JPH02255504A - Production of oxide superconducting thin film - Google Patents

Production of oxide superconducting thin film

Info

Publication number
JPH02255504A
JPH02255504A JP1076713A JP7671389A JPH02255504A JP H02255504 A JPH02255504 A JP H02255504A JP 1076713 A JP1076713 A JP 1076713A JP 7671389 A JP7671389 A JP 7671389A JP H02255504 A JPH02255504 A JP H02255504A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxide superconducting
superconducting thin
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076713A
Other languages
Japanese (ja)
Inventor
Muneyuki Imafuku
今福 宗行
Yasuo Takagi
康夫 高木
Wataru Ito
渉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1076713A priority Critical patent/JPH02255504A/en
Publication of JPH02255504A publication Critical patent/JPH02255504A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a thin film having satisfactory superconducting characteristics, such as a high superconductivity transition temp. and a high critical current density, at a low temp. by irradiating a substrate with UV having a prescribed wavelength during film formation by opposing targets sputtering system. CONSTITUTION:Plasma 4 is generated between two opposingly placed targets 1, 2 and an oxide superconducting thin film is formed on a substrate 3. During this film formation, the substrate 3 is irradiated with UV having 200-300nm wavelength from a low pressure mercury lamp or a hydrogen discharge tube as a UV radiator 7. A thin film having satisfactory superconducting characteristics, such as a high superconductivity transition temp. and a high critical current density, is obtd. at such a low temp. as <=400 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超電導薄膜の製造方法に関する。本発
明による薄膜材料は、エレクトロニクス分野、電力分野
、輸送分野などその応用範囲はきわめて広いものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting thin film. The thin film material according to the present invention has an extremely wide range of applications, including the electronics field, the electric power field, and the transportation field.

[従来の技術] 気相成長法による酸化物超電導薄膜の製造方法として、
ターゲットの組成と薄膜の組成とのずれの少ない対向タ
ーゲット式スパッタリング法[参考文献:星、直性、山
中;電気通信学会論文誌、J65−C,(1980)4
90.]が注目されている。従来本方式では、アルゴン
などの希ガスと酸素ガスの二種類のガスが、二枚の対向
するターゲット間に導入され、500℃程度に加熱され
た基板上に酸化物超電導体が成膜される。前記二種類の
ガスを合わせたガス圧は10−”Torrから10−”
Torr台であり、酸素の圧力%は201から50tが
通常選ばれる。しかし、成膜したままの状態では基板上
で酸化反応が十分に起らず、酸素不足の薄膜が得られる
ことが多い。そのため、十分高い超電導転移温度を持つ
薄膜を得るためには、さらに700℃から800℃程度
の高温下で一時間程度の酸素雰囲気中焼鈍が必要である
[Prior art] As a method for producing an oxide superconducting thin film using a vapor phase growth method,
Facing target sputtering method with little deviation between the target composition and the thin film composition [References: Hoshi, Naoko, Yamanaka; Transactions of the Institute of Electrical Communication Engineers, J65-C, (1980) 4
90. ] is attracting attention. Conventionally, in this method, two types of gas, a rare gas such as argon and oxygen gas, are introduced between two opposing targets, and an oxide superconductor is deposited on a substrate heated to about 500 degrees Celsius. . The combined gas pressure of the above two types of gas is from 10-”Torr to 10-”
Torr level, and the pressure percentage of oxygen is usually selected from 201 to 50 tons. However, in the as-formed state, the oxidation reaction does not occur sufficiently on the substrate, often resulting in a thin film deficient in oxygen. Therefore, in order to obtain a thin film with a sufficiently high superconducting transition temperature, annealing in an oxygen atmosphere at a high temperature of about 700° C. to 800° C. for about one hour is required.

