glass material forming the back layer will be explained. The crystalline glass material has a large amount of crystals,
It is a material with only a small amount of amorphous glass,
The crystal part acts to prevent the crank from progressing. It is thought that the crank that occurs in the crystallized glass material occurs in the amorphous glass portion and propagates within the same portion. Therefore, by coating the back surface, which is the starting point for cracks, with a crystalline glass material, it is possible to effectively prevent the occurrence of cracks, their subsequent propagation, and the formation of defects.

前記結晶質ガラス材は前記低軟化点ガラス粉末と高軟化
点結晶性ガラス粉末とを融着一体化および結晶化するこ
とにより得られる。特に例示した高軟化点結晶性ガラス
粉末は低軟化点ガラス粉末と融着し易く、融着部に結晶
(主としてCaO・SiO□品と2CaO−Aj!zO
+  ・5ift品)が多量に析出するものであり、そ
の成分限定理由を下記に示す。
The crystalline glass material is obtained by fusing and crystallizing the low softening point glass powder and the high softening point crystalline glass powder. In particular, the high softening point crystalline glass powder illustrated is easy to fuse with the low softening point glass powder, and crystals (mainly CaO・SiO□ products and 2CaO−Aj!zO
+・5ift product) is precipitated in large quantities, and the reason for limiting the components is shown below.

単位は重量%である。The unit is weight %.

0高軟化点結晶性ガラス粉末 Sin、 : 25〜55% 25%未満では、早期に結晶化するため、低軟化点ガラ
ス粉末の軟化のみでは製品の緻密化不足による著しい強
度低下が起こり、裏層としての役割を果さなくなる。5
5%を越えると、結晶量が減少し、強度と硬さの面で不
足をきたす。
0 High softening point crystalline glass powder Sin: 25-55% If it is less than 25%, it will crystallize early, so if only the low softening point glass powder is softened, a significant decrease in strength will occur due to insufficient densification of the product, and the back layer will no longer be able to fulfill its role as 5
If it exceeds 5%, the amount of crystals decreases, resulting in insufficient strength and hardness.

Aj2□0.:5〜20% 5%未満では、結晶化速度が大きくなり過ぎ、製品の緻
密化が不充分となり易く、一方、20%を越えると、結
晶を均一に析出させることが困難となる。
Aj2□0. : 5 to 20% If it is less than 5%, the crystallization rate becomes too high and the densification of the product tends to be insufficient. On the other hand, if it exceeds 20%, it becomes difficult to precipitate crystals uniformly.

CaO: 25〜65% 強度と硬さを得るための結晶量を確保するために25%
以上は必要であるが、65%を越えると、結晶化速度が
大きくなり過ぎ、製品の緻密化不足による著しい強度低
下が起こる。
CaO: 25-65% 25% to ensure the amount of crystals to obtain strength and hardness
Although the above is necessary, if it exceeds 65%, the crystallization rate becomes too high, resulting in a significant decrease in strength due to insufficient densification of the product.

高軟化点結晶性ガラス粉末の主成分は以上の通りであり
、その他、物性を低下させない範囲で適宜のガラス成分
の含有が許容されるが、適正な物性を保持するには、主
成分の合計が90%以上とするのがよい。
The main components of the high softening point crystalline glass powder are as described above, and the inclusion of other appropriate glass components is permitted within the range that does not deteriorate the physical properties.However, in order to maintain appropriate physical properties, the sum of the main components must be is preferably 90% or more.

(実施例) 第1図は本発明に係る複層結晶化ガラス材の断面図を示
しており、緻密で光沢を有し、高強度の結晶化ガラス材
で形成された表層1と、耐欠損性に優れた結晶質ガラス
材で形成された裏層2とが融着一体化されている。尚、
裏層2の下面には、既述の通り、必要に応じて飛散防止
用の合成樹脂皮膜が被着形成される。
(Example) Fig. 1 shows a cross-sectional view of a multilayer crystallized glass material according to the present invention, in which a surface layer 1 formed of a dense, glossy, and high-strength crystallized glass material, and a chip-resistant A backing layer 2 made of a crystalline glass material with excellent properties is fused and integrated. still,
As described above, a synthetic resin film for scattering prevention is formed on the lower surface of the backing layer 2, if necessary.

