JPH02253601A - Metal oxide film resistor of three-layer structure - Google Patents

Metal oxide film resistor of three-layer structure

Info

Publication number
JPH02253601A
JPH02253601A JP1073880A JP7388089A JPH02253601A JP H02253601 A JPH02253601 A JP H02253601A JP 1073880 A JP1073880 A JP 1073880A JP 7388089 A JP7388089 A JP 7388089A JP H02253601 A JPH02253601 A JP H02253601A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide film
resistance
film
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073880A
Other languages
Japanese (ja)
Inventor
Itaru Kubota
格 久保田
Kazuyuki Oshima
大嶋 一幸
Koichi Mizozoe
溝添 浩一
Yoshiyuki Aoshima
青嶋 良幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1073880A priority Critical patent/JPH02253601A/en
Publication of JPH02253601A publication Critical patent/JPH02253601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To increase resistance and reduce resistance change rate due to exposure to high temperature and that due to solder heat resistance by forming a first metal oxide film layer on the surface of an insulating base and then forming specific second and third metal oxide film layers on it. CONSTITUTION:The title item consists of a first metal oxide film 2 directly in contact with the surface of an insulating base 1, a second metal oxide film 3 with a small resistivity less which is coated on the first metal oxide film 2, and a third metal oxide film 4 with less specific resistance than the first metal oxide film and with a resistivity different from that of the second metal oxide film. Then, since the first metal oxide film 2 is a layer which was further crystallized, there are recesses and projections on the surface and the second and third metal oxide films 3 and 4 are thinly formed on them, thus resulting in a large resistance, small resistance change rate due to solder heat resistance, and small resistance change due to exposure to high temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁性の基体に酸化錫を主成分とする酸化金
属皮膜を形成した酸化金属皮膜抵抗器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal oxide film resistor in which a metal oxide film containing tin oxide as a main component is formed on an insulating substrate.

[従来の技術] 従来公知の酸化金属皮膜抵抗器の構成は、例えば、棒状
の磁器基体(例えば直径3mt長さ11mm)の表面に
、酸化錫を主成分とする酸化金属皮膜を形成し、このよ
うに被覆された棒状の磁器基体の両端に、それぞれ金属
性のキャップ端子を嵌着して接続用の端子となし、リー
ド線をつけた後、これらの表面を絶縁性、且つ、耐湿性
の外装保護膜で被覆している。
[Prior Art] A conventionally known metal oxide film resistor has a structure in which, for example, a metal oxide film containing tin oxide as a main component is formed on the surface of a rod-shaped porcelain substrate (for example, 3 m in diameter and 11 mm in length). Metal cap terminals are fitted onto both ends of the coated rod-shaped porcelain base to form connection terminals, and after attaching lead wires, these surfaces are coated with an insulating and moisture-resistant material. Covered with an exterior protective film.

一般的には、酸化金属皮膜として酸化錫を主成分とする
酸化錫皮膜中に、アンチモンを添加した酸化金属皮膜を
形成してつくられた抵抗温度係数の小さい酸化金属皮膜
抵抗器が使用されている。
Generally, metal oxide film resistors with a small resistance temperature coefficient are used, which are made by forming a metal oxide film containing antimony in a tin oxide film whose main component is tin oxide. There is.

このような酸化金属皮膜抵抗器の製造は、通常「吹き付
は法」と呼ばれる方法に依って、絶縁性の基体の表面に
酸化金属皮膜を形成する方法で行なわれている。
Such metal oxide film resistors are generally manufactured by forming a metal oxide film on the surface of an insulating substrate by a method called "spraying method."

「吹き付は法」と呼ばれる方法に於ては先ず、水、塩酸
、アルコール等の混合溶液に、塩化第2錫(Sn Cβ
4)と少量の3塩化アンチモン(sb cβ、)とを溶
解した原料溶液と、棒状のムライト・コランダム磁器基
体を用意する。
In the method called "spraying", tin chloride (SnCβ) is first added to a mixed solution of water, hydrochloric acid, alcohol, etc.
A raw material solution in which 4) and a small amount of antimony trichloride (sb cβ, ) are dissolved and a rod-shaped mullite/corundum porcelain substrate are prepared.

次いでこれとは別に、これらの原料溶液と、磁器基体と
を用いて、第3図にその要部を示す@膜装置に依って、
前記基体表面に酸化金属皮膜を形成して、酸化金属皮膜
抵抗器を製造する。
Next, separately from this, using these raw material solutions and the porcelain substrate, using a membrane device whose main part is shown in FIG.
A metal oxide film resistor is manufactured by forming a metal oxide film on the surface of the substrate.

