JPH02254219A - Combustion controller - Google Patents

Combustion controller

Info

Publication number
JPH02254219A
JPH02254219A JP1074623A JP7462389A JPH02254219A JP H02254219 A JPH02254219 A JP H02254219A JP 1074623 A JP1074623 A JP 1074623A JP 7462389 A JP7462389 A JP 7462389A JP H02254219 A JPH02254219 A JP H02254219A
Authority
JP
Japan
Prior art keywords
frequency
power spectrum
power signal
ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1074623A
Other languages
Japanese (ja)
Other versions
JPH0833194B2 (en
Inventor
Kazunari Hosome
細目 一成
Shuji Iida
修司 飯田
Akihiko Kishida
岸田 晃彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1074623A priority Critical patent/JPH0833194B2/en
Priority to US07/456,478 priority patent/US5049063A/en
Publication of JPH02254219A publication Critical patent/JPH02254219A/en
Publication of JPH0833194B2 publication Critical patent/JPH0833194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/08Flame sensors detecting flame flicker
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/30Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To obtain a favorable combustion state by finding out a power spectrum from a light power signal wherein a component exceeding a specific frequency of a light power signal of a flame has been cut OFF, and by determining a frequency band with the aid of a preset reference frequency to find out a power spectrum integral ratio. CONSTITUTION:A light power signal (a) of a flame 3 is detected by a light sensor 4 and inputted into an amplifier 6 to be amplified, and a component exceeding a specific frequency is cut OFF by an analog filter 21. This data is converted into a digital signal and, thereupon, a component exceeding the specific frequency is again cut OFF by a digital filter 23 to obtain a low frequency light power signal (b). This low frequency light power signal (b) is inputted into a frequency analyzer 7 to obtain a power spectrum (d) which is sent to a light power oscillation adjustor 24. Thereupon, the light power oscillation adjustor 24 finds out a power spectrum integral ratio having a large rate of change with respect to an air ratio and outputs an air flow rate compensation factor F into a compensator 9. Thus, a favorable combustion state can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種燃焼装置に用いられる燃焼制御装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion control device used in various combustion devices.

(従来の技術) バーナにおける火炎の燃焼状態は、一般に空気と燃料と
の混合比率(空気比または排ガス中のoaW度比)によ
って大きく変化する。そして、良好な燃焼状態を保つた
めに、従来、燃焼装置に対して燃焼制御装置を設け、燃
焼装置への空気供給量ひいては空気比をXI整すること
が多く行なわれている。このような燃焼制御装置の一例
として第7図に示すようなものがある。この燃焼制御装
置は、炉1に設けたバーナ2の燃焼火炎3の光パワー信
号aを光センサ4で検出する。この光パワー信号aは、
検出器5および増幅器6を介して周波数解析器7に入力
する。そして、周波数解析器7は光パワー信号ai、:
基づき1周波数解析してパワースペクトルdを算出し、
これを光パワー振動調節器8へ出力する。
(Prior Art) The combustion state of a flame in a burner generally varies greatly depending on the mixing ratio of air and fuel (air ratio or oaW ratio in exhaust gas). In order to maintain a good combustion state, conventionally, a combustion control device is often provided for a combustion device to adjust the amount of air supplied to the combustion device and the air ratio to XI. An example of such a combustion control device is shown in FIG. This combustion control device detects an optical power signal a of a combustion flame 3 of a burner 2 provided in a furnace 1 with an optical sensor 4. This optical power signal a is
It is input to a frequency analyzer 7 via a detector 5 and an amplifier 6. Then, the frequency analyzer 7 generates an optical power signal ai:
Based on one frequency analysis, calculate the power spectrum d,
This is output to the optical power vibration regulator 8.