前記表層1の結晶化ガラス材を形成するための好適な低
軟化点ガラス粉末および高軟化点ガラス粉末の主成分に
ついては既述の通りであるが、後者はそのガラス軟化点
が800°C程度以上となるように成分を調整すること
が望ましい。低軟化点ガラス粉末は、通常のソーダ石灰
ガラスの組成であり、軟化点が600〜750 ’C2
結晶化開始温度が800°C程度以下だからである。
The main components of the suitable low softening point glass powder and high softening point glass powder for forming the crystallized glass material of the surface layer 1 are as described above, and the latter has a glass softening point of about 800°C. It is desirable to adjust the ingredients so that the above is achieved. Low softening point glass powder has the composition of ordinary soda lime glass, and has a softening point of 600-750'C2
This is because the crystallization start temperature is about 800°C or lower.

尚、ガラス粉末は、所期組成のガラスを溶製し、これを
水砕し、更に粉砕することによって得られるが、低軟化
点ガラス粉末原料としてはソーダ石灰ガラスのカレット
を利用すればよ(、また、高軟化点ガラス粉末について
も、パーライト (真珠岩)を粉砕したものを使用する
ことができる。パーライトはAffizOiを十数%含
有しており、軟化点が900°C程度以上あるうえ、骨
材等として市場に多量に供給され、入手が容易であり、
経済性に優れる。
Glass powder can be obtained by melting glass of the desired composition, crushing it with water, and then crushing it, but soda lime glass cullet can be used as a raw material for low softening point glass powder ( In addition, as for the high softening point glass powder, crushed pearlite (pearlite) can be used.Pearlite contains more than ten percent of AffizOi and has a softening point of about 900°C or higher, It is supplied in large quantities to the market as aggregate, etc., and is easy to obtain.
Excellent economy.

低軟化点および高軟化点ガラス粉末並びにアルミナ粉末
の粒度は、粒度が小さいほど、またその量が多いほど低
軟化点ガラス粉末同士の軟化融着が容易となり、また高
軟化点ガラス粉末およびアルミナ粉末との融着が容易と
なり、ひいてはガラス粉末成形体の緻密化および結晶化
が促進される。
Regarding the particle size of low softening point glass powder, high softening point glass powder, and alumina powder, the smaller the particle size and the larger the amount, the easier the softening and fusion of low softening point glass powder and high softening point glass powder and alumina powder. This facilitates fusion with the glass powder molded body, which in turn promotes densification and crystallization of the glass powder compact.

このため、ガラス粉末の粒度は、200メツシユ以下の
粉末を80%以上(好ましくは90%以上)占めるよう
にしておくことが望ましい。尚、アルミナ粉末は、粒度
が粗くなると光沢が悪くなるため細かいほどよいが、細
かくなるほど価格も高くなるので、通常0.5〜20μ
mのものが使用される。
For this reason, it is desirable that the particle size of the glass powder is such that 80% or more (preferably 90% or more) of the glass powder has a particle size of 200 mesh or less. Note that the finer the alumina powder is, the better it is because the coarser the particle size, the worse the luster. However, the finer the particle size, the higher the price, so it is usually 0.5 to 20 μm.
m is used.

前記低軟化点ガラス粉末と高軟化点ガラス粉末およびア
ルミナ粉末との表層用混合粉末における低軟化点ガラス
粉末の配合割合は20〜90重量%となるようにするこ
とが望ましい。20%未満では高軟化点ガラス粉末等と
の軟化融着不足、ガラス粉末成形体の緻密化不足を招来
する。また結晶量が不足し、強度が低下する。一方、9
0%を越えると熱処理時のガラス粉末成形体の形状保持
が不十分となり、また該成形体中の気泡の排出作用が不
足する。アルミナ粉末は、結晶化ガラス材の光沢を劣化
させるため、混合粉末の全量に対して10重量%以下に
止めておくのがよい。もっとも、圧縮残留応力による有
効な強化作用を得るには1重量%以上添加することが望
ましい。
It is desirable that the blending ratio of the low softening point glass powder in the surface layer mixed powder of the low softening point glass powder, high softening point glass powder, and alumina powder is 20 to 90% by weight. If it is less than 20%, it results in insufficient softening and fusion with high softening point glass powder, etc., and insufficient densification of the glass powder compact. Furthermore, the amount of crystals is insufficient, resulting in a decrease in strength. On the other hand, 9
If it exceeds 0%, the shape retention of the glass powder molded body during heat treatment will be insufficient, and the effect of discharging air bubbles in the molded body will be insufficient. Since the alumina powder deteriorates the gloss of the crystallized glass material, it is preferable to limit the amount to 10% by weight or less based on the total amount of the mixed powder. However, in order to obtain an effective reinforcing effect due to compressive residual stress, it is desirable to add 1% by weight or more.

尚、混合粉末に金属酸化物の着色剤(通常、200メツ
シユ以下の微粉が使用される。)を添加混合した添加混
合粉末を使用することによって、着色結晶化ガラス材の
製造が可能である。着色剤は、結晶化ガラス材に要求さ
れる物性(特に強度)を低下させない範囲で添加される
が、その添加量の一例を下記に示す。添加量は添加混合
粉末に対するものであり、単位は重量%である。
A colored crystallized glass material can be produced by using a mixed powder obtained by adding and mixing a metal oxide coloring agent (usually a fine powder of 200 mesh or less) to the mixed powder. The colorant is added within a range that does not reduce the physical properties (particularly strength) required of the crystallized glass material, and an example of the amount added is shown below. The amount added is based on the added mixed powder, and the unit is weight %.

CrzO,、、CuO、Mn0z  −1%以下CoO
・・・3%以下 FeO、Fe=On 、FE!z03・・・to%以下
複層結晶化ガラス材の裏層2の結晶質ガラス材を形成す
るだめの低軟化点ガラス粉末は表層1のものと同様のも
のが使用される。一方、高軟化点結晶性ガラス粉末とし
ては、既述の組成のガラスを溶製し、水砕し、粉砕する
ことによって得られる。
CrzO, , CuO, Mn0z -1% or less CoO
...3% or less FeO, Fe=On, FE! z03...to% or less The same low softening point glass powder as that for the surface layer 1 is used to form the crystalline glass material of the back layer 2 of the multilayer crystallized glass material. On the other hand, high softening point crystalline glass powder can be obtained by melting glass having the composition described above, pulverizing it, and crushing it.

高軟化点結晶性ガラス粉末の粒径は、前記高軟化点ガラ
ス粉末のように微細なものでなくてもよい。結晶性ガラ
ス粉末の配合量が多い程、また粒径が大きい程、結晶質
ガラス材中の微細気孔量が増加するが、気孔の存在はク
ランクの進展を防止する作用を有するため、裏層材とし
て特に気孔を除去しなければならない理由はない。尚、
結晶質ガラス材も気孔が無く、緻密な程、強度が高いの
で、裏層2をクラックの発生、進展防止のためのみなら
ず、強度部材としての機能も併有させる場合は、微細粒
を使用すればよい。
The particle size of the high softening point crystalline glass powder does not have to be as fine as the above-mentioned high softening point glass powder. The larger the amount of crystalline glass powder blended and the larger the particle size, the greater the amount of micropores in the crystalline glass material. There is no particular reason why pores should be removed. still,
Crystalline glass materials also have no pores, and the denser they are, the higher their strength, so if the backing layer 2 is to not only prevent the occurrence and propagation of cracks, but also function as a strength member, use fine grains. do it.

低軟化点ガラス粉末と高軟化点結晶性ガラス粉末との配
合割合は、低軟化点ガラス粉末が多量に存在すると非晶
質のガラス部分が相当量残存するようになり、欠損防止
効果が失われるので、高軟化点結晶性ガラス粉末は、低
軟化点ガラス粉末との裏層用混合粉末の全量に対して2
0〜70重量%程度配合するのがよい。20%未満では
結晶量が不足し、一方70%を越えると緻密化不足によ
り著しい強度不足を招来する。
Regarding the blending ratio of low softening point glass powder and high softening point crystalline glass powder, if a large amount of low softening point glass powder is present, a considerable amount of amorphous glass portion will remain, and the chipping prevention effect will be lost. Therefore, the high softening point crystalline glass powder is 2 times the total amount of the mixed powder for the back layer with the low softening point glass powder.
It is preferable to mix it in an amount of about 0 to 70% by weight. If it is less than 20%, the amount of crystals will be insufficient, while if it exceeds 70%, there will be a significant lack of strength due to insufficient densification.

裏層2の厚さは、クラックの発生、進展防止のためには
1 mm程度有れば十分であるが、製造の容易性を考慮
すると、3〜5 mm程度とするのがよい。
A thickness of about 1 mm is sufficient for preventing the occurrence and propagation of cracks, but in consideration of ease of manufacture, the thickness of the back layer 2 is preferably about 3 to 5 mm.

尚、裏層2は複層材の全厚の95%程度まで設けてもよ
い。もっとも裏層を厚くする場合は、裏層材として表層
材と同程度以上の高強度、緻密材を用いる必要がある。
Note that the back layer 2 may be provided up to about 95% of the total thickness of the multilayer material. However, if the back layer is to be made thicker, it is necessary to use a high-strength, dense material that is at least as strong as the surface layer material as the back layer material.

また、表層lとMN2とは後述のように一体的に加圧成
形、結晶化され、融着および結晶化により一体化される
が、両層1.2の熱膨張率が著しく異なると、境界部に
剥離が生じ易くなるため、熱膨張率の差が士txto−
h、”cの範囲に止めておくのがよい。熱膨張率の調整
は、例えば表層材におけるアルミナ粉未配合量を調整す
ることによって行うことができる。
In addition, the surface layer 1 and MN2 are integrally pressure-formed and crystallized as described later, and are unified by fusion and crystallization, but if the coefficients of thermal expansion of both layers 1.2 are significantly different, the boundary The difference in coefficient of thermal expansion is
It is preferable to keep it within the range of h and c. The coefficient of thermal expansion can be adjusted, for example, by adjusting the amount of alumina powder not added in the surface layer material.

本発明の複層結晶化ガラス材を製造するには、以上説明
した表層用および裏層用の混合粉末を調製した後、第2
図に示すように、いずれか一方の混合粉末(通常は表層
用混合粉末)11を成形用金型13に散布充填し、その
上に他方の混合粉末12を散布装填した後、上型14を
嵌入し、常温加圧成形もしくは熱間加圧成形した後、結
晶化熱処理を施すことによって製造される。加圧圧力は
、常温加圧成形では100〜200 kgf/cffl
  程度、熱間加圧成形では3〜50kgf/cffl
程度でよい。また、熱間加圧成形を行う場合、緻密化温
度は、通常、600〜800°Cとされる。結晶化熱処
理は、ガラス粉末成形体を800〜950°Cで3〜3
0 Hr保持することによって行われる。結晶化熱処理
において、高軟化点ガラス粉末や高軟化点結晶性ガラス
粉末は未軟化状態であるため骨材としての役目を果たす
ので、ガラス粉末成形体を単独で熱処理しても形部れの
生じるおそれはない。尚、常温加圧成形を行う場合、混
合粉末に有機バインダーを添加することや結晶化熱処理
前に脱バインダー処理を行うことは既述の通りである。
In order to produce the multi-layer crystallized glass material of the present invention, after preparing the above-described mixed powder for the surface layer and the back layer,
As shown in the figure, one of the mixed powders (usually the mixed powder for the surface layer) 11 is scattered and filled into a molding die 13, and after the other mixed powder 12 is spread and charged thereon, the upper mold 14 is It is manufactured by fitting, cold-pressure molding or hot-pressure molding, and then subjecting it to crystallization heat treatment. Pressure is 100 to 200 kgf/cffl for room temperature pressure molding.
degree, 3 to 50 kgf/cffl in hot pressure forming
It is enough. Moreover, when performing hot pressing, the densification temperature is usually 600 to 800°C. Crystallization heat treatment is performed by heating the glass powder compact at 800 to 950°C for 3 to 3
This is done by holding for 0 Hr. In crystallization heat treatment, high softening point glass powder and high softening point crystalline glass powder are in an unsoftened state and serve as aggregates, so even if a glass powder compact is heat treated alone, deformation may occur. There's no fear. In addition, when carrying out cold-pressure molding, adding an organic binder to the mixed powder and performing binder removal treatment before crystallization heat treatment are as described above.