第3図に示したむ膜装置の概要を説明すると、類8内に
耐熱性のFi9を回転自在に軸支し、籠全体が加熱され
るように、発熱体が炉壁に設けられている。炉外には原
料溶液供給装置!0と、空気を圧縮する装fff11と
が設けられている。原料溶液供給装置lOと空気を圧縮
する装置+1とからそれぞれ、n9に向けてパイプ12
.13が導出されている。導・出されたパイプの先端に
ノズル14を接続し、籠に向けて、原料溶液が噴霧され
るように設置されている。
To explain the outline of the membrane device shown in Fig. 3, a heat-resistant Fi9 is rotatably supported in a class 8, and a heating element is provided on the furnace wall so that the entire cage is heated. . There is a raw material solution supply device outside the furnace! 0 and a device fff11 for compressing air are provided. Pipe 12 from raw material solution supply device lO and air compressor +1 toward n9, respectively.
.. 13 have been derived. A nozzle 14 is connected to the leading end of the pipe and is installed so that the raw material solution is sprayed toward the basket.

この装置による着膜は、前記原料溶液を原料溶液供給装
置!110に入れ、15R9に前記ムライト・コランダ
ム磁器aを入れて回転させながら、炉内の温度を500
℃〜800℃に昇温し、その状態で、圧縮空気によって
原料溶液をノズルから噴霧して行なわれる。その後、噴
霧を止め、炉内の加温を止め、基体を取り出す、炉から
取り出された抵抗器は、別の炉に入れられて、200℃
〜300℃の温度で数lO分間〜数時間熱処理され、熱
的及び電気的に安定な皮膜にされる。
For film deposition using this device, the raw material solution is supplied to the raw material solution supply device! Put the mullite/corundum porcelain a into the 15R9 and while rotating, raise the temperature inside the furnace to 500.
The temperature is raised to 800°C to 800°C, and in this state, the raw material solution is sprayed from a nozzle using compressed air. After that, the spraying is stopped, the heating inside the furnace is stopped, and the substrate is taken out.The resistor taken out from the furnace is placed in another furnace and heated to 200℃.
It is heat treated at a temperature of ~300° C. for several 10 minutes to several hours to form a thermally and electrically stable film.

次いで金属性のキャップを前記基体の両端に嵌着し、基
体表面をスパイラル状にカットして所定の抵抗値を得る
。その後、リード線を溶接し、更に保護膜を形成して酸
化金属皮膜抵抗器の製品を得ていた。しかしながら、皮
膜の安定性、信頼性等の問題から、スパイラルカット前
の抵抗値で200Ω程度迄の抵抗値しか得られなかった
。加えて  −55℃〜+155℃の温度範囲において
抵抗温度係数が±200ppm/ ”C程度までしか達
成されていなかった。
Next, metal caps are fitted on both ends of the base, and the surface of the base is cut in a spiral shape to obtain a predetermined resistance value. After that, the lead wires were welded and a protective film was formed to obtain a metal oxide film resistor product. However, due to problems such as stability and reliability of the film, a resistance value of only about 200Ω before spiral cutting could be obtained. In addition, the temperature coefficient of resistance has only been achieved to about ±200 ppm/''C in the temperature range of -55°C to +155°C.

[発明が解決しようとする課題] 上記の寸法の基体表面に、酸化金属皮膜を形成したもの
を用い、スパイラルカットすることなく、上記従来の抵
抗値より高い抵抗値を得ることは、膜厚を薄くして抵抗
値を高くする事によって可能であ°る。しかしながら、
膜厚を薄くして抵抗値を高くしてゆくと、他の特性が変
化し、例えば、抵抗温度係数の増大や熱的安定性の低下
による半田付は前後の抵抗値変化率や高温放置による抵
抗値変化率の増大などが生じるため、実用できる高抵抗
の酸化金属皮膜抵抗器が得られないと云う課題があった
。また成膜条件のわずかな変動が酸化金属皮IIQ抵抗
器の抵抗温度係数に大きな影響を与えるため抵抗温度係
数の小さい酸化金属皮膜抵抗器が得難く、特に±110
0pp/ ”C以内の酸化金属抵抗器が得られないと云
う課題があった。
[Problems to be Solved by the Invention] Obtaining a higher resistance value than the conventional resistance value without spiral cutting by using a metal oxide film formed on the surface of a substrate having the above dimensions requires increasing the film thickness. This is possible by making it thinner and increasing the resistance value. however,
As the film thickness becomes thinner and the resistance value increases, other characteristics change. For example, soldering due to an increase in the temperature coefficient of resistance and a decrease in thermal stability is caused by the rate of change in resistance value before and after and due to high temperature storage. There is a problem in that a practically usable high resistance metal oxide film resistor cannot be obtained because of an increase in the rate of change in resistance value. In addition, since slight variations in film formation conditions have a large effect on the temperature coefficient of resistance of metal oxide film IIQ resistors, it is difficult to obtain metal oxide film resistors with a small temperature coefficient of resistance, especially ±110.
There was a problem in that it was not possible to obtain a metal oxide resistor with a value within 0 pp/''C.

本発明の目的はこのような課題を解消する$が出来る酸
化金属皮膜抵抗器を提供する事にある。
An object of the present invention is to provide an inexpensive metal oxide film resistor that solves these problems.

[課題を解決するための手段] 課題を解決するための手段として本発明者等は、絶縁基
体の表面に、酸化錫を主成分とする異質の2層の積層体
から成る酸化金属皮膜を形成し、該被10絶縁基体の両
端に接続用の端子を取付けた傅造の複合型酸化金属皮膜
抵抗器を更に改良した製品を開発した。該改良品は前記
酸化金属皮膜部分が異質の3層の積層体から成るもので
あって、絶縁基体表面上に第1の酸化金属皮膜層を形成
し、その上に第1の層より比抵抗の小さな第2の酸化金
属皮膜層を形成し、さらにその上に第1の層より比抵抗
が小さく第2の層とは異なる比抵抗を有する第3の酸化
金属皮膜層を形成することによって得られた3層構成の
酸化金属皮膜抵抗器である。
[Means for Solving the Problem] As a means for solving the problem, the present inventors formed a metal oxide film consisting of a laminate of two different layers containing tin oxide as a main component on the surface of an insulating substrate. We have developed a product that is a further improvement of Fuzo's composite metal oxide film resistor, which has connection terminals attached to both ends of the 10-layer insulating substrate. In this improved product, the metal oxide film portion is composed of a laminate of three different layers, and the first metal oxide film layer is formed on the surface of the insulating substrate, and the first layer has a specific resistance. This can be obtained by forming a second metal oxide film layer with a small resistance, and further forming a third metal oxide film layer having a specific resistance smaller than the first layer and different from that of the second layer. This is a three-layer metal oxide film resistor.

前記第1の酸化金属皮膜が鉄、インジウム、ニッケル、
リン、亜鉛、カドミウム、及びアンチモンからなる群よ
り選ばれた少なくともl aiの元素を補助成分として
含む主成分が酸化錫の薄膜とすることができ、その厚さ
は0.05〜5μm好ましくは0.5〜2μ鴎とするこ
とができる。
The first metal oxide film is made of iron, indium, nickel,
The main component may be a thin film of tin oxide, which contains as an auxiliary component at least an element selected from the group consisting of phosphorus, zinc, cadmium, and antimony, and its thickness is preferably 0.05 to 5 μm, preferably 0. It can be made into .5-2μ seaweed.

前記第2の酸化金属皮膜はアンチモン、ニッケル、クロ
ム、フッ素、リン、ヒ素、鉄、マンガン、バリウム、ビ
スマス、コバルト、亜鉛、銅、ボロン、カドミウムおよ
びバナジウムからなる群より選ばれた少なくともl!4
の元素を補助成分として含む主成分が酸化錫の薄膜とす
ることができ、その厚さは0.003〜2μ翔好ましく
は00口o5〜Iμmとすることができる。
The second metal oxide film has at least l! 4
The thin film may be made of tin oxide as the main component, and may have a thickness of 0.003 to 2 .mu.m, preferably 0.005 to 1 .mu.m.

前記第3の酸化金属皮膜はアンチモン、ニッケル、クロ
ム、フッ素、リン、ヒ素、鉄、マンガン、バリウム、ビ
スマス、コバルト、亜鉛、銅、ボロン、カドミウムおよ
びバナジウムからなる群より選ばれた少なくともl a
iの元素を補助成分として含む主成分が酸化錫の薄膜と
することができ、その厚さは0.003〜2μ園、好ま
しくは0.005〜1μ−とすることができる。
The third metal oxide film contains at least l a selected from the group consisting of antimony, nickel, chromium, fluorine, phosphorus, arsenic, iron, manganese, barium, bismuth, cobalt, zinc, copper, boron, cadmium, and vanadium.
The main component containing the element i as an auxiliary component can be a thin film of tin oxide, and the thickness thereof can be 0.003 to 2 μm, preferably 0.005 to 1 μm.

[作   用  ] 本発明に従って絶縁基体表面上に形成された第1の酸化
金属皮膜は比較的厚く成膜された層であるため結晶化が
進んでおり、結晶径は大きく成長している。第2の酸化
金属皮膜は上記第1の酸化金属皮膜の結晶面上に成膜さ
れた層であるため、薄い皮膜であるにもかかわらず、微
細な結晶粒が析出していないで、結晶性の良い、熱的に
安定な膜と成っている。
[Function] Since the first metal oxide film formed on the surface of the insulating substrate according to the present invention is a relatively thick layer, crystallization progresses, and the crystal diameter grows large. The second metal oxide film is a layer formed on the crystal plane of the first metal oxide film, so although it is a thin film, fine crystal grains are not precipitated and the crystallinity is high. It is made of a good, thermally stable membrane.

第3の酸化金属皮膜はさらに上記第2の酸化金属皮膜の
結晶面上に、重なり合うように結晶成長させた層である
ため、薄い酸化金属皮膜ではあるが微結晶が析出してい
ない、結晶性が良く、熱的に安定な膜となっている。
The third metal oxide film is a layer formed by crystal growth on the crystal plane of the second metal oxide film, so that it overlaps with the crystal plane of the second metal oxide film, so although it is a thin metal oxide film, no microcrystals are precipitated and it has a crystalline property. The film is thermally stable.

第1の酸化金属皮膜は結晶化が進んだ層であるため、表
面に凹凸が生じており、その上に第2及び第3の酸化金
属皮膜がいずれも薄く形成されたことによって抵抗値が
増大された膜となっている。
Since the first metal oxide film is a highly crystallized layer, its surface is uneven, and the second and third metal oxide films are both thinly formed on top of it, increasing the resistance value. It is a film that has been coated.

さらに本発明の酸化金属皮膜抵抗器の抵抗温度係数は第
2及び第3の酸化金属皮膜の抵抗温度係数の合成値とな
るため、従来、実現されていなかった±100ppn+
/ ”C以内の抵抗温度係数が可能となる。
Furthermore, since the temperature coefficient of resistance of the metal oxide film resistor of the present invention is a composite value of the temperature coefficients of resistance of the second and third metal oxide films, ±100 ppn +
/ ” temperature coefficient of resistance within 1°C is possible.

従って、上記抵抗器の抵抗値を律する比抵抗の小さい第
2及び第3の酸化金属皮膜の膜厚を薄くしても、抵抗値
が高く半田耐熱による抵抗値変化率が小さく、かつ高温
数置による抵抗値変化率が小さく、かつ抵抗温度係数が
従来のものに比べて極めて小さい抵抗器を得る事が可能
になる。
Therefore, even if the thickness of the second and third metal oxide films with low specific resistance, which govern the resistance value of the resistor, is made thinner, the resistance value is high and the rate of change in resistance value due to soldering heat resistance is small, and the resistor has a high resistivity value. It becomes possible to obtain a resistor that has a small rate of change in resistance value due to the change in resistance value, and a resistance temperature coefficient that is extremely small compared to conventional ones.

次に本発明の構成を実施例に基づき詳細に説明する。Next, the configuration of the present invention will be explained in detail based on examples.

[実施例1] アルミナ含有率的70%のムライト・コランダム′!A
磁器基体(直径3.0no+、長さflam)を100
00個用意し、アルコール中で1分間、次いで純水中で
15分間超音波洗浄し、乾燥型中で、170℃の温度で
60分間乾燥した。
[Example 1] Mullite corundum with an alumina content of 70%! A
100 pieces of porcelain base (diameter 3.0no+, length flam)
00 pieces were prepared, ultrasonically cleaned in alcohol for 1 minute, then in pure water for 15 minutes, and dried in a dry mold at a temperature of 170° C. for 60 minutes.

又これとは別に、 純     水 ・   ・・ ・ ・・・  ・12
50gエチルアルコール・・・・・・・・・・・・・・
・ 70gの混合溶液を用意し、該混合溶液に、 塩化第2錫(Sn Cβ4)を 60%含む水溶液・・・・・・・・・625gおよび 塩化鉄(FeCJ!s’6Hi o) **+  84
.6gを溶解して第1の原料溶液を用意した。
Also, apart from this, pure water ・・・・・・12
50g ethyl alcohol・・・・・・・・・・・・・・・
・ Prepare 70 g of a mixed solution, and add to the mixed solution: 625 g of an aqueous solution containing 60% tin chloride (Sn Cβ4) and iron chloride (FeCJ!s'6Hio) ** +84
.. A first raw material solution was prepared by dissolving 6 g.

次いで、 純     水 ・ ・・ ・・・・ ・・・ 125
0g塩      酸  ・  ・・・       
200gエチルアルコール・・・・・・・・・・・・・
・・ 70gの混合溶液を用意し、該混合溶液に、 塩化第2錫(Sn Cβ4)を 50%含む水溶液・・・・・・・・・525gおよび 塩化7ンfモン(SbCJ2s ) ・・・25.7g
を溶解して第2の原料溶液を用意した。
Next, pure water ・・・ ・・・ ・・・ 125
0g hydrochloric acid...
200g ethyl alcohol・・・・・・・・・・・・
Prepare 70 g of a mixed solution, and add to the mixed solution 525 g of an aqueous solution containing 50% tin chloride (SnCβ4) and 7% tin chloride (SbCJ2s). 25.7g
A second raw material solution was prepared by dissolving.

次いで、 純     水・・・・・・・・・・・・・・・・・・
・1250g塩     酸            
  200gエチルアルコール・・・・・・・・・・・
・・・・ 70gの混合溶液を用意し、該混合溶液に、 塩化第2錫(Sn CI;ts )を 6几含む水溶液・・・・・・・・・625gおよび 塩化7ンチモン(SbCRs ) ”  31.5gを
溶解して第3の原料溶液を用意した。
Next, pure water・・・・・・・・・・・・・・・・・・
・1250g hydrochloric acid
200g ethyl alcohol・・・・・・・・・・・・
Prepare 70 g of a mixed solution, and add to the mixed solution 625 g of an aqueous solution containing 6 liters of stannic chloride (SnCI; ts) and 7 nitimony chloride (SbCRs). A third raw material solution was prepared by dissolving 31.5 g.

これらの原料溶液を用意した後に、第3図に要部を示し
た着膜装置の籠に、面記磁器基体を入れ、籠を回転させ
ながら、炉内の温度を700 ”Cに昇温し、700℃
に保ったまま、原料溶液供給装置1oに、前記第1の原
料溶液を入れ、ノズル14から圧縮空気と共に原料溶液
の霧を噴霧し、引き続き第2のJJx料溶液溶液霧した
後、さらに引き続き第3の原料溶液を噴霧し、しかる後
に、霧の噴霧な止め、籠の回転を続けながら、炉内を降
温し、着膜されたMi器器体体取り出し、前記膜厚をi
ll定したところ、第1rrIの酸化金属皮膜の膜厚は
、平均1μmであり、第2層の酸化金属皮膜の膜厚は、
平均5XIO−’μmであり、第3rriの酸化金属皮
膜の膜厚は、平均5 Xl0−’μmであった。
After preparing these raw material solutions, the surface porcelain substrate was placed in the basket of the film deposition apparatus whose main parts are shown in Fig. 3, and the temperature inside the furnace was raised to 700''C while rotating the basket. ,700℃
The first raw material solution is put into the raw material solution supply device 1o while maintaining the same temperature, and a mist of the raw material solution is sprayed together with compressed air from the nozzle 14. After that, the second JJx raw material solution is sprayed, and then the second raw material solution is sprayed. After spraying the raw material solution No. 3, the temperature inside the furnace is lowered while the spraying is stopped and the basket is continued to rotate, and the Mi device body coated with the film is taken out and the film thickness is
As a result, the thickness of the first metal oxide film is 1 μm on average, and the thickness of the second metal oxide film is:
The average thickness of the metal oxide film of the third rri was 5XIO-'μm.

次いで別に用意した炉で、前記抵抗器を200℃の温度
で、2時間熱処理した後、基体の両端に、リード線の付
いた金属性のキャップを嵌着し、リード線以外の基体表
面を外装保護膜で被覆して、絶縁史料で外装した抵抗器
を得た。
Next, the resistor was heat-treated at 200° C. for 2 hours in a separately prepared furnace, and then metal caps with lead wires were fitted to both ends of the base, and the surface of the base other than the lead wires was covered. A resistor was obtained which was coated with a protective film and packaged with an insulating material.

これらの抵抗器から200個ずっ4グループを無作為に
選択し、20℃に於ける抵抗値と、抵抗温度係数と、半
田耐熱による抵抗値の変化率と、高温放置による抵抗値
の変化率とを、それぞれのグループ毎に200個すべて
について四端子法に従って測定した。
Four groups of 200 resistors were randomly selected from these resistors, and the resistance value at 20°C, resistance temperature coefficient, resistance change rate due to soldering heat resistance, and resistance value change rate due to high temperature storage were calculated. was measured for all 200 pieces in each group according to the four-terminal method.

20℃に於ける抵抗値は、20”Cの温度に保温された
恒温槽内に、前記抵抗器を30分間放置した後、そのま
まの状態で、20”Cの抵抗値(R,。)を測定し、そ
の平均flIを求め、IOの位を四捨五入して第1表に
示した。
The resistance value at 20°C is determined by leaving the resistor in a constant temperature bath kept at a temperature of 20"C for 30 minutes, and then changing the resistance value (R,.) at 20"C. The average flI was determined, rounded to the nearest IO, and shown in Table 1.

半田耐熱前後の抵抗値の変化率は、20℃に於ける抵抗
値を測定した後、350℃に溶融した半田槽内に、前記
抵抗器を3秒間浸漬した後取り出し、室温に3時間放置
した後、抵抗値を測定し、20℃の抵抗値に対する変化
率を求めて、変化率の絶対値の最大を第1表に示した。
The rate of change in resistance value before and after soldering heat resistance was determined by measuring the resistance value at 20°C, then immersing the resistor in a solder bath melted at 350°C for 3 seconds, taking it out, and leaving it at room temperature for 3 hours. Thereafter, the resistance value was measured, and the rate of change with respect to the resistance value at 20° C. was determined, and the maximum absolute value of the rate of change is shown in Table 1.

抵抗温度係数の測定は、20℃の温度に保温された恒温
槽内に、抵抗器を30分間放置した後、そのままの状態
で、20℃の抵抗値(R,。)をiJl’!定し、次に
恒温槽内の温度を一55℃に保持し、30分間保持した
後抵抗値を測定し、次いで、155℃に昇温し、30分
間保持した後155℃の温度で抵抗値を測定し、20℃
と155℃、20℃と一55℃との抵抗値の差(ΔR)
を求め、次式により、抵抗fA度度数数求めた。
To measure the resistance temperature coefficient, leave the resistor in a constant temperature bath kept at 20°C for 30 minutes, and then change the resistance value (R,.) at 20°C to iJl'! Then, the temperature in the constant temperature bath was maintained at -55℃, held for 30 minutes, and then the resistance value was measured.Then, the temperature was raised to 155℃, and after held for 30 minutes, the resistance value was measured at the temperature of 155℃. Measured at 20℃
Difference in resistance value between and 155℃, 20℃ and -55℃ (ΔR)
was calculated, and the resistance fA frequency was calculated using the following formula.

北竹鼾(ΔR/ R,0−ΔTl・10’(ppm /
”C)但し、△Tは、2(1’cとrRQ定4度との差
を示す。
Northern bamboo snoring (ΔR/R, 0-ΔTl・10'(ppm/
``C) However, △T indicates the difference between 2(1'c) and rRQ constant 4 degrees.

このようにして200個の抵抗器の、低温側と高温側の
抵抗温度係数を求め、抵抗温度係数の絶対値の最大を第
1表に示した。
In this way, the temperature coefficients of resistance on the low temperature side and high temperature side of the 200 resistors were determined, and the maximum absolute values of the temperature coefficients of resistance are shown in Table 1.

高温放置における抵抗値の変化率は20”Cに於ける抵
抗値を測定した後、zoo ”cの恒温槽中で100時
間放置して取り出し、室温にl II;’/間敦万した
後、抵抗値を測定し、20”Cの抵抗(+6に対する変
化率を求めて、変化率の絶対値の最大を第1表に示した
The rate of change in resistance value when left at high temperature is as follows: After measuring the resistance value at 20"C, leave it in a zoo"C constant temperature bath for 100 hours, take it out, and let it return to room temperature for 12 minutes. The resistance value was measured, and the rate of change with respect to the resistance (+6) of 20''C was determined, and the maximum absolute value of the rate of change is shown in Table 1.

[実施例2] 面記実施例1における第2及び第3の原料溶液中ニ、塩
化7ンfモン(Sb CAs ) 25.7g Ez、
U315gに代えて、フッ化アンモニウム(NH,F1
21.4g及び32.0gを添加した重恩外は実施例1
と同様に処理及び測定を行なって第1表に示す結果を得
た。
[Example 2] In the second and third raw material solutions in Example 1, 25.7 g of chloride (Sb CAs),
Ammonium fluoride (NH, F1
Example 1: Chiongai with added 21.4g and 32.0g
The same treatments and measurements as above were carried out, and the results shown in Table 1 were obtained.

[実施例3] (以下余白) 前記実施例1における第2及び第3の原料溶液中に塩化
アンチモン(S b CQ s) 25.7g及び31
.5gに代えて、塩化ニッケル(NiCgx・6H,0
)5.8g及び8.6gをそれぞれ添加した事以外は実
施例1と同様に処理及び測定を行なって第1表に示す結
果を得た。
[Example 3] (Hereinafter blank) Antimony chloride (S b CQ s) 25.7 g and 31 g were added to the second and third raw material solutions in Example 1.
.. Nickel chloride (NiCgx・6H,0
) The treatment and measurement were carried out in the same manner as in Example 1, except that 5.8 g and 8.6 g were added, respectively, and the results shown in Table 1 were obtained.

[実施例4] 前記実施例1における第2及び第3の原料溶液中に塩化
アンチモン(SbCβs) 25.7g及び31.5g
に代えて、塩化クロム(Cr ClS−6Hs O)7
.2g、及び訳8gをそれぞれ添加した事以外は実施例
1と同様に処理及び測定を行なって第1表に示す結果を
得た。
[Example 4] 25.7 g and 31.5 g of antimony chloride (SbCβs) in the second and third raw material solutions in Example 1
Chromium chloride (CrClS-6HsO)7
.. The treatment and measurement were carried out in the same manner as in Example 1, except that 2 g and 8 g were added, respectively, and the results shown in Table 1 were obtained.

[実施例5〕 前記実施例1における第2及び第3の原料溶液中にそれ
ぞれ更にフッ化アンモニウム(NH,F)10.7g及
び13.4gを添加した事以外は実施例1と同様に処理
及び測定を行なって第1表に示す結果を得た。
[Example 5] Processed in the same manner as in Example 1 except that 10.7 g and 13.4 g of ammonium fluoride (NH, F) were further added to the second and third raw material solutions in Example 1, respectively. The results shown in Table 1 were obtained.

[実施例6〜8] 前記実施例1における第1の原料溶液において、塩化鉄
(Fe C氾s −6Ht O)の量を、42.3gと
した事と、それぞれ更に塩化ニッケル(NiO2、・6
 Hz O) 29.5g、 5塩化リン(PC氾、)
25、4g、塩化インジウム(In Cl2s’nHx
 o、但しn=3〜4 ) 51.0gを添加した事以
外は実施例1と同様に処理及び測定を行なって、第1表
に示す結果を得た。
[Examples 6 to 8] In the first raw material solution in Example 1, the amount of iron chloride (Fe C s-6Ht O) was set to 42.3 g, and nickel chloride (NiO2, . 6
Hz O) 29.5g, Phosphorus pentachloride (PC flood,)
25.4g, indium chloride (In Cl2s'nHx
o, where n=3 to 4) The treatment and measurement were performed in the same manner as in Example 1, except that 51.0 g was added, and the results shown in Table 1 were obtained.

[実施例9,101 前記実施例1に於ける第2及び第3の酸化金属皮膜の平
均膜厚をそれぞれ3X 10−’μm、5 Xl0−”
μmとした事以外は実施例1と同様に処理及び測定を行
なって、第1表に示すデータを得た。
[Examples 9 and 101 The average film thicknesses of the second and third metal oxide films in Example 1 were 3X 10-'μm and 5X10-'', respectively.
The processing and measurements were carried out in the same manner as in Example 1, except that the thickness was set to μm, and the data shown in Table 1 was obtained.

[実施例11.12] 前記実施例1に於ける第1の酸化金属皮膜の平均膜厚を
それぞれ0.5μm、2.0μmとした事以外は実施例
1と同様に処理及び測定を行なって、第1表に示す結果
を得た。
[Example 11.12] The treatment and measurement were carried out in the same manner as in Example 1, except that the average thickness of the first metal oxide film in Example 1 was set to 0.5 μm and 2.0 μm, respectively. , the results shown in Table 1 were obtained.

[比較例1] 実施例1に於ける第1の酸化金属皮膜を形成することな
く、第2の酸化金属皮膜を直ちに形成した!1■と、第
2、第3の酸化金属皮膜の膜厚を5XlO−”μmとし
た事以外は実施例1と同様に処理及び測定を行なって、
第1表に示す結果を?4た。
[Comparative Example 1] A second metal oxide film was immediately formed without forming the first metal oxide film in Example 1! The treatment and measurement were carried out in the same manner as in Example 1, except that the thickness of the second and third metal oxide films was 5XlO-''μm.
What are the results shown in Table 1? 4.

(以下余白) 上記実施例1〜!2に於いては第1の原料溶液中に含ま
れる原料が塩化錫を主成分とし、鉄、鉄とニッケル、鉄
とリン、鉄とインジウムを含む場合を示したが、本発明
の実施態様はこれらの場合に限られるわけではなく、鉄
、インジウム、ニッケル、リン、亜鉛、カドミウムおよ
びアンチモンの中から選んだ任意のlf1以上の元素を
含む場合に同様の効果が得られる。添加元素が、鉄、イ
ンジウム、ニッケル、およびリンの中から選んだ任意の
lF!以上であるとき特に良い効果が得られる。
(Left below) Example 1~! In 2, the case where the raw material contained in the first raw material solution mainly contains tin chloride and contains iron, iron and nickel, iron and phosphorus, iron and indium is shown, but the embodiment of the present invention The same effect is not limited to these cases, but a similar effect can be obtained when any element of lf1 or more selected from iron, indium, nickel, phosphorus, zinc, cadmium, and antimony is included. Any IF where the additive element is selected from iron, indium, nickel, and phosphorus! Particularly good effects can be obtained when the above conditions are met.

また第2の原料溶液中に含まれる原料が塩化錫を主成分
とし、アンチモン、フッ素、ニッケル、クロム、アンチ
モンとフッ素を含む例を示したが本発明はこれらの場合
に限られず、アンチモン、ニッケル、クロム、フッ素、
リン、砒素、鉄、マンガン、バリウム、ビスマス、コバ
ルト、亜鉛、銅、ボロン、カドミウム、バナジウムの中
から選んだ任意の1!!以上の元素を含む場合にも同様
の効果が得られる。アンチモン、ニッケルおよびクロム
の中から任意の1種以上を選ぶとき特に効果がよい。
Further, although an example has been shown in which the raw material contained in the second raw material solution is mainly composed of tin chloride and contains antimony, fluorine, nickel, chromium, antimony and fluorine, the present invention is not limited to these cases. , chromium, fluorine,
Any one selected from phosphorus, arsenic, iron, manganese, barium, bismuth, cobalt, zinc, copper, boron, cadmium, and vanadium! ! Similar effects can be obtained when the above elements are included. Particularly effective is when one or more of antimony, nickel and chromium is selected.

また、第3の原料溶液中に含まれる原料が塩化錫を主成
分とし、アンチモン、フッ素、ニッケル、クロム、アン
チモンとフッ素を含む例を示したが、本発明はこれらの
場合に限られず、アンチモン、ニッケル、クロム、フッ
素、リン、砒素、鉄、マンガン、バリウム、ビスマス、
コバルト、亜鉛、14、ボロン、カドミウム、バナジウ
ムの中から選んだ任意のlf!以上の元素を含む場合に
も同様の効果が得られる。アンチモン、ニッケルおよび
クロムの中から任意の1種以上を選ぶとき特に効果がよ
い。
Further, although an example has been shown in which the raw material contained in the third raw material solution is mainly composed of tin chloride and contains antimony, fluorine, nickel, chromium, antimony and fluorine, the present invention is not limited to these cases. , nickel, chromium, fluorine, phosphorus, arsenic, iron, manganese, barium, bismuth,
Any lf selected from cobalt, zinc, 14, boron, cadmium, vanadium! Similar effects can be obtained when the above elements are included. Particularly effective is when one or more of antimony, nickel and chromium is selected.

また実施例1−12では第2と第3の原料溶液に含まれ
る添加元素が同じ場合のみを示したかが添加元素が異な
る場合でも同様の効果がある。
Further, in Examples 1-12, only the case where the additive elements contained in the second and third raw material solutions are the same is shown, but the same effect can be obtained even when the additive elements are different.

また実施例1−12では第2及び第3酸化金属皮膜の膜
厚が同じ場合のみを示したが@厚が異なる場合でも同様
の効果がある。
Further, in Examples 1-12, only the case where the second and third metal oxide films have the same thickness is shown, but the same effect can be obtained even when the thicknesses are different.

さらにまた、上記実施例1〜12では円柱形状の磁器基
体を用いたが、基体形状はこれに限られず、例えば角柱
、板状等いずれの形状のものでも同等の効果を示す。
Furthermore, although a cylindrical porcelain substrate was used in Examples 1 to 12, the shape of the substrate is not limited to this, and any shape, such as a prismatic or plate-like shape, will exhibit the same effect.

また上記実施例1〜■2では「吹き付は法」によって着
膜した場合を示したが、超音波!lii!tlJ子を用
いて原料溶液を浮遊できるほど細かくし、ガス状にして
基体に吹き付ける方法や、CVD法、スパッタ法等で着
膜した場合にも同等の効果が得られる。
In addition, in Examples 1 to 2 above, the film was deposited by "spraying method", but ultrasonic! Lii! The same effect can be obtained by making the raw material solution fine enough to float using a tlJ powder, making it into a gaseous state, and spraying it onto the substrate, or by depositing a film by CVD, sputtering, or the like.

[発明の効果] 本発明によれば、従来の酸化金属皮膜抵抗器の抵抗値を
、数十倍程度大きくする事が可能であり、且つ高温放置
による抵抗値変化率や半田耐熱による抵抗値変化率等の
小さい熱的安定性の高い酸化金属皮膜抵抗器が得られ、
さらに従来にない小さな抵抗温度係数を持つ酸化金属皮
膜抵抗器が得られる。従って本発明は電子業界に於ける
酸化金属皮膜抵抗器の利用範囲の拡大と信頼性の向上に
大きく貢献するものである。
[Effects of the Invention] According to the present invention, it is possible to increase the resistance value of a conventional metal oxide film resistor by several tens of times, and the resistance value change rate due to high temperature storage and resistance value change due to soldering heat resistance is reduced. A metal oxide film resistor with a high thermal stability and a small coefficient etc. can be obtained.
Furthermore, a metal oxide film resistor with an unprecedentedly low temperature coefficