JPH02255503A - Production of oxide superconducting thin film - Google Patents

Production of oxide superconducting thin film

Info

Publication number
JPH02255503A
JPH02255503A JP1076711A JP7671189A JPH02255503A JP H02255503 A JPH02255503 A JP H02255503A JP 1076711 A JP1076711 A JP 1076711A JP 7671189 A JP7671189 A JP 7671189A JP H02255503 A JPH02255503 A JP H02255503A
Authority
JP
Japan
Prior art keywords
thin film
gas
oxygen
substrate
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076711A
Other languages
Japanese (ja)
Inventor
Muneyuki Imafuku
今福 宗行
Yasuo Takagi
康夫 高木
Wataru Ito
渉 伊藤
Haruo Shimada
島田 春男
Toru Ito
叡 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1076711A priority Critical patent/JPH02255503A/en
Publication of JPH02255503A publication Critical patent/JPH02255503A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To efficiently cause and oxidation reaction and to increase the rate of film formation by opposing target sputtering system by directly irradiating a substrate with oxygen atoms and using gaseous Ar as a gas for generating plasma. CONSTITUTION:When plasma 4 is generated between two opposingly placed targets 1, 2 and an oxide superconducting thin film is formed on a substrate 3, gaseous Ar 5 is used as a gas for generating the plasma 4 and the substrate 3 is directly irradiated with oxygen atoms, molecules or ions from a nozzle 6. The thin film is formed under a low pressure of the sputtering gas and the density of sputtering power is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超電導薄膜の製造方法に関する。本発
明による薄膜材料は、エレクトロニクス分野、電力分野
、輸送分野などその応用範囲はきわめて広いものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting thin film. The thin film material according to the present invention has an extremely wide range of applications, including the electronics field, the electric power field, and the transportation field.

[従来の技術] 気相成長法による酸化物超電導薄膜の製造方法として、
ターゲットの組成と薄膜の組成とのずれの少ない対向タ
ーゲット式スパッタリング法[参考文献例:星、直性、
山中:電気通信学会論文誌、J65−C,(1980)
490.]が注目されている。従来この方式では、プラ
ズマ発生用希ガスと酸化反応促進用ガスの両方が、スパ
ッタリングチャンバー内のターゲットの間に導入される
構造になっており、両ガスの役割を分離することが不可
能であった。
[Prior art] As a method for producing an oxide superconducting thin film using a vapor phase growth method,
Facing target sputtering method with little discrepancy between target composition and thin film composition [Reference examples: Star, Straight,
Yamanaka: Transactions of the Institute of Electrical Communication Engineers, J65-C, (1980)
490. ] is attracting attention. Conventionally, this method has a structure in which both the rare gas for plasma generation and the gas for promoting oxidation reaction are introduced between the targets in the sputtering chamber, making it impossible to separate the roles of the two gases. Ta.

[発明が解決しようとする課題] 対向ターゲット式スパッタリング法により酸化物超電導
f#膜を作製する場合、通常スパッタリングガスとして
アルゴンガスと酸化ガスを同時に(混合ガスとして一つ
の導入口より、あるいは別々のガスとして二つの導入口
より)スパッタリングチャンバー内の二枚のターゲット
の間に導入する。この場合、以下の問題点が生ずる。。
[Problems to be Solved by the Invention] When producing an oxide superconducting f# film by the facing target sputtering method, argon gas and oxidizing gas are usually used as the sputtering gas at the same time (as a mixed gas through one inlet, or through separate It is introduced as a gas between two targets in the sputtering chamber (through two inlets). In this case, the following problems arise. .

本来ならば酸素ガスは薄膜堆積時の酸化反応を促進して
酸素不足を補う役割を担うべきものであるが、酸素ガス
の一部がプラズマ化して二枚のターゲット間に捕捉され
るために基板上で効率よく酸化反応を起こすことができ
ない。酸化反応を十分行なうためには酸素ガス圧を本来
基板上で必要な圧力よりも高くしなければならない。こ
れはプラズマ中のイオン量の増加を意味する。スパッタ
率の点からいえばアルゴンよりも酸素の方が小さく、同
じ圧力、同じ投入スパッタリングパワー密度下でもアル
ゴンガスのみよりもアルゴンと酸素の混合したプラズマ
の方がr&成膜速度遅いという難点がある。
Normally, oxygen gas should play the role of accelerating the oxidation reaction during thin film deposition to compensate for the lack of oxygen, but some of the oxygen gas turns into plasma and is trapped between the two targets, causing oxidation reaction cannot occur efficiently. In order to carry out the oxidation reaction sufficiently, the oxygen gas pressure must be higher than the pressure originally required on the substrate. This means an increase in the amount of ions in the plasma. In terms of sputtering rate, oxygen is smaller than argon, and even under the same pressure and input sputtering power density, there is a drawback that the R& film formation rate is slower with a plasma containing argon and oxygen mixed than with argon gas alone. .

さらに重大な問題として、投入スパッタリングパワー密
度の制限による成膜速度の限界が挙げられる。通常、タ
ーゲットとしては酸化物超電導物質そのものを用いる。
A more serious problem is the limitation of film formation speed due to the limitation of input sputtering power density. Usually, the oxide superconducting material itself is used as the target.

これはセラミック材料であり、銅や鉄のような金属に比
べて熱伝導率が低くかつ脆い。そこで上記のような高イ
オン量のプラズマを用いたスパッタリングでは、ターゲ
ットの損傷が起こり易く、投入スパッタリングパワーを
あまり上げられない。せいぜい2.5W/cm2程度が
限界である。
It is a ceramic material, which has lower thermal conductivity and is more brittle than metals such as copper or iron. Therefore, in sputtering using plasma with a high ion content as described above, the target is likely to be damaged, and the input sputtering power cannot be increased very much. The limit is about 2.5 W/cm2 at most.

以上のような理由により、酸化物超電導薄膜の堆積速度
が金属薄膜成膜の堆積速度にに比べて−桁以上小さくな
り、必然的に同じ厚みの薄膜を得ようとすると成膜に要
する時間が一桁以上多くなる。
For the reasons mentioned above, the deposition rate of oxide superconducting thin films is more than an order of magnitude lower than that of metal thin films, and the time required to form a thin film inevitably increases when trying to obtain a thin film of the same thickness. More than an order of magnitude more.

本発明はかかる問題点を解決し、低スパツタリングガス
圧下かつ高投入パワー下で、成膜速度の速い酸化物超電
導薄膜の製造方法を提供することを目的とする。
An object of the present invention is to solve these problems and provide a method for producing an oxide superconducting thin film at a high deposition rate under low sputtering gas pressure and high input power.

[課題を解決するための手段] 本発明は、対向ターゲット式スパッタリング法による酸
化物超電導薄膜の製造時に、スパッタリグガスとしての
アルゴンガスと酸化反応ガスとしての酸化ガスという役
割を分離し、低ガス圧下で効率よく酸化反応を起こし、
かつ高投入パワー高速成膜を実現する手段を提供するも
のである。すなわち、本発明は、同薄膜の形成される基
板上のみに選択的に酸素原子(0)、酸素分子(02,
0りあるいは酸素イオン(O−)を導入し、プラズマ中
に酸素を供給しないことを特徴とする。
[Means for Solving the Problems] The present invention separates the roles of argon gas as a sputtering gas and oxidizing gas as an oxidation reaction gas during the production of an oxide superconducting thin film by a facing target sputtering method. Oxidation reaction occurs efficiently under pressure,
Moreover, it provides a means for realizing high-input power and high-speed film formation. That is, the present invention selectively injects oxygen atoms (0), oxygen molecules (02,
It is characterized by introducing zero or oxygen ions (O-) and not supplying oxygen into the plasma.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図に本発明に係わる装置の概要を示す。本装置は通
常の対向ターゲット式スパッタリング装置中に、図示す
るFABガン6を配置したものである。FABガン6の
先端より中性酸素原子が基板3上に照射される。プラズ
マ4にはアルゴンガス5のみが供給される。FABガン
6は酸素イオンガン、酸素ガスあるいはオゾンガスの導
入ノズルのいずれで置き換えてもよい。
FIG. 1 shows an outline of the apparatus according to the present invention. This apparatus is an ordinary facing target type sputtering apparatus in which the illustrated FAB gun 6 is arranged. Neutral oxygen atoms are irradiated onto the substrate 3 from the tip of the FAB gun 6 . Only argon gas 5 is supplied to plasma 4 . The FAB gun 6 may be replaced with an oxygen ion gun or an oxygen gas or ozone gas introduction nozzle.

二枚のターゲット1.2間にはtooov以上の交流電
圧をかけて、RF(Radio Frequency)
プラズマ4を発生させる。プラズマ発生用アルゴンガス
の圧力はI X 10−’Torrから8 X 1G−
”Torrまでの範囲で設定可能である。これよりも低
圧になるとプラズマが発生しないし、またこれよりも高
圧になるとアーク放電を起こし易くなり安定なプラズマ
の維持が困難である。プラズマ発生空間内には酸素ガス
を導入する必要はない。
An AC voltage of tooov or more is applied between the two targets 1.2, and RF (Radio Frequency)
Generate plasma 4. The pressure of argon gas for plasma generation ranges from I x 10-'Torr to 8 x 1G-
It can be set in the range up to Torr. If the pressure is lower than this, plasma will not be generated, and if the pressure is higher than this, arc discharge will easily occur and it will be difficult to maintain a stable plasma. Inside the plasma generation space. There is no need to introduce oxygen gas.

FへBガンあるいは酸素イオンガンは市販のものを用い
てよい。酸素ガスまたはオゾンガスの導入ノズルの形状
および断面積は任意である。単口でも多口でもかまわな
い。また、酸素原子、イオンの基板面に対する照射角度
は任意である。これらのガンあるいはノズルに使用され
る酸素ガスの流量は10ccmから100ccn+の範
囲が望ましい。酸素ガスの流量が、10ccm未満の場
合、酸素反応が十分におこらず、また10100cを超
えるとプラズマ中に酸素が入り込んでしまい好ましくな
い。基板の中心と前記ガンあるいはノズルの先端との距
離は5Cffl以下が望ましい。これよりも遠いと酸素
流が効率よく基板面に到達しない。
A commercially available F to B gun or oxygen ion gun may be used. The shape and cross-sectional area of the oxygen gas or ozone gas introduction nozzle are arbitrary. It doesn't matter if it's single or multiple. Further, the irradiation angle of oxygen atoms and ions with respect to the substrate surface is arbitrary. The flow rate of oxygen gas used in these guns or nozzles is preferably in the range of 10 ccm to 100 ccn+. If the flow rate of oxygen gas is less than 10 ccm, the oxygen reaction will not occur sufficiently, and if it exceeds 10100 ccm, oxygen will enter the plasma, which is not preferable. The distance between the center of the substrate and the tip of the gun or nozzle is preferably 5 Cffl or less. If the distance is longer than this, the oxygen flow will not efficiently reach the substrate surface.

なお、本発明は、従来通りの対向ターゲット式スパッタ
リング法による酸化物超電導薄膜製造条件(ガス圧、投
入パワー密度等)下での、併用も可能である。
Note that the present invention can also be used in conjunction with the conventional facing target sputtering method under the conditions (gas pressure, input power density, etc.) for producing an oxide superconducting thin film.

本発明により作製される酸化物超電導薄膜の種類として
は特に制限はなく、例えば、Y B a 2 Cu 3
0 X lBi25r2Ca、Cu30.、 T12B
a2Ca2Cu30.等が用いられる。基板材料も特に
制限はない。例えばMgOや5rTi03の単結晶ある
いは多結晶、Mg、 Zr、 AQ、 Ti等の酸化物
中間層を形成した金属基板あるいは半導体基板が用いら
れる。
There are no particular limitations on the type of oxide superconducting thin film produced according to the present invention; for example, YBa 2 Cu 3
0 X lBi25r2Ca, Cu30. , T12B
a2Ca2Cu30. etc. are used. There are no particular restrictions on the substrate material. For example, a metal substrate or a semiconductor substrate on which an oxide intermediate layer of MgO, 5rTi03 single crystal or polycrystal, Mg, Zr, AQ, Ti, etc. is formed is used.

[作用] 本発明により、プラズマ発生用希ガスが二枚のターゲッ
ト間に、酸化反応促進用酸化原子、分子あるいはイオン
が基板に、それぞれ導入され、ガスの役割を完全に分離
することが可能となワた。
[Function] According to the present invention, a rare gas for plasma generation is introduced between two targets, and oxidation atoms, molecules or ions for promoting an oxidation reaction are introduced into a substrate, making it possible to completely separate the roles of the gases. Nawata.

これによりスパッタリングガス圧力を低下させ、従来よ
りも高投入パワー丁でプラズマ中の酸素イオン等による
ターゲットの損傷を少なくすることができた。
As a result, the sputtering gas pressure was lowered, and damage to the target due to oxygen ions in the plasma could be reduced with a higher input power than in the past.

[実施例] (実施例) 前記4つの手段(■FABガン、■酸素ガス吹き付け、
■オゾン吹き付け、■酸素イオンガン)それぞれについ
てスパッタリングアルゴンガス圧力を1 x 1O−3
Torrから5 X 1O−2Torrまで変化させた
ときの超電導転移温度Tc、ターゲットが損傷しない最
大投入スパッタリングパワー密度Pw、そのときの超電
導薄膜堆積速度Rを調べ第1表に示す。共通の条件は以
下の通りである。
[Example] (Example) The above four means (■FAB gun, ■oxygen gas spraying,
■Ozone spray, ■Oxygen ion gun) Sputtering argon gas pressure 1 x 1O-3 for each
The superconducting transition temperature Tc, the maximum applied sputtering power density Pw without damaging the target, and the superconducting thin film deposition rate R at that time when changing from Torr to 5×1O−2 Torr are shown in Table 1. The common conditions are as follows.

ターゲット: YBa2Cu3(++酸化物焼結体(直
径100mm) 基板: MgO<100>単結晶(10mmX lOm
mx 0.5mmt)基板温度:500℃ 膜厚:1ミクロン スパッタリングガス科類:高純度アルゴン基板直上1 
mmの場所の酸素圧カニ 2 X 1O−3Torr第
  1  表 ■はオゾン吹き付け、■は酸素イオンガン使用の場合を
それぞれ表わす。
Target: YBa2Cu3 (++ oxide sintered body (100 mm diameter) Substrate: MgO <100> single crystal (10 mm
mx 0.5mmt) Substrate temperature: 500℃ Film thickness: 1 micron Sputtering gas type: High purity argon Directly above the substrate 1
Oxygen pressure at a location of mm: 2 X 1O-3 Torr Table 1 ■ indicates the case of ozone spraying, and ■ indicates the case of using an oxygen ion gun.

(比較例) 比較のために従来の方法でのY B a 2 Cu 3
0 X’;4膜の作製条件を示す。従来の方法ではアル
ゴンガスのみを使用した場合、堆積した薄膜は超電導特
性をしめさす、絶縁体であった。超電導特性を示す薄膜
を得るためには酸素ガスも同時にスパッタリングチェン
バー内に導入する必要があフた。その場裏中■はFへB
ガン使用、■は酸素ガス吹き付け、P  +P  ≧I
  X 1O−2TorrAr    02 PO2” PAr+P02)≧0・3 という条件が必要であった。例えば、 P  +P  ≧5 X 1O−2TorrAr   
 O。
(Comparative example) Y Ba 2 Cu 3 by conventional method for comparison
0X': Indicates the conditions for producing 4 films. In the conventional method, when only argon gas was used, the deposited thin film was an insulator that exhibited superconducting properties. In order to obtain a thin film exhibiting superconducting properties, it was necessary to introduce oxygen gas into the sputtering chamber at the same time. Inside the spot ■ goes to F to B
Gun used, ■ means oxygen gas spray, P +P ≧I
The following condition was required:
O.

P   /(P   +P   )=0.502   
 Ar    02 の条件で成膜をすると、 Te =82K P 、= 2.5W/cm2 R=1  八/sec であった。
P/(P+P)=0.502
When the film was formed under Ar 02 conditions, Te = 82 K P , = 2.5 W/cm 2 R = 1 8/sec.

以上のように、本発明は、従来の方法に比べて一桁低い
スパッタリングガス圧力下での酸化物超電導薄膜の作製
が可能である。さらに、最大投入スパッタリングパワー
密度は2倍以上に、成膜速度は3倍以上になった。
As described above, the present invention enables the production of an oxide superconducting thin film under a sputtering gas pressure one order of magnitude lower than that of conventional methods. Furthermore, the maximum input sputtering power density was more than doubled, and the film formation rate was more than tripled.

[発明の効果] 本発明により、対向ターゲット式スパッタリング法によ
る酸化物超電導薄膜成膜条件として、従来よりも低スパ
ツタリングガス圧化かつ高投入パワー密度化が実現でき
た。これにより基板上で効率よく酸化反応を起こし、か
つ高速成膜が実現できた。
[Effects of the Invention] According to the present invention, as conditions for forming an oxide superconducting thin film using the facing target sputtering method, lower sputtering gas pressure and higher input power density can be realized than in the past. This enabled an efficient oxidation reaction on the substrate and high-speed film formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する場合に用いる装置例の概要を
示す図である。 1:ターゲット1,2:ターゲット2.3:基板、4:
プラズマ、5:アルゴンガス、6 : FABガンまた
は酸素イオンガンまたは酸素ガス導入ノズルまたはオゾ
ンガス導入ノズル、7:冷却水、8:冷却水。 第 図 手続補正書(0釦 平成元年6月I日
FIG. 1 is a diagram showing an outline of an example of an apparatus used in carrying out the present invention. 1: Target 1, 2: Target 2.3: Substrate, 4:
Plasma, 5: Argon gas, 6: FAB gun or oxygen ion gun, oxygen gas introduction nozzle, or ozone gas introduction nozzle, 7: Cooling water, 8: Cooling water. Chart procedure amendment (0 button June I, 1989)

Claims (1)

【特許請求の範囲】 1、対向する二枚のターゲット間にプラズマを発生させ
て、基板上に酸化物超電導薄膜を作製する対向ターゲッ
ト式スパッタリング法において、前記プラズマ発生ガス
にアルゴンガスを用いるとともに前記基板上に直接酸素
原子、酸素分子あるいは酸素イオンを照射することを特
徴とする酸化物超電導薄膜の製造方法。 2、FAB(FastAtomBeam)ガンあるいは
酸素イオンガンを用いて中性酸素原子あるいは酸素イオ
ンを基板上に照射することを特徴とする請求項1記載の
酸化物超電導薄膜の製造方法。 3、酸素ガスまたはオゾンガスを基板上に吹き付けるこ
とを特徴とする請求項1記載の酸化物超電導薄膜の製造
方法。
[Claims] 1. In a facing target sputtering method in which plasma is generated between two opposing targets to produce an oxide superconducting thin film on a substrate, argon gas is used as the plasma generating gas, and the A method for producing an oxide superconducting thin film, which is characterized by directly irradiating a substrate with oxygen atoms, oxygen molecules, or oxygen ions. 2. The method for producing an oxide superconducting thin film according to claim 1, characterized in that neutral oxygen atoms or oxygen ions are irradiated onto the substrate using a FAB (Fast Atom Beam) gun or an oxygen ion gun. 3. The method for producing an oxide superconducting thin film according to claim 1, characterized in that oxygen gas or ozone gas is sprayed onto the substrate.
JP1076711A 1989-03-30 1989-03-30 Production of oxide superconducting thin film Pending JPH02255503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076711A JPH02255503A (en) 1989-03-30 1989-03-30 Production of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076711A JPH02255503A (en) 1989-03-30 1989-03-30 Production of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH02255503A true JPH02255503A (en) 1990-10-16

Family

ID=13613128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076711A Pending JPH02255503A (en) 1989-03-30 1989-03-30 Production of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH02255503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257017A (en) * 1990-03-05 1991-11-15 Fuji Electric Co Ltd Production of oxide superconducting thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257017A (en) * 1990-03-05 1991-11-15 Fuji Electric Co Ltd Production of oxide superconducting thin film

Similar Documents

Publication Publication Date Title
JPH026302A (en) Method and device for forming oxide ceramic superconductive thin-film using magnetron
JP3836184B2 (en) Method for manufacturing magnesium oxide film
EP0288711B1 (en) Rapid, large area coating of high-Tc superconductors
CA2037432C (en) Method of and apparatus for preparing oxide superconducting film
US6245394B1 (en) Film growth method and film growth apparatus capable of forming magnesium oxide film with increased film growth speed
JPH01104774A (en) Production of thin film of oxide superconductor
JPH02255503A (en) Production of oxide superconducting thin film
JPH0568541B2 (en)
Chen et al. SiO2 thin film deposition by radio frequency oxygen plasma enhanced laser ablation from Si
JP2000273644A (en) Plasma cvd device
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPS6350473A (en) Continuous multistage ion plating device
JPH0474703A (en) Formation of oxide superconductor thin film
JPS63475A (en) Hybrid ion plating device
JPH02118063A (en) Production of oxide superconductor
JPS63262457A (en) Preparation of boron nitride film
JPH01103920A (en) Improvement on production of superconductor
JPH05147908A (en) Production of cubic boron nitride powder
JPH02118061A (en) Production of oxide superconductor
JPH0243357A (en) Production of thin superconducting film
JPH0347960A (en) Plasma vapor deposition device
JPH02228469A (en) Ion plating method
JPS6357768A (en) Continuous ion plating device for high-speed moving film
JP2001262338A (en) Sputter film deposition system