次に具体的実施例について説明する。Next, specific examples will be described.

(1)  第1表に示した組成(wt%)の粉末を各種
調製した。G 、P 、W材の粉末の平均粒径は13μ
m(200メツシユ以下の粉末が97%)、A材は1゜
8μlとした。尚、低軟化点ガラス粉末(G材)の原料
としてカレント、高軟化点ガラス粉末(P材)の原料と
してパーライトを利用した。
(1) Various powders having the compositions (wt%) shown in Table 1 were prepared. The average particle size of the powder of G, P, and W materials is 13μ
m (97% powder of 200 mesh or less), material A was 1°8 μl. Note that current was used as a raw material for the low softening point glass powder (G material), and pearlite was used as the raw material for the high softening point glass powder (P material).

次        葉 第1表 第2表 (注)G材・・イ漱化点ガラス粉末 P材・・・高軟化点ガラス粉末 A材・・・アルミナ粉末 W材・・臂Q次化点鴇届性力゛ラス粉末(2)第2表の
配合により表層用および裏層用混合粉末を調整すると共
に、同表の熱間加圧成形条件によって、900 X90
0 mm、全層厚さ20mm (裏層3〜5鵬)の複層
ガラス粉末成形体を製造した。尚、比較のため、表層材
のみ又は裏層材のみのガラス粉末成形体も同時に製作し
た。比較例1は実施例と同寸法、比較例2および3は3
00 X300 nnX厚さ20mmである。
Next Table 1 Table 2 (Note) Material G...Solution point glass powder P material...High softening point glass powder A material...Alumina powder W material...Arm Q Soiling point Strength glass powder (2) Prepare the mixed powder for the surface layer and the back layer according to the formulation shown in Table 2, and according to the hot pressing conditions shown in the same table, 900 x 90
A double-layer glass powder molded body having a thickness of 0 mm and a total thickness of 20 mm (back layer 3 to 5) was manufactured. For comparison, glass powder compacts with only the surface layer material or only the back layer material were also produced at the same time. Comparative Example 1 has the same dimensions as the Example, Comparative Examples 2 and 3 have 3
00 x 300 nn x thickness 20 mm.

(3)熱間加圧成形後、ガラス粉末成形体を成形用金型
から取り出して、600″Cに保持した加熱炉に挿入し
均熱した後、実施例および比較例とも900℃に昇温し
、4時間保持して結晶化を図った後、徐冷した。
(3) After hot pressing, the glass powder compact was taken out of the molding die, inserted into a heating furnace maintained at 600"C and soaked, and then heated to 900°C in both Examples and Comparative Examples. After holding for 4 hours to achieve crystallization, the mixture was slowly cooled.

(4)得られた板状結晶化ガラス材の曲げ強度、吸水率
および、50〜500°Cにおける熱膨張率を調べた。
(4) The bending strength, water absorption rate, and thermal expansion coefficient at 50 to 500°C of the obtained plate-shaped crystallized glass material were investigated.

尚、曲げ強度は実施例に対しては表層側より荷重を作用
させた。試験片の厚さは15mmとし、実施例では表N
12mm裏層3 mmとした。また、切断試験を行った
。使用した回転歯は直径360mmのダイヤモンド砥粒
メタルボンド円盤砥石であり、切断条件は回転数174
ORPM、送り速度0゜75m/分とした。これらの測
定、試験結果を第3表に示す。尚、吸水率は気孔率の目
安となるものである。欠損発生率は5 mm以上のクラ
ンクを欠損として測定したものである。
In addition, the bending strength was determined by applying a load to the examples from the surface layer side. The thickness of the test piece was 15 mm, and in the example Table N
The thickness of the back layer was 12 mm and the thickness of the back layer was 3 mm. A cutting test was also conducted. The rotating tooth used was a diamond abrasive metal bond disc grindstone with a diameter of 360 mm, and the cutting conditions were a rotation speed of 174.
ORPM and feed rate were set to 0° and 75 m/min. The results of these measurements and tests are shown in Table 3. Note that the water absorption rate is a measure of the porosity. The defect incidence rate is measured by considering cranks with a diameter of 5 mm or more as defects.

第3表 (5)第3表より、本発明の裏層を形成する結晶質ガラ
ス材は比較例2および3から明らかなように、結晶量が
多い故に曲げ強度も高く、欠損防止効果に優れることが
判る。また、この結晶質ガラス材を裏層に形成した実施
例1および2の複層結晶化ガラス材は単層の比較例1お
よび4のものと比較して、欠損発生率の低下が著しい。
Table 3 (5) From Table 3, it is clear from Comparative Examples 2 and 3 that the crystalline glass material forming the back layer of the present invention has a large amount of crystals, so it has high bending strength and is excellent in chipping prevention effect. I understand that. Further, the multilayer crystallized glass materials of Examples 1 and 2 in which this crystalline glass material was formed as the back layer had a remarkable reduction in the defect occurrence rate compared to the single layer Comparative Examples 1 and 4.

(発明の効果) 以上説明した通り、本発明の複層結晶化ガラス材は、緻
密で光沢に冨んだ結晶化ガラス材で表層を形成し、その
裏面、に低、軟化点ガラス粉末と高軟化点結晶性ガラス
粉末とが融着一体化し結晶化してなる結晶質ガラス材で
形成された裏層を融着−体化したので、裏層中に存在す
る多量の結晶がクランクの発生、進展を阻止し、切断面
にクランクの進展により欠損が生じるのを有効に防止す
ることができる。
(Effects of the Invention) As explained above, the multi-layer crystallized glass material of the present invention has a surface layer made of a dense and glossy crystallized glass material, and a back layer containing low and high softening point glass powder. Since the back layer formed of the crystalline glass material is fused and integrated with the softening point crystalline glass powder and crystallized, the large amount of crystals present in the back layer prevents the occurrence and development of cranks. This effectively prevents damage to the cut surface due to the progress of the crank.

また、表層は、安価で入手容易かつ融着し易い特定組成
の低軟化点および高軟化点ガラス粉末を用い、更にアル
ミナ粉末が添加されて一体形成されているので、ガラス
粉末との結晶化促進により結合が強化され、また結晶化
ガラス材に圧縮応力を残留させることができ、強度およ
び耐熱衝撃性の著しい向上を図ることができる。
In addition, the surface layer uses low-softening point and high-softening point glass powder of a specific composition that is inexpensive, easy to obtain, and easy to fuse, and is further added with alumina powder to promote crystallization with the glass powder. This strengthens the bond and allows compressive stress to remain in the crystallized glass material, making it possible to significantly improve the strength and thermal shock resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複層結晶化ガラス材の部分断面図、第
2図は複層ガラス粉末成形体の成形状態を示す成形用金
型の断面図、第3図は結晶化ガラス材の切断状態を示す
部分断面図を示す。 1・・・表層、2・・・裏層。
Fig. 1 is a partial cross-sectional view of the multilayer glass-ceramic material of the present invention, Fig. 2 is a cross-sectional view of a molding die showing the molding state of the multi-layer glass powder compact, and Fig. 3 is a partial cross-sectional view of the multilayer glass-ceramic material of the present invention. A partial sectional view showing a cut state is shown. 1...surface layer, 2...back layer.

Claims (2)

【特許請求の範囲】[Claims] (1)低軟化点ガラス粉末と高軟化点ガラス粉末および
アルミナ粉末とが低軟化点ガラス粉末の軟化融着後に融
着一体化し結晶化してなる結晶化ガラス材で形成された
表層と、低軟化点ガラス粉末と高軟化点結晶性ガラス粉
末とが融着一体化し結晶化してなる結晶質ガラス材で形
成された裏層とが融着一体化してなることを特徴とする
複層結晶化ガラス材。
(1) A surface layer formed of a crystallized glass material in which a low softening point glass powder, a high softening point glass powder, and an alumina powder are fused and crystallized after softening and fusion of the low softening point glass powder; A multi-layer crystallized glass material characterized by a back layer formed of a crystalline glass material formed by fusing and crystallizing point glass powder and high softening point crystalline glass powder. .
(2)低軟化点ガラス粉末は主成分が重量%でSiO_
2:65〜80%CaO:5〜15%Na_2O+K_
2O:10〜30%MgO:10%以下Al_2O_3
:10%以下 であり、 高軟化点ガラス粉末は主成分が重量%で SiO_2:65〜80%、Al_2O_3:25%以
下Na_2O+K_2O:5〜15% であり、 高軟化点結晶性ガラス粉末は主成分が重量%で SiO_2:25〜55%Al_2O_3:5〜20%
CaO:25〜65% であることを特徴とする請求項(1)に記載の複層結晶
化ガラス材。
(2) The main component of low softening point glass powder is SiO_
2: 65-80% CaO: 5-15% Na_2O+K_
2O: 10-30% MgO: 10% or less Al_2O_3
The main components of the high softening point glass powder are SiO_2: 65 to 80%, Al_2O_3: 25% or less, Na_2O + K_2O: 5 to 15%, and the high softening point crystalline glass powder has the following main components: is in weight% SiO_2: 25-55% Al_2O_3: 5-20%
The multilayer crystallized glass material according to claim 1, characterized in that the CaO content is 25 to 65%.
JP7711089A 1989-03-28 1989-03-28 Double-layer crystallized glass material Pending JPH02255546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7711089A JPH02255546A (en) 1989-03-28 1989-03-28 Double-layer crystallized glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7711089A JPH02255546A (en) 1989-03-28 1989-03-28 Double-layer crystallized glass material

Publications (1)

Publication Number Publication Date
JPH02255546A true JPH02255546A (en) 1990-10-16

Family

ID=13624646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7711089A Pending JPH02255546A (en) 1989-03-28 1989-03-28 Double-layer crystallized glass material

Country Status (1)

Country Link
JP (1) JPH02255546A (en)

Similar Documents

Publication Publication Date Title
JP7048767B2 (en) Glass Ceramic Articles and Glass Ceramics for Electronic Device Cover Plates
EP0795311B2 (en) Two phase dental porcelain composition
CN104736126B (en) Lithium metasilicate glass ceramics and silicic acid lithium glass comprising cesium oxide
JP2954865B2 (en) Glass ceramic product and method for producing the same
US6123743A (en) Glass-ceramic bonded abrasive tools
US3761235A (en) Marble like glass material and method of producing the same
KR102153315B1 (en) Manufacturing method of bone china earthenware using the glaze composition for chemical strengthening of bone china earthenware
JPH02255546A (en) Double-layer crystallized glass material
US3834911A (en) Glass composition and method of making
JPH02255549A (en) Double-layer crystallized glass material
JPH02255545A (en) Double-layer crystallized glass material
JPH02255548A (en) Double-layer crystallized glass material
JPH02267138A (en) Multi-layer crystallized glass material
JPH02255547A (en) Double-layer crystallized glass material
JP2527402B2 (en) Crystallized glass and manufacturing method thereof
JPS6317238A (en) Production of crystallized glass
JPS6374936A (en) Crystallized glass and production thereof
JPH0218337A (en) Crystallized glass material and its production
CN112745027A (en) Jade-like microcrystalline glass and preparation method thereof
JPS6323144B2 (en)
JPS6238309B2 (en)
JPH05279082A (en) Production of crystallized glass
JPH0776110B2 (en) Natural stone-like crystallized glass article
JPS62143842A (en) Crystallized glass and production thereof
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation