JPH02254283A - Oxygen enrichment device - Google Patents

Oxygen enrichment device

Info

Publication number
JPH02254283A
JPH02254283A JP1075482A JP7548289A JPH02254283A JP H02254283 A JPH02254283 A JP H02254283A JP 1075482 A JP1075482 A JP 1075482A JP 7548289 A JP7548289 A JP 7548289A JP H02254283 A JPH02254283 A JP H02254283A
Authority
JP
Japan
Prior art keywords
air
oxygen
vessel
drain pipe
cooling section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1075482A
Other languages
Japanese (ja)
Inventor
Motoi Kitazumi
北住 基
Sadaomi Kanzawa
神沢 貞臣
Mitsuo Fukuda
光男 福田
Hideto Yoshimura
吉村 秀人
Masashi Nagao
長尾 政志
Takashi Inaguchi
隆 稲口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1075482A priority Critical patent/JPH02254283A/en
Publication of JPH02254283A publication Critical patent/JPH02254283A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04975Construction and layout of air fractionation equipments, e.g. valves, machines adapted for special use of the air fractionation unit, e.g. transportable devices by truck or small scale use
    • F25J3/04981Construction and layout of air fractionation equipments, e.g. valves, machines adapted for special use of the air fractionation unit, e.g. transportable devices by truck or small scale use for portable medical or home use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Abstract

PURPOSE:To make it possible to supply oxygen having a high density with ease by housing a cooling section of a helium refrigerator and installing an air drain pipe which is opened near said cooling section and leads outside a vessel, and a liquefies air drain pipe which is opened to the bottom of said vessel and leads outside the vessel. CONSTITUTION:Exhaust pumps 29 and 30 are installed to a liquefied air drain pipe 27 which winds up around a cooling section 25 of a Gifford/MecMahone refrigerator housed in an insulated vessel 23 with one end which is opened to the bottom of the insulated vessel 25 and the other end which leads outside the insulated vessel 23, and an air drain pipe 28 installed between the cooling section 25 wound up and the liquefied air drain pipe 27. As a result, the supply air is cooled and liquefied and remains on the bottom of the vessel, which is sucked up by the liquefied air drain pipe 27, which allows oxygen rich air to be discharged by heat exchanging with the supply air and vaporizing. It is, therefore, possible to supply high density oxygen for domestic use with ease.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、空気中の酸素を濃縮して供給する装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for concentrating and supplying oxygen in the air.

[従来の技術] 高濃度の酸素を得る装置としては、例えば内田秀雄編「
冷凍機械工学ハンドブック」(昭和40年1月30日初
版発行)朝倉書店、pP、564〜575に示されるよ
うな空気分離装置が用いられる。これは、空気を低温で
液化精留し、酸素、窒素、アルゴンなどを分離する装置
で、小形空気分離装置の代表的なものとして、クロード
式及び全低圧式がある。第4図にクロード式の空気分離
装置の系統図を示す。
[Prior art] For example, as a device for obtaining high concentration oxygen,
An air separation device as shown in "Refrigerating Mechanical Engineering Handbook" (first edition published January 30, 1965), Asakura Shoten, pp. 564-575 is used. This is a device that liquefies and rectifies air at low temperatures and separates oxygen, nitrogen, argon, etc. Typical small air separation devices include the Claude type and the total low pressure type. Figure 4 shows a system diagram of a Claude type air separation device.

図中、(1)は空気圧縮機、(2) (3)は熱交換器
In the figure, (1) is an air compressor, (2) and (3) are heat exchangers.

(4)は膨張機、(5)は精留塔、(6)は精留塔(5
)の中央部に設けられた凝縮器、(7)は精留塔(5)
の底部に貯留する液体空気、(8)〜(10)は膨張弁
、 (11)は空気、(12)は酸素、(]3)は窒素
である。
(4) is an expander, (5) is a rectifier, (6) is a rectifier (5)
), the condenser (7) is the rectification column (5)
(8) to (10) are expansion valves, (11) is air, (12) is oxygen, and (]3 is nitrogen.

従来の空気分離装置は上記のように構成され、原料空気
(1)は空気圧縮機(1)で13〜40kg/aJに圧
縮され、熱交換器(2)で−100℃程度に予冷された
後、その大部分は膨張機(4)に供給され、残りは更に
熱交換器(3)で冷却され、膨張弁(8)で膨張して精
留塔(5)に供給され、その底部に液体空気(7)が貯
留する。液体空気(7)は膨張弁(9)を介して精留塔
(5)の上塔中部に入り精留されて凝縮器(6)に液体
酸素となって貯留する。下塔を上昇した窒素ガスは凝縮
器(6)の液体酸素で冷却されて液体窒素となり、膨張
弁(10)を介して上塔頂部に入り、還流液となる。こ
れで、凝縮器(6)から酸素(I2)が、上塔頂部から
窒素(13)がそれぞれ取り出される。
A conventional air separation device is configured as described above, and the raw air (1) is compressed to 13 to 40 kg/aJ by the air compressor (1) and precooled to about -100°C by the heat exchanger (2). After that, most of it is supplied to the expander (4), and the rest is further cooled by the heat exchanger (3), expanded by the expansion valve (8), and supplied to the rectification column (5), where it is poured into the bottom part. Liquid air (7) is stored. Liquid air (7) enters the middle part of the upper column of the rectification column (5) via the expansion valve (9), is rectified, and is stored as liquid oxygen in the condenser (6). The nitrogen gas rising in the lower column is cooled by liquid oxygen in the condenser (6) to become liquid nitrogen, enters the top of the upper column via the expansion valve (10), and becomes a reflux liquid. With this, oxygen (I2) is taken out from the condenser (6), and nitrogen (13) is taken out from the top of the upper column.

[発明が解決しようとする課題] 上記のような従来の空気分離装置では、空気を圧縮し、
予冷し、膨張させて酸素を分離するようにしているため
、装置が複雑となり、工業用の空気分離装置としては適
しているが、家庭用として手軽に使用するには不適当で
あるという問題点がある。
[Problem to be solved by the invention] In the conventional air separation device as described above, air is compressed,
Since the device is pre-cooled and expanded to separate oxygen, the device is complicated, making it suitable as an industrial air separation device, but unsuitable for easy home use. There is.

この発明は上記問題点を解決するためになされたもので
、医療用、家庭における保健用として、手軽に高濃度の
酸素を供給できるようにした酸素濃縮装置を提供するこ
とを目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide an oxygen concentrator that can easily supply high-concentration oxygen for medical and home health purposes.

[課題を解決するための手段] この発明に係る酸素濃縮装置は、ヘリウム冷凍機の冷却
部を断熱容器に収納し、この冷却部の近傍に開口して容
器外に導出される空気排出管と、容器の底部に開口して
容器外に導出される液体空気排出管とを設けたものであ
る。
[Means for Solving the Problems] An oxygen concentrator according to the present invention houses a cooling section of a helium refrigerator in a heat insulating container, and includes an air exhaust pipe that opens near the cooling section and is led out of the container. , and a liquid air discharge pipe that opens at the bottom of the container and is led out of the container.

[作 用コ この発明においては、断熱容器にヘリウム冷凍機の冷却
部を収納したため、供給空気は冷却されて液化し、容器
底部に貯留する。そして、容器底部に開口する液体空気
排出管により、酸素含有量の多い液体空気が吸入され、
供給空気と熱交換して気化し、酸素リッチ空気が供給さ
れる。
[Function] In this invention, since the cooling part of the helium refrigerator is housed in the heat insulating container, the supplied air is cooled, liquefied, and stored at the bottom of the container. Then, liquid air with a high oxygen content is sucked in through the liquid air discharge pipe that opens at the bottom of the container.
It exchanges heat with the supply air and vaporizes, supplying oxygen-rich air.

[実施例] 第1図〜第3図はこの発明の一実施例を示す図で、第1
図は縦断面図、第2図は窒素・酸素系の状S図、第3図
は使用例の説明図であり、従来装置と同様な部分は同一
符号で示す。
[Example] Figures 1 to 3 are diagrams showing an example of the present invention.
The figure is a longitudinal cross-sectional view, FIG. 2 is an S diagram of the nitrogen/oxygen system, and FIG. 3 is an explanatory diagram of an example of use. Portions similar to those of the conventional device are designated by the same reference numerals.

第1図中、(21)は透明なアクリル樹脂で形成された
外箱で、上部に空気の供給口(22)を有している。 
(23)は上方が開口した魔法びんのような断熱容器で
、外箱(21)内に設けられ断熱材(24)で断熱され
ている。 (25)は断熱容器(23)内に収納された
ギフオード・マクマホン(以下GMという)冷凍機の冷
却部で、GM冷凍機は冷媒としてヘリウムガスを用いた
極低温用の小形の蓄熱形冷凍機として知られており、そ
の改良機では、1段式のもので12′Kを発生すること
ができ、更拳こ3部分で室温(〜280”K)から極低
温の12”Kまで冷却することが可能になっている。 
(27)は冷却部(25)の周囲に巻回配置され一端は
断熱容器(23)の底部に開口し他端が断熱容器(23
)外に導出された液体空気排出管、(28)は冷却部(
25)の周囲に巻回配置され冷却部(25)と液体空気
排出管(27)の間に配設された空気排出管、(29)
 (30)はそれぞれ排出管(27)(28)に設けら
れた排気ポンプである。
In FIG. 1, (21) is an outer box made of transparent acrylic resin, and has an air supply port (22) at the top.
(23) is an insulated container like a thermos bottle with an open top, which is provided inside an outer box (21) and insulated with a heat insulating material (24). (25) is the cooling section of a Gifford McMahon (hereinafter referred to as GM) refrigerator housed in a heat-insulating container (23).The GM refrigerator is a small heat storage type refrigerator for extremely low temperatures that uses helium gas as a refrigerant. It is known as an improved machine that can generate 12'K with a single stage, and cools from room temperature (~280"K) to an extremely low temperature of 12"K with three parts. It is now possible.
(27) is wound around the cooling part (25), one end is open to the bottom of the heat insulating container (23), and the other end is the heat insulating container (23).
) The liquid air discharge pipe led out (28) is the cooling part (
an air exhaust pipe (29) wound around the cooling unit (25) and disposed between the cooling unit (25) and the liquid air exhaust pipe (27);
(30) are exhaust pumps provided in the exhaust pipes (27) and (28), respectively.

上記のように構成された酸素濃縮装置において。In an oxygen concentrator configured as described above.

GM冷凍機が運転され、冷却部(25)の温度が空気の
液化温度に達すると、供給口(22)から供給された空
気は液化を開始する。液化が始まると、一定時間後、断
熱容器(23)の底部に液体空気(7)が貯留して行く
、ここで、空気は約20% (体積比、以下同じ)のm
索と、約8部の窒素を含有する気体であり、これを冷却
して行くと、第2図に示すように状態が変化し、その温
度と酸素温度は、気相線A及び液相線Bとの交点で示さ
れる。すなわち、酸素濃度20%の空気は、−191,
5℃付近で液化を開始し、このときの酸素濃度は約50
%となり、断熱容器(23)の底部には、酸素リッチな
液体空気(7)が貯留されて行くことになる。
When the GM refrigerator is operated and the temperature of the cooling section (25) reaches the liquefaction temperature of air, the air supplied from the supply port (22) starts to liquefy. When liquefaction begins, liquid air (7) accumulates at the bottom of the heat-insulating container (23) after a certain period of time.
When this gas is cooled, its state changes as shown in Figure 2, and its temperature and oxygen temperature are equal to the gas phase line A and the liquidus line. It is indicated by the intersection with B. In other words, air with an oxygen concentration of 20% is -191,
Liquefaction starts at around 5℃, and the oxygen concentration at this time is about 50℃.
%, and oxygen-rich liquid air (7) is stored at the bottom of the heat insulating container (23).

排気ポンプ(29) (30)が運転されると、液体空
気排気管(27)は液体空気(7)を吸入し、これを断
熱容器(23)外へ導出するが、その途中で液体空気(
7)は供給空気と熱交換し、液体から気体へと変化し。
When the exhaust pumps (29) (30) are operated, the liquid air exhaust pipe (27) sucks in liquid air (7) and leads it out of the insulated container (23), but on the way, the liquid air (
7) exchanges heat with the supplied air and changes from liquid to gas.

排気ポンプ(29)付近に来たときは、はぼ常温になっ
ている。これで、m素すッチ空気が供給される。
When I got near the exhaust pump (29), it was almost at room temperature. This supplies m-substitch air.

一方、空気排出管(28)は冷却部(25)付近の窒素
リッチ空気を吸入し、途中で供給空気と熱交換し。
On the other hand, the air exhaust pipe (28) sucks in nitrogen-rich air near the cooling section (25) and exchanges heat with the supply air along the way.

常温となった窒素リッチ空気が排出される。この空気排
出管(28)は供給空気の液化により、冷却部(25)
付近の空気の酸素濃度が低下しないようにするためのも
のである。すなわち、第2図から明らかなように1m素
濃度が2部よりも低い空気を冷却したとすると、第2図
の鎖線は図の左方へ推移し、液化温度は下がり、これに
伴って液体空気(7)中のrIi素濃広濃度下してしま
うからである。このようにして、二つの排出管(27)
 (28)の中を通る気体(一部液体)は、上記のよう
に供給空気との間で熱交換が行われ、常温付近まで温度
上昇すると共に、供給空気は冷却部(25)付近に到達
する前に、上記熱交換によりかなり温度が低下している
。このため、少しの熱エネルギーにより酸素濃縮が可能
となる。
Nitrogen-rich air at room temperature is exhausted. This air discharge pipe (28) is connected to the cooling section (25) by liquefying the supplied air.
This is to prevent the oxygen concentration of the nearby air from decreasing. In other words, as is clear from Figure 2, if air with a 1 m elemental concentration lower than 2 parts is cooled, the chain line in Figure 2 will move to the left of the diagram, the liquefaction temperature will decrease, and the liquid will increase accordingly. This is because the rIi element concentration in the air (7) will be lowered. In this way, the two discharge pipes (27)
The gas (partially liquid) passing through (28) undergoes heat exchange with the supply air as described above, and the temperature rises to around room temperature, and the supply air reaches the vicinity of the cooling section (25). Before this happens, the temperature has dropped considerably due to the heat exchange described above. Therefore, oxygen concentration can be achieved with a small amount of thermal energy.

ここで、−190℃に冷却された空気中のガス及び空気
に含まれる有害ガスの状態を示す。
Here, the state of gases in air cooled to -190°C and harmful gases contained in the air is shown.

この表から明らかなように、−190℃では酸素及びア
ルゴンだけが液化しており、他は気体又は固体となって
いるため、液体空気(7)には有害ガスは含まれていな
いことが分かる。
As is clear from this table, only oxygen and argon are liquefied at -190°C, and the others are gaseous or solid, indicating that liquid air (7) does not contain harmful gases. .

第3図はこの装置を空気清浄機として使用した一例であ
り、6畳(30s+3)の部屋に酸素濃縮装置からなる
空気清浄機(36)を設置した場合を示し、(37)は
外気で、第1図の供給口(22)に入る供給空気に相当
し、(38)は有害ガスで、詳細は省略するが別に設け
られた排出管により吸引排出される。
Figure 3 shows an example of using this device as an air purifier, and shows a case where an air purifier (36) consisting of an oxygen concentrator is installed in a room of 6 tatami mats (30s + 3), and (37) is outside air. This corresponds to the supply air that enters the supply port (22) in FIG. 1, and (38) is a harmful gas, which is sucked and discharged through a separately provided discharge pipe, although the details are omitted.

(39)は精製空気で、第1図の液体空気排出管(27
)からの酸素リッチ空気に相当する。(40)は自然換
気である。今、自然換気(40)の址と同程度の精製空
気(39)を常時供給するものとすると、精製空気(3
9)の供給量は、自然換気量を0.2回/時(高気密住
宅)と仮定すると。
(39) is purified air, and the liquid air discharge pipe (27
) corresponds to oxygen-rich air from (40) is natural ventilation. Now, assuming that purified air (39) equivalent to the amount of natural ventilation (40) is constantly supplied, purified air (39)
The supply amount of 9) is based on the assumption that the natural ventilation rate is 0.2 times/hour (highly airtight house).

となる。冷凍機入力は、酸素濃度4餡の空気0.007
m37分を供給するために必要な入力は235Wである
と試算(詳細省N)できるから、この値力1ら0.1m
j/分の精製空気(39)を得るためには。
becomes. Refrigerator input is air with oxygen concentration 4 0.007
It can be estimated that the input required to supply 37 m is 235 W (details omitted), so this value of power 1 is 0.1 m.
In order to obtain purified air (39) of j/min.

0.007 となる。0.007 becomes.

なお、上記実施例では、ヘリウム冷凍機としてGM冷凍
機を用いるものとしたが、−200℃以下に冷却できる
ものであれば、他のヘリウム冷凍機でもよいことは明白
である。
In the above embodiment, a GM refrigerator is used as the helium refrigerator, but it is obvious that any other helium refrigerator may be used as long as it can cool down to −200° C. or lower.

[発明の効果コ 以上説明したとおりこの発明では、ヘリウム冷凍機の冷
却部を断熱容器に収納し、この冷却部の近傍に開口して
容器外に導出される空気排出管と、容器の底部に開口し
て容器外に導出される液体空気排出管とを設けたので、
供給空気は冷却されて液化し、容器底部に貯留し、これ
が液体空気1ト出管により吸入され、供給空気と熱交換
して気化することにより、酸素リッチ空気を排出するこ
とができ、家庭用としても手軽に使用できる酸素濃縮機
を構成できる効果がある。また、排出される酸素リッチ
空気は空気中の有害ガスが除去されており、空気清浄機
としても適用できる効果がある。
[Effects of the Invention] As explained above, in this invention, the cooling section of a helium refrigerator is housed in a heat insulating container, and an air exhaust pipe is opened near the cooling section and led out of the container, and an air discharge pipe is provided at the bottom of the container. Since a liquid air discharge pipe is provided that opens and is led out of the container,
The supply air is cooled and liquefied and stored at the bottom of the container, which is sucked in by a liquid air outlet pipe, where it exchanges heat with the supply air and vaporizes, allowing oxygen-rich air to be discharged. However, it has the effect of making it possible to construct an oxygen concentrator that can be easily used. Furthermore, the exhausted oxygen-rich air has harmful gases removed from the air, and can be used as an air purifier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はこの発明による酸素濃縮装置の一実施
例を示す図で、第1図は縦断面図、第2図は窒素・酸素
系の状態図、第3図は使用例の説明図、第4図は従来の
酸素濃縮装置を示すクロード式空気分離装置の系統図で
ある。 図中、(7)は液体空気、(23)は断熱容器、(25
)はヘリウム冷凍機(GM冷凍機)の冷却部、 (27
)は液体空気排出管、 (28)は空気排出管である。 なお、図中同一符号は同一部分を示す。
Figures 1 to 3 are diagrams showing one embodiment of the oxygen concentrator according to the present invention, with Figure 1 being a longitudinal sectional view, Figure 2 being a state diagram of the nitrogen/oxygen system, and Figure 3 being an example of its use. The explanatory diagram, FIG. 4, is a system diagram of a Claude type air separation device showing a conventional oxygen concentrator. In the figure, (7) is liquid air, (23) is a heat insulating container, (25
) is the cooling part of the helium refrigerator (GM refrigerator), (27
) is a liquid air discharge pipe, and (28) is an air discharge pipe. Note that the same reference numerals in the figures indicate the same parts.

Claims (1)

【特許請求の範囲】[Claims] 断熱容器内に収納されヘリウムを冷媒として動作し上記
断熱容器に供給される空気を冷却して液化させるヘリウ
ム冷凍機の冷却部と、この冷却部の近傍に開口しこの部
分の空気を吸入して上記供給空気と熱交換して上記容器
外に導出する空気排出管と、上記容器の底部に貯留され
る液体空気中に開口しこれを吸入して上記供給空気と熱
交換して上記容器外に導出する液体空気排出管とを備え
てなる酸素濃縮装置。
A helium refrigerator has a cooling part that is housed in an insulated container and operates using helium as a refrigerant to cool and liquefy the air supplied to the insulated container, and an opening near this cooling part that sucks in the air from this part. An air exhaust pipe that exchanges heat with the supplied air and leads it out of the container; and an air exhaust pipe that opens into the liquid air stored at the bottom of the container, sucks it in, exchanges heat with the supplied air, and discharges it outside the container. An oxygen concentrator comprising a liquid air discharge pipe.
JP1075482A 1989-03-28 1989-03-28 Oxygen enrichment device Pending JPH02254283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075482A JPH02254283A (en) 1989-03-28 1989-03-28 Oxygen enrichment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075482A JPH02254283A (en) 1989-03-28 1989-03-28 Oxygen enrichment device

Publications (1)

Publication Number Publication Date
JPH02254283A true JPH02254283A (en) 1990-10-15

Family

ID=13577554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075482A Pending JPH02254283A (en) 1989-03-28 1989-03-28 Oxygen enrichment device

Country Status (1)

Country Link
JP (1) JPH02254283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509372A (en) * 2004-08-03 2008-03-27 サンパワー・インコーポレーテッド Energy efficient, low cost, portable, home use oxygen extraction from ambient air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509372A (en) * 2004-08-03 2008-03-27 サンパワー・インコーポレーテッド Energy efficient, low cost, portable, home use oxygen extraction from ambient air

Similar Documents

Publication Publication Date Title
AU637141B2 (en) Process for refrigerating, corresponding refrigerating cycle and their application to the distillation of air
JP3726965B2 (en) Oxygen production method and apparatus
KR860006681A (en) High Purity Nitrogen and Oxygen Gas Production Equipment
TW200923300A (en) System to cold compress an air stream using natural gas refrigeration
JP2003515086A (en) Production of liquid oxygen
FR2778232B1 (en) METHOD AND DEVICE FOR LIQUEFACTION OF A NATURAL GAS WITHOUT SEPARATION OF PHASES ON THE REFRIGERANT MIXTURES
KR860001331A (en) High Purity Nitrogen Gas Production Equipment
US4192662A (en) Process for liquefying and rectifying air
KR860001329A (en) High Purity Nitrogen Gas Production Equipment
GB1278974A (en) Improvements in or relating to the liquefication of natural gas
GB1481726A (en) Device for liquefying and/or separating gases condensing at very low temperature
KR20020001629A (en) Cryogenic rectification system with pulse tube refrigeration
KR850005606A (en) High Purity Nitrogen Gas Production Equipment
JPH02254283A (en) Oxygen enrichment device
JPH02293575A (en) Air separation device
GB1033931A (en) Improvements in or relating to the production of oxygen enriched air by low temperature liquefaction and rectification
US3200613A (en) Cryogenic refrigerating method and apparatus
JPS59164874A (en) Device for manufacturing nitrogen gas
Timmerhaus et al. Cryogenic process engineering
Quack Theory of cascade refrigeration
CN114849262B (en) NG purifying low-abundance carbon 13 stable isotope co-production device and use method
JPH08261644A (en) Apparatus for producing high-purity nitrogen gas
JPH0689956B2 (en) Small He liquefaction refrigeration system
KR860006680A (en) High Purity Oxygen Gas Production Equipment
JPH0514152Y2 (en)