そし・て、光パワー振動調節器8がパワースペクトルd
の全体の積分値Jおよび特定周波数以上の帯域の積分値
Kを算出し、積分値Kを積分値Jで割ってパワースペク
トル積分比Cを算出する。ここで、特定周波数は、例え
ば次のように設定しである。すなわち、パワースペクト
ルは、空気比の変化によっである周波数を境にして変化
割合が異なることがあり、例えば該周波数を特定周波数
としている。そして、L記パワースペクトル積分比Cは
一定条件において空気比に対してほぼ比例関係にあるこ
とを見込み、この関係を利用して、パワースペクトル積
分比Cがあらかじめ設定しである基準値と同等になるよ
うに、補正器9へ補正信号f?比出力て燃焼用エアー1
0の流量を調整させて良好な燃焼状態を得るようにして
いる。
Then, the optical power vibration regulator 8 adjusts the power spectrum d
The overall integral value J and the integral value K of a band above a specific frequency are calculated, and the power spectrum integral ratio C is calculated by dividing the integral value K by the integral value J. Here, the specific frequency is set as follows, for example. That is, the rate of change in the power spectrum may vary with a certain frequency as a boundary due to a change in the air ratio, and for example, this frequency is set as a specific frequency. It is assumed that the power spectrum integral ratio C in L is approximately proportional to the air ratio under certain conditions, and by using this relationship, the power spectrum integral ratio C is equal to a preset reference value. A correction signal f? is sent to the corrector 9 so that Specific output combustion air 1
The zero flow rate is adjusted to obtain a good combustion condition.

(発明か解決しようとする課題) しかしながら、上述した燃焼制御装置では、炉1および
バーナ2などの特性によっては、パワ・−スペクトル積
分比Cの変化率を大きく取れず微妙な制御を要求される
場合には、使用困難であった。特に、工業炉の場合、炉
lの内壁部にキャスター、耐火レンガなどのPhi熱壁
11を設けており (第8図参照)、この断熱壁11が
高温となって輻射熱によって火炎3に大きく影響なケえ
るため、上記積分比Cの変化率はより小さくなってしま
う。例えばこの断熱壁11を備えた炉1で、空気比を1
.62.1.31、】、17.1.05にし、A重油を
fioi/hで燃焼して周波数解析すると、第9図に示
すように空気比の相違に関わらず、バヮースベクl−ル
d中の最高周波数値(本例では約400H□)がほとん
ど変化せず、この結果書られるパワースペクトル積分比
Cの変化率は、第1013に示すようにきわめて小ざい
ものとなってしまう。このため、上述した第8図の工業
炉に対してこのような燃焼制御装置を利用してもエアー
10の供給量を適正に制御できず、良好な燃焼状態を得
ることは困難であった。
(Problem to be solved by the invention) However, with the above-mentioned combustion control device, depending on the characteristics of the furnace 1, burner 2, etc., the rate of change of the power-spectral integral ratio C cannot be large, and delicate control is required. In some cases, it was difficult to use. In particular, in the case of an industrial furnace, a Phi thermal wall 11 made of casters, refractory bricks, etc. is installed on the inner wall of the furnace 1 (see Figure 8), and this heat insulating wall 11 becomes high temperature and has a large effect on the flame 3 due to radiant heat. As a result, the rate of change in the integral ratio C becomes smaller. For example, in a furnace 1 equipped with this heat insulating wall 11, the air ratio is 1.
.. 62.1.31, ], 17.1.05, A heavy oil is burned at fioi/h and frequency analysis is performed. As shown in Fig. 9, regardless of the difference in air ratio, the bias vector l-d The highest frequency value (approximately 400H□ in this example) hardly changes, and as a result, the rate of change in the power spectrum integral ratio C becomes extremely small as shown in number 1013. For this reason, even if such a combustion control device is used for the above-mentioned industrial furnace shown in FIG. 8, the amount of air 10 supplied cannot be properly controlled, and it is difficult to obtain a good combustion state.

本発明は、上記問題点の解決を課題として成されたもの
で、種々の特性の燃焼装置に適用し°〔良好な燃焼状態
を得られる汎用性の高し)燃焼制御装置を提供すること
を目的とする。
The present invention has been made with the aim of solving the above-mentioned problems, and aims to provide a combustion control device that can be applied to combustion devices with various characteristics and has a high degree of versatility to obtain good combustion conditions. purpose.

(課題を解決するための手段) 未発明はL足口的を達成するために、バーナか発生する
火炎から光パワー信号を検出する光センサと、該光セン
サが検出した光パワー信号の特定周波数以北の成分をカ
ットして低周波成分光パワー信号を得るローパスフィル
タと、該ローパスフィルタの得た低周波光パワー信号を
周波数解析してパワースペクトルを算出する周波数解析
器と、全周波数帯における該パワースペクトルの積分値
およびあらかじめ設定される基準周波数以上の帯域にお
けるパワースペクトルの積分値を算出し、これら積分値
からパワースペクトル積分比を算出して、このパワース
ペクトル積分比を、空気比と対応づけであらかじめ設定
される基準積分比と比較してその比較データを出力する
演算手段と、該比較データに基づいて前記バーナの空気
供給用調整弁を制御する空気量調整手段と、を備えたこ
とを特徴とする。
(Means for Solving the Problem) In order to achieve the objective, the present invention provides an optical sensor that detects an optical power signal from a flame generated by a burner, and a specific frequency of the optical power signal detected by the optical sensor. A low-pass filter for obtaining a low-frequency optical power signal by cutting the components north of the low-pass filter; a frequency analyzer for frequency-analyzing the low-frequency optical power signal obtained by the low-pass filter to calculate a power spectrum; Calculate the integral value of the power spectrum and the integral value of the power spectrum in a band above a preset reference frequency, calculate the power spectrum integral ratio from these integral values, and make this power spectrum integral ratio correspond to the air ratio. and an air amount adjusting means for controlling the air supply regulating valve of the burner based on the comparison data. It is characterized by

(作用) 本発明は上記のように構成したので、光パワー信号の特
定周波数置りの成分を力・ソトl、、カットして得られ
た低周波成分光パワー信号を周波数解析して高周波成分
が除かれたバワースベク(−ルを算出し、この結果、空
気比に対して変化率の大きいパワースペクトル積分比が
求められる。このように変化率の大きいパワースペクト
ル積分比によって比較データを得られ、この比較データ
で空気供給用調整弁を制御することによって適正な11
のエアーがバーナに送られることになる。
(Function) Since the present invention is configured as described above, the low frequency component optical power signal obtained by cutting the components at specific frequencies of the optical power signal is frequency-analyzed and the high frequency components are The Bowers vector (−) from which is removed is calculated, and as a result, the power spectrum integral ratio with a large rate of change with respect to the air ratio is obtained.In this way, comparison data can be obtained using the power spectrum integral ratio with a large rate of change. By controlling the air supply regulating valve using this comparative data,
of air will be sent to the burner.

(実権例) 以下に、本発明の一実施例を第1図ないし第4図を参照
して説明する。なお、第7,8図に示1部材と同一部材
は同一符号で示す。
(Example of Actual Rights) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Note that the same members as those shown in FIGS. 7 and 8 are indicated by the same reference numerals.

図において、バーナ2には燃料12.エアー10を供給
する管13.14がそれぞれ接続されている。管13に
は流量調節弁15および流量形16が1投けられ管14
には流量調速5F17か設けられている。
In the figure, burner 2 has fuel 12. Pipes 13 and 14 supplying air 10 are connected respectively. A flow control valve 15 and a flow type 16 are inserted into the pipe 13 and the pipe 14
is provided with a flow rate regulator 5F17.

流量31節弁15および流量計16は駄度調箇器18に
接続され、流量調節弁17は空気量調整手段の一例であ
る補正器9に接続されている。
The flow rate 31 mode valve 15 and the flow meter 16 are connected to a flow rate regulator 18, and the flow rate control valve 17 is connected to a corrector 9, which is an example of air volume control means.

また、炉1には温度センサ19が設けられている。温度
センサ19は温度調節器18に接続している。そして、
温度調節器18は、温度センサ19の温度検出信号に基
づいて流量m整弁15を@御し、流速計16からの信号
に基づいて温度補正信号eを発生し、これを補正器9へ
出力するようになっている。
Further, the furnace 1 is provided with a temperature sensor 19. Temperature sensor 19 is connected to temperature regulator 18 . and,
The temperature regulator 18 controls the flow rate m regulating valve 15 based on the temperature detection signal from the temperature sensor 19, generates a temperature correction signal e based on the signal from the current meter 16, and outputs this to the corrector 9. It is supposed to be done.

さらに、#1#i器6にはローパスフィルタ20を接続
しである。ローパスフィルタ20は、アナログフィルタ
21.A/D変換器22.デジタルフィルタ23を有し
、これらを直列接続している。
Further, a low pass filter 20 is connected to the #1 #i device 6. The low-pass filter 20 is an analog filter 21 . A/D converter 22. It has a digital filter 23 and these are connected in series.

アナログフィルタ21は、バス周波数帯を切替え設定す
る切替えスイッチ(図示せず)を有し、この切替えスイ
ッチによってバス周波数帯を数レンジにわたって設定で
きるようになっており、この設定により増幅器6で増幅
された光パワー信号aのうち該バス周波数帯を超過する
成分(特定周波数置−1−の成分)をカー?トするよう
(なっている。
The analog filter 21 has a changeover switch (not shown) for switching and setting the bass frequency band, and this changeover switch allows the bass frequency band to be set over several ranges. The component of the optical power signal a that exceeds the bus frequency band (component at a specific frequency position -1-) is a car? It seems to be (has become)

A/D変換器22はアナログフィルタ゛21をバスした
光パワー信号a?:A/D変換する。デジタルフィルタ
23はアナログフィルタ21と同様にバス周波数帯を設
定できるようになっており、デジタル化した光パワー信
号aの特定周波数以上の成分をカット・して低周波成分
光パワー信号すを得て7これを周波数解析器7へ出力す
る。この場合、両フィルタ21.23は処理する光パワ
ー信号aの特性によって組合わせて使用され、この組合
わせ使用によって空気比とパワースペクトル積分比とが
最適な関係になるようにバス周波数帯が設定される。
The A/D converter 22 receives the optical power signal a? passed through the analog filter 21. : Perform A/D conversion. Like the analog filter 21, the digital filter 23 can set the bus frequency band, and cuts the components of the digitized optical power signal a above a specific frequency to obtain the low frequency component optical power signal. 7 Output this to the frequency analyzer 7. In this case, both filters 21 and 23 are used in combination depending on the characteristics of the optical power signal a to be processed, and by using this combination, the bus frequency band is set so that the air ratio and the power spectrum integral ratio have an optimal relationship. be done.

周波数解析器7は低周波光パワー信号すを周波数解析し
てパワースペクトルを発生し、これを。
The frequency analyzer 7 performs frequency analysis on the low frequency optical power signal to generate a power spectrum.

該周波数解析器7に接続している光パワー振動調序器2
4へ出力する。
an optical power vibration adjuster 2 connected to the frequency analyzer 7;
Output to 4.

光パワー振動調節器24は基準周波数(特定周波数より
小さい値)および最適積分比りとをあらかじめ格納して
おり、パワースペクトルを入力し、これを格納データに
応じて第4図に示すように演算処理し’r′f−アー流
量補正係数Fを算出する。
The optical power oscillation adjuster 24 stores a reference frequency (a value smaller than a specific frequency) and an optimal integral ratio in advance, inputs a power spectrum, and calculates this according to the stored data as shown in FIG. Process 'r'f-A flow rate correction coefficient F is calculated.

すなわち、光パワー振動調節器24はパワースペクトル
dを入力しくステップS1)、パワースペクトルdの全
体周波数帯域の積分値Aを算出する(ステップS2)と
ともに、基準周波数似との帯域における積分値Bを算出
する (ステップS3)、さらに、上記積分値A、Hの
比をとってパワースペクトル積分比Cを求める (ステ
ップS4)、この積分比Cとあらかじめ設定しである最
適積分比りの偏差Eを求める(ステップS5)。
That is, the optical power oscillation adjuster 24 inputs the power spectrum d (step S1), calculates the integral value A of the entire frequency band of the power spectrum d (step S2), and calculates the integral value B in the band similar to the reference frequency. (Step S3).Furthermore, calculate the power spectrum integral ratio C by taking the ratio of the above integral values A and H (Step S4).The deviation E between this integral ratio C and the preset optimal integral ratio is calculated. (Step S5).

次に、この偏差Eより比較データとしてエアー流星、補
正係数F?算出する (ステップS6)。
Next, from this deviation E, as comparison data, air meteor, correction coefficient F? Calculate (Step S6).

上記基準周波数は、炉1およびバーナ2の特性により、
空気比の変化に対するパワースペクトル積分比Cの変化
率がもっとも大きく取れる周波数になるようにあらかじ
めセットしである。そして、光パワー振動調節器24は
このように算出したエアー流量補正係数Fを空気量調整
手段の一例である補正19に出力する。
The above reference frequency depends on the characteristics of the furnace 1 and burner 2.
The frequency is set in advance so that the rate of change of the power spectrum integral ratio C with respect to the change in the air ratio is the largest. Then, the optical power vibration adjuster 24 outputs the air flow rate correction coefficient F calculated in this way to the correction 19, which is an example of an air amount adjustment means.

補正器9は、温度補正信号eをエアー流量補正係数Fに
基づいて補正17・、この補正結果に基づいて流量調節
弁17を制御し、バーナ2へのエアー10の供給量をm
節する。
The corrector 9 corrects the temperature correction signal e based on the air flow rate correction coefficient F, controls the flow rate control valve 17 based on the correction result, and adjusts the amount of air 10 supplied to the burner 2 by m.
make a clause

如上のように構成された燃焼ivJ御装置の動作につい
て説明する。
The operation of the combustion ivJ control device configured as above will be explained.

まず、火炎3の光パワー信号aか光センサ4に検出され
る (第2図参照)、この光パワー信号aは増幅器6に
入力されて増幅され、アナログフィルタ21で特定周波
数以上の成分をカットされる。
First, the optical power signal a of the flame 3 is detected by the optical sensor 4 (see Fig. 2), this optical power signal a is input to the amplifier 6 and amplified, and the analog filter 21 cuts off components above a specific frequency. be done.

更に、このデータはデジタル信号に変換された−1〜で
、デジタルフィルタ23で再度特定周波数似1−の成分
をカットされる。このカットによって低周波光パワー信
号すが得られる。
Furthermore, this data is converted into a digital signal from -1 to 1, and the digital filter 23 cuts off the specific frequency-like 1- component again. This cut provides a low frequency optical power signal.

この低周波光パワー信号すが周波数解析器7に入力され
てパワースペクトルdが得られ(第3図参照)、これを
光パワー振動調節器24に送る。このパワースペクトル
dの入力によって光パワー振動調節器24は上述した第
4図の演算処理を行なってエアー流壕補正係数Fを補正
器9へ出力する。
This low frequency optical power signal is input to the frequency analyzer 7 to obtain a power spectrum d (see FIG. 3), which is sent to the optical power oscillation adjuster 24. In response to the input of this power spectrum d, the optical power vibration adjuster 24 performs the arithmetic processing shown in FIG. 4 described above and outputs the air trench correction coefficient F to the corrector 9.

この場合、アナログフィルタ21およびデジタルフィル
タ23で、すでに特定周波数以上の帯域の成分をカット
しているので1周波数解析器7から出力されるパワース
ペクトルdは例えば第3図のように高周波成分が除かれ
たものになり、この結果、ステップS4の演算で得られ
るパワースペクトル積分比Cの空気比に対する変化率は
大きくなって例えば第6図に示されるようになる。この
結果、パワースペクトル積分比Cか定まれば確実に空気
比を決定することができるようになる。
In this case, the analog filter 21 and the digital filter 23 have already cut off the components in the band above a specific frequency, so the power spectrum d output from the single frequency analyzer 7 has high frequency components removed, for example, as shown in FIG. As a result, the rate of change of the power spectrum integral ratio C obtained by the calculation in step S4 with respect to the air ratio becomes large, as shown in FIG. 6, for example. As a result, once the power spectrum integral ratio C is determined, the air ratio can be reliably determined.

そして、補正器9はこのように空気比を確実に決定でき
るパワースペクトル積分比Cに基づいて得られたエアー
流量補正係数Fを入力して、流量調節弁17を制御し、
エアー10のバーナ2への供給量を31mする。この結
果、良好な燃焼状態が得られることになる。
Then, the corrector 9 inputs the air flow rate correction coefficient F obtained based on the power spectrum integral ratio C that can reliably determine the air ratio, and controls the flow rate control valve 17.
The amount of air 10 supplied to the burner 2 is set to 31 m. As a result, good combustion conditions can be obtained.

なお、本実施例では説明しなかったが基準周波数は、制
御内容により要求される変化率を示すように設定しても
良い。
Although not described in this embodiment, the reference frequency may be set to indicate a rate of change required depending on the control content.

また、本実施例ではローパスフィルタとしてアナログ、
デジタルフィルタ21.23を用いた場合を例にしたが
、いずれか片方のみを用いるように構成しても良い、こ
うすることにより装置を簡略化できる。そして、ローパ
スフィルタとしてアナログフィルタ22のみを用いて構
成した装置を第8図に示す燃焼装置に適用して、空気比
が1.62.IJI。
In addition, in this example, as a low-pass filter, an analog
Although the digital filters 21 and 23 are used as an example, the configuration may be such that only one of them is used. By doing so, the apparatus can be simplified. Then, when a device configured using only the analog filter 22 as a low-pass filter is applied to the combustion device shown in FIG. 8, an air ratio of 1.62. IJI.

1・17,1.05の場合において、A重油601ハで
実験をしたところ、第5,6図に示すような結果が得ら
れ、パワースペクトル積分比Cを大きくでき、ひいては
良好な燃焼状態を達成できることが明らかとなった。
In the case of 1.17 and 1.05, we conducted an experiment with A heavy oil 601C, and the results shown in Figures 5 and 6 were obtained, and it was possible to increase the power spectrum integral ratio C, which in turn led to a good combustion state. It became clear that this could be achieved.

(発明の効果) 本発明は、以上説明したように、火炎の光パワー信号の
特定周波数以上の成分をカットし、このカットによって
得られた光パワー信号からパワースペクトルを求め、あ
らかじめ設定された基準周波数で周波数帯域を定めてパ
ワースペクトル精分比を求めるようにしたものであるか
ら、このパワースペクトル積分比の空気比に対する変化
率を大きくすることができることになり、パワースペク
トル積分比によって対応する空気比を確実に特定できる
ことになる。この結果、適用される燃焼装置の特性が異
なるものであっても確実に良好な燃焼状態を得ることが
でき、汎用性が高くなるという効果を有する。
(Effects of the Invention) As explained above, the present invention cuts the components of a flame optical power signal having a specific frequency or higher, calculates a power spectrum from the optical power signal obtained by this cutting, and calculates a power spectrum based on a preset standard. Since the frequency band is determined by the frequency and the power spectrum precision ratio is determined, the rate of change of this power spectrum integral ratio with respect to the air ratio can be increased, and the corresponding air ratio is determined by the power spectrum integral ratio. This means that the ratio can be determined with certainty. As a result, it is possible to reliably obtain a good combustion state even if the characteristics of the combustion apparatus to which it is applied are different, and this has the effect of increasing versatility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例の燃焼制御装置を模式的に
示す図、 第2図は、同燃焼制御装置の光センサに入力される光パ
ワー信号を示す波形図 satgは、同光パワー信号のパワースペクトルを示す
波形図、 第4図は、同燃焼制ml装置の光パワー振動調節器の処
理内容を示すフローチャート、 第5図は、本発明の実施例による実験で得られるパワー
スペクトルを示す波形図、 第6図は、同実験にあけるパワースペクトル積分比と空
気比との関係を示す特性図、 第7図は、従来の燃焼制御装置の一例を示す模式図。 第8図は、炉の一例を示す断面図、 第9,10図は、第7図に示す制御装置を第8図の燃焼
装置に用いたときの実験結果を示し、第9図はパワース
ペクトルを示す波形図、第10[Jは、パワースペクト
ル積分比と空気比との関係を示す特性図である。 1・・・炉      2・・・バーナ3・・・火炎 
    4・−・光センサ7・・・周波数解析器 9・
・・補正器20・・・ローパスフィルタ 21−・・アナログフィルタ 22・・・デジタルフィルタ 24−・・光パワー振動周波数 (ほか 2名) 第1 図 12・−崎 第7図 第2 図 第3 図 叶 間 +1) 川3M & [Hzl 第4 図 第8 図 第9 iコ h九
Fig. 1 is a diagram schematically showing a combustion control device according to an embodiment of the present invention, and Fig. 2 is a waveform diagram showing an optical power signal input to an optical sensor of the combustion control device. FIG. 4 is a waveform diagram showing the power spectrum of the power signal. FIG. 4 is a flowchart showing the processing contents of the optical power oscillation adjuster of the combustion control ML device. FIG. 5 is a power spectrum obtained in an experiment according to an embodiment of the present invention. FIG. 6 is a characteristic diagram showing the relationship between the power spectrum integral ratio and the air ratio used in the same experiment. FIG. 7 is a schematic diagram showing an example of a conventional combustion control device. Figure 8 is a sectional view showing an example of a furnace, Figures 9 and 10 show experimental results when the control device shown in Figure 7 is used in the combustion equipment shown in Figure 8, and Figure 9 shows the power spectrum. The 10th [J is a characteristic diagram showing the relationship between the power spectrum integral ratio and the air ratio. 1...Furnace 2...Burner 3...Flame
4.--Optical sensor 7...Frequency analyzer 9.
...Corrector 20...Low-pass filter 21-...Analog filter 22...Digital filter 24-...Optical power oscillation frequency (2 others) 1st Figure 12--Saki Figure 7 2nd Figure 3 Figure 8 + 1) River 3M & [Hzl Figure 4 Figure 8 Figure 9 I Koh 9

Claims (1)

【特許請求の範囲】[Claims] (1)バーナが発生する火炎から光パワー信号を検出す
る光センサと、該光センサが検出した光パワー信号の特
定周波数以上の成分をカットして低周波成分光パワー信
号を得るローパスフィルタと、該ローパスフィルタの得
た低周波光パワー信号を周波数解析してパワースペクト
ルを算出する周波数解析器と、全周波数帯における該パ
ワースペクトルの積分値およびあらかじめ設定される基
準周波数以上の帯域におけるパワースペクトルの積分値
を算出し、これら積分値からパワースペクトル積分比を
算出して、このパワースペクトル積分比を、空気比と対
応づけてあらかじめ設定される基準積分比と比較 してその比較データを出力する演算手段と、該比較デー
タに基づいて前記バーナの空気供給用調整弁を制御する
空気量調整手段と、を備えたことを特徴とする燃焼制御
装置。
(1) an optical sensor that detects an optical power signal from a flame generated by a burner, and a low-pass filter that cuts components of the optical power signal detected by the optical sensor above a specific frequency to obtain a low-frequency component optical power signal; A frequency analyzer that calculates a power spectrum by frequency-analyzing the low-frequency optical power signal obtained by the low-pass filter, and an integrated value of the power spectrum in all frequency bands and a power spectrum in a band above a preset reference frequency. An operation that calculates integral values, calculates a power spectrum integral ratio from these integral values, compares this power spectrum integral ratio with a reference integral ratio that is set in advance in association with the air ratio, and outputs the comparison data. and an air amount adjusting means for controlling an air supply regulating valve of the burner based on the comparison data.
JP1074623A 1988-12-29 1989-03-27 Combustion control device Expired - Lifetime JPH0833194B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1074623A JPH0833194B2 (en) 1989-03-27 1989-03-27 Combustion control device
US07/456,478 US5049063A (en) 1988-12-29 1989-12-26 Combustion control apparatus for burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074623A JPH0833194B2 (en) 1989-03-27 1989-03-27 Combustion control device

Publications (2)

Publication Number Publication Date
JPH02254219A true JPH02254219A (en) 1990-10-15
JPH0833194B2 JPH0833194B2 (en) 1996-03-29

Family

ID=13552500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074623A Expired - Lifetime JPH0833194B2 (en) 1988-12-29 1989-03-27 Combustion control device

Country Status (1)

Country Link
JP (1) JPH0833194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263851A (en) * 1991-05-10 1993-11-23 Toyota Jidosha Kabushiki Kaisha Combustion control system for burner
JP2000057456A (en) * 1998-06-02 2000-02-25 Hochiki Corp Flame detector and flame detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190746U (en) * 1987-05-22 1988-12-08
JPS63306310A (en) * 1987-06-03 1988-12-14 Toyota Motor Corp Combustion control method and combustion control device using said method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190746U (en) * 1987-05-22 1988-12-08
JPS63306310A (en) * 1987-06-03 1988-12-14 Toyota Motor Corp Combustion control method and combustion control device using said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263851A (en) * 1991-05-10 1993-11-23 Toyota Jidosha Kabushiki Kaisha Combustion control system for burner
JP2000057456A (en) * 1998-06-02 2000-02-25 Hochiki Corp Flame detector and flame detection method

Also Published As

Publication number Publication date
JPH0833194B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US5049063A (en) Combustion control apparatus for burner
KR20020047089A (en) System and method for a variable gain proportional-integral (pi) controller
JPH03201103A (en) Composite control circuit
JPS646481B2 (en)
US4516929A (en) Method for controlling oxygen density in combustion exhaust gas
US4408569A (en) Control of a furnace
JPH02254219A (en) Combustion controller
JP2001021141A (en) Combustion control method of heating furnace and combustion control device
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JPH0826988B2 (en) Combustion control method and combustion control device using the method
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JPH01167523A (en) Combustion control device
JPH01150742A (en) Control device for hot water feeder
JP2988960B2 (en) Boiler air supply device
SU928130A1 (en) Method of automatic control of temperature of straight-through boiler secondary superheated steam
JPS5813809B2 (en) Combustion control method using low excess air
JP2619044B2 (en) Temperature control device
JPH0328376A (en) Temperature controlling method
JPS6149929A (en) Method of furnace pressure control
JPS6117445Y2 (en)
JPH075958B2 (en) Atmosphere control method for heat treatment furnace
JPS63161312A (en) Combustion control device
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JPS5830500B2 (en) Combustion control device and control method
SU1361435A2 (en) Method of automatic regulation of "fuel-air" ratio