[発明が解決しようとする課題] 対向ターゲット式スパッタリング法により酸化物超電導
薄膜を作製する場合、成膜したい酸化物と同じ成分のタ
ーゲットを用いるのが−・船釣である。この場合、通常
のスパッタリング法のようにスパッタリングガスとして
アルゴンガスのみを用いると薄膜中の酸素量が不足する
ので、アルゴンガスと酸素ガスを同時に(混合ガスとし
て一つの導入口より、あるいは別々のガスとして二つの
導入口より)スパッタリングチャンバー内に導入して酸
素を補うという手法(反応性スパッタリング法)が用い
られる。しかしながら、この場合も基板の温度を500
℃程度に保持しても十分ではなく、650℃以上にする
必要がある。基板温度が650℃よりも低い場合は、成
膜後に、さらに700℃から800℃という高温での酸
素中焼鈍を行なう必要がある。
[Problems to be Solved by the Invention] When producing an oxide superconducting thin film by the facing target sputtering method, a target having the same composition as the oxide to be deposited is used. In this case, if only argon gas is used as the sputtering gas as in the normal sputtering method, the amount of oxygen in the thin film will be insufficient. A method (reactive sputtering method) is used in which oxygen is introduced into the sputtering chamber (through two inlets) to supplement oxygen. However, in this case as well, the temperature of the substrate was
It is not sufficient to maintain the temperature at about 650°C or higher. When the substrate temperature is lower than 650°C, it is necessary to further perform annealing in oxygen at a high temperature of 700°C to 800°C after film formation.

ところが、酸化物超電導薄膜を作製するためにはMgO
,5rTi03等の基板材料が必要である。そこで成膜
中あるいは後処理中に基板が加熱されるとこれらの基板
材料と酸化物超電導薄膜との反応が起こり易くなり、超
電導特性の劣化につながる。さらに、酸化物超電導薄膜
をエレクトロニクス等のデバイス回路へ応用する場合に
は、酸化物超電導薄膜の上下にアルミニウム等の種々な
金属膜や酸化珪素等の様々な絶縁膜を被覆しなければな
らない。従って、デバイス回路製造過程に於て、この回
路中の構成要素間の拡散・反応による特性劣化を防ぐた
めには、なるべく低い温度、特に400℃以下の成膜技
術が必要である。
However, in order to fabricate an oxide superconducting thin film, MgO
, 5rTi03, etc. are required. Therefore, when the substrate is heated during film formation or post-treatment, reactions between these substrate materials and the oxide superconducting thin film tend to occur, leading to deterioration of superconducting properties. Furthermore, when applying the oxide superconducting thin film to device circuits such as electronics, it is necessary to cover the top and bottom of the oxide superconducting thin film with various metal films such as aluminum or various insulating films such as silicon oxide. Therefore, in the device circuit manufacturing process, in order to prevent characteristic deterioration due to diffusion and reaction between the components in the circuit, it is necessary to use a film formation technique at as low a temperature as possible, particularly at 400° C. or lower.

本発明はかかる問題点を解決し、400℃程度の低い基
板温度において酸化物超電導薄膜を製造する方法を提供
することを目的とする。
An object of the present invention is to solve these problems and provide a method for manufacturing an oxide superconducting thin film at a low substrate temperature of about 400°C.

[課題を解決するための手段] 本発明は、対向ターゲット式スパッタリング法で酸化物
超電導薄膜を製造する場合に、成膜中に基板に波長が2
00nmから300nmの紫外線を照射することを特徴
とする酸化物超電導薄膜の製造方法である。前記紫外線
を照射する手法として、低圧・水銀ランプあるいは水素
放電管を用いることが可能である。
[Means for Solving the Problems] The present invention provides that when producing an oxide superconducting thin film by a facing target sputtering method, a wavelength of 2
This is a method for producing an oxide superconducting thin film, which is characterized by irradiating ultraviolet light with a wavelength of 00 nm to 300 nm. As a method for irradiating the ultraviolet rays, it is possible to use a low-pressure mercury lamp or a hydrogen discharge tube.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

波長200止から300止の紫外線を酸素ガス中に照射
すると、酸素分子(大部分が0□であり、一部活性なオ
ゾン(03)も存在する)が解離して酸素原子のラジカ
ルを生成しやすいことはよく知られている。この酸素原
子のラジカルは反応性に富み、酸素分子(02)と結合
して活性なオゾン(03)の濃度を増す。こうして得ら
れたラジカルやオゾンは、種々の金属原子と反応して酸
化物を形成しやすくなる。そこで、本発明は、対向ター
ゲット式スパッタリング法による酸化物超電導薄膜の製
造時に、基板上に紫外線を照射して基板近傍の酸素ガス
を活性化し、従来の方法よりも低い400℃の基板温度
に於て酸化反応を促進し、酸化物超電導薄膜を得る手段
を見い出した。
When oxygen gas is irradiated with ultraviolet rays with wavelengths between 200 and 300, oxygen molecules (mostly 0□, with some active ozone (03) also present) dissociate and generate oxygen atomic radicals. It is well known that it is easy. This oxygen atom radical is highly reactive and combines with oxygen molecules (02) to increase the concentration of active ozone (03). The radicals and ozone thus obtained tend to react with various metal atoms to form oxides. Therefore, in the present invention, when producing an oxide superconducting thin film using the facing target sputtering method, the substrate is irradiated with ultraviolet rays to activate the oxygen gas near the substrate, and the substrate temperature is 400°C, which is lower than in the conventional method. We have discovered a means to accelerate the oxidation reaction and obtain an oxide superconducting thin film.

第1図に本発明にかかわる装置の概略図を示す。対向タ
ーゲット式スパッタリング法で酸化物薄膜を作製する場
合、通常二枚のターゲット1.2間にアルゴン等の希ガ
ス5と酸素ガス6を導入する。これらのガスはプラズマ
化してターゲット中の原子をたたき出す。これらの原子
は、ターゲット上あるいはプラズマの外に配置した基板
3近傍の酸素分子、原子との酸化反応を伴ないながら前
記基板上に降り積もる。本発明は、図中7のように、前
J己基板3上に波長200nmから300nmの紫外線
を照射する装置を設置することを特徴とする。
FIG. 1 shows a schematic diagram of an apparatus according to the present invention. When producing an oxide thin film by the facing target sputtering method, a rare gas 5 such as argon and oxygen gas 6 are usually introduced between two targets 1.2. These gases turn into plasma and knock out atoms in the target. These atoms accumulate on the substrate while undergoing an oxidation reaction with oxygen molecules and atoms on the target or in the vicinity of the substrate 3 placed outside the plasma. The present invention is characterized in that a device for irradiating ultraviolet rays with a wavelength of 200 nm to 300 nm is installed on the front substrate 3, as shown in 7 in the figure.

この範囲であれば特定波長の輝線はスペクトルであって
も連続スペクトルであってもかまわない。
As long as it is within this range, the emission line of the specific wavelength may be a spectrum or a continuous spectrum.

紫外線の波長が200nm未満あるいは300nm超の
場合は、酸素原子の解離作用が十分に行なわれないので
好ましくない。
When the wavelength of the ultraviolet rays is less than 200 nm or more than 300 nm, it is not preferable because the dissociation effect of oxygen atoms is not sufficiently performed.

赤外線照射装置の具体例としては、例えば特定の波長の
輝線を発する低圧水銀ランプ(253,7nm)や、連
続スペクトル光源である水素放電管が挙げられる。これ
らの装置は真空チェンバーの内部に設置してもよいし、
チェンバーの外部に設置してもよい。後者の場合は石英
窓を通して紫外線を照射する。また紫外線の照射方向は
、基板面に平行でも垂直でもよく、任意である。スパッ
タリング条件としては、アルゴンと酸素を合わせたガス
圧がlロー3から1O−2Torr台の範囲で、酸素の
圧力%が201から50tが選ばれる。スパッタリング
投入パワーは、ターゲットが破損しない範囲ならいくら
でもよい。
Specific examples of the infrared irradiation device include, for example, a low-pressure mercury lamp (253.7 nm) that emits bright lines of a specific wavelength, and a hydrogen discharge tube that is a continuous spectrum light source. These devices may be installed inside the vacuum chamber or
It may also be installed outside the chamber. In the latter case, ultraviolet light is irradiated through a quartz window. Further, the irradiation direction of the ultraviolet rays may be parallel or perpendicular to the substrate surface, and is arbitrary. As sputtering conditions, the combined gas pressure of argon and oxygen is selected to be in the range of 10-3 to 10-2 Torr, and the pressure % of oxygen is selected to be 201 to 50 tons. The sputtering input power may be any power as long as the target is not damaged.

本発明により作製される酸化物超電導薄膜の種類として
は特に制限はなく、例えばYBa、Cu、O,、Di2
sr、Ca、Cu+0.、T12Ha2Ca、Cu、0
.等が用いられる。
The type of oxide superconducting thin film produced by the present invention is not particularly limited, and examples include YBa, Cu, O, Di2
sr, Ca, Cu+0. , T12Ha2Ca, Cu, 0
.. etc. are used.

基板材料も特に制限はない。例えばMgOや5rTi0
3の単結晶あるいは多結晶、Mg、Zr、Ai、Ti等
の酸化物中間層を形成した金属基板あるいは半導体基板
が用いられる。
There are no particular restrictions on the substrate material. For example, MgO or 5rTi0
A metal substrate or a semiconductor substrate on which an oxide intermediate layer of 3, single crystal or polycrystal, Mg, Zr, Al, Ti, etc. is formed is used.

[作用] 本発明により、基板温度400℃という低温での成膜で
後処理が必要なく、酸素の十分供給され良好な超電導特
性(超電導転移温度、臨界電流密度)に示す酸化物超電
導薄膜が得られた。
[Function] According to the present invention, it is possible to obtain an oxide superconducting thin film that can be formed at a low substrate temperature of 400° C. without the need for post-treatment, has a sufficient supply of oxygen, and exhibits good superconducting properties (superconducting transition temperature, critical current density). It was done.

[実施例] (実施例1) 対向ターゲット式スパッタリング装置内に、15Wの低
圧水銀ランプ(通称殺菌ランプ)を設置し、基板面に4
5度の方向から紫外線を照射した。基板面とランプとの
距離は10cmである。基板温度は400℃とした。以
下にその他のスパッタリング条件を示す。
[Example] (Example 1) A 15W low-pressure mercury lamp (commonly known as a sterilization lamp) was installed in a facing target type sputtering device, and 4
Ultraviolet light was irradiated from a 5 degree direction. The distance between the substrate surface and the lamp was 10 cm. The substrate temperature was 400°C. Other sputtering conditions are shown below.

ターゲット: YBa2Cu+Ox酸化物焼結体(直径
100mm ) 基板:MgO<100 )単結晶(10mmX ]Oa
+mx O,5mast ) スパッタリングガス種類:高純度アルゴン(5096)
中高純度酸素(50%) スパッタリングガス圧カニ 5 x to−’Torr
高圧印加方式: RF (13,56M)lz)スパッ
タリングパワー: 150 W 薄膜の厚さは1ミクロンである。得られた薄膜の電気抵
抗の温度依存性を4端子法により測定した結果として、
第2図中の(a)に示す。超電導転移温度Tcは82に
であった。またX線回折パターンより、この薄膜は基板
面に垂直な方向にC軸が向いた高配向膜であることがわ
かった。
Target: YBa2Cu+Ox oxide sintered body (diameter 100mm) Substrate: MgO<100 ) single crystal (10mmX ]Oa
+mx O, 5mast) Sputtering gas type: High purity argon (5096)
Medium-high purity oxygen (50%) Sputtering gas pressure crab 5 x to-'Torr
High pressure application method: RF (13,56M) lz) Sputtering power: 150 W The thickness of the thin film is 1 micron. As a result of measuring the temperature dependence of the electrical resistance of the obtained thin film using the four-terminal method,
This is shown in (a) in FIG. The superconducting transition temperature Tc was 82. Furthermore, the X-ray diffraction pattern revealed that this thin film was a highly oriented film with the C axis oriented in a direction perpendicular to the substrate surface.

(比較例) 紫外線を照射することを除いて、前記実施例1と同じ条
件で成膜した薄膜の電気抵抗の温度依存性を4端子法に
より測定した。その結果を第2図中の(b)で示す。6
0に付近より電気抵抗が下がり始めるが、電気抵抗が零
になる温度(Tc)は約15にであった。このようにT
cは本発明よりかなり低い。
(Comparative Example) The temperature dependence of the electrical resistance of a thin film formed under the same conditions as in Example 1 except for irradiation with ultraviolet rays was measured by a four-terminal method. The results are shown in (b) in FIG. 6
The electrical resistance starts to decrease near 0, but the temperature (Tc) at which the electrical resistance becomes zero is about 15. Like this T
c is considerably lower than that of the present invention.

[発明の効果] 本発明により、対向ターゲット式スパッタリング法によ
る酸化物超電導薄膜成膜条件として、最高加熱温度40
0℃という、従来よりも数百℃も低温での作製が可能と
なった。
[Effects of the Invention] According to the present invention, as conditions for forming an oxide superconducting thin film by the facing target sputtering method, the maximum heating temperature is 40°C.
It has become possible to manufacture the device at a temperature of 0°C, which is several hundred degrees Celsius lower than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる装置の概要を示す図である。第
2図は、(a)本発明による実施例1の電気抵抗の温度
依存性と、(b)比較例による電気抵抗の温度依存性を
示す図である。
FIG. 1 is a diagram showing an outline of an apparatus according to the present invention. FIG. 2 is a diagram showing (a) the temperature dependence of electrical resistance in Example 1 according to the present invention, and (b) the temperature dependence of electrical resistance in a comparative example.

Claims (1)

【特許請求の範囲】 1、対向ターゲット式スパッタリング法で酸化物超電導
薄膜を製造する方法において、成膜中に基板に波長が2
00nmから300nmの紫外線を照射することを特徴
とする酸化物超電導薄膜の製造方法。 2、低圧水銀ランプあるいは水素放電管を用いて紫外線
を基板上に照射することを特徴とする請求項1記載の方
法。
[Claims] 1. In a method for producing an oxide superconducting thin film by a facing target sputtering method, a wavelength of 2
A method for producing an oxide superconducting thin film, the method comprising irradiating ultraviolet light with a wavelength of 00 nm to 300 nm. 2. The method according to claim 1, wherein the substrate is irradiated with ultraviolet rays using a low-pressure mercury lamp or a hydrogen discharge tube.
JP1076713A 1989-03-30 1989-03-30 Production of oxide superconducting thin film Pending JPH02255504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076713A JPH02255504A (en) 1989-03-30 1989-03-30 Production of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076713A JPH02255504A (en) 1989-03-30 1989-03-30 Production of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH02255504A true JPH02255504A (en) 1990-10-16

Family

ID=13613188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076713A Pending JPH02255504A (en) 1989-03-30 1989-03-30 Production of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH02255504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119905A (en) * 1989-08-21 1992-04-21 Matsushita Electric Ind Co Ltd Thin filmlike superconductor and superconducting element and production of them
JP2015128162A (en) * 2010-02-12 2015-07-09 株式会社半導体エネルギー研究所 Deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119905A (en) * 1989-08-21 1992-04-21 Matsushita Electric Ind Co Ltd Thin filmlike superconductor and superconducting element and production of them
JP2015128162A (en) * 2010-02-12 2015-07-09 株式会社半導体エネルギー研究所 Deposition method

Similar Documents

Publication Publication Date Title
US6395650B1 (en) Methods for forming metal oxide layers with enhanced purity
US5508066A (en) Method for forming a thin film
EP0416774A1 (en) A method of treating a sample of aluminium-containing material
US6413386B1 (en) Reactive sputtering method for forming metal-silicon layer
JP2007087996A (en) Substrate with silicon dot
WO2005093798A1 (en) Method and apparatus for forming silicon dots
JP3351843B2 (en) Film formation method
WO2008056556A1 (en) Method and device for forming silicon dot and silicon dot and method and device for forming substrate with insulating film
JPH02255525A (en) Production of y-containing superconducting thin film
CN113186528A (en) Platinum film and preparation method and application thereof
JP2006176859A (en) Method for producing silicon nano-crystal structure
JPH02255504A (en) Production of oxide superconducting thin film
JPS5884111A (en) Improved plasma deposition for silicon
JP2001135149A (en) Zinc oxide-based transparent electrode
JPH0682651B2 (en) Epitaxy insulating film for semiconductor device and manufacturing method thereof
Boyd et al. Low temperature photoformation of tantalum oxide
WO2004070736A1 (en) Ferroelectric film, semiconductor device, ferroelectric film manufacturing method, and ferroelectric film manufacturing apparatus
EP0349341A2 (en) Method of improving and/or producing oxide superconductor
RU2476373C1 (en) Method of making superconducting single-photon detectors
JP2001244511A (en) Method of manufacturing josephson device having ramp edge structure and film-forming device
Matsumoto et al. Low temperature preparation of perovskite oxide films by ECR sputtering assisted with microwave treatment
JPH06184734A (en) Production of transparent conductive thin film
JP2002069616A (en) Production method for thin film of anatase-type titanium oxide
JPH0680656B2 (en) Method for forming oxide thin film
JPH03197321A (en) Production of superconductor of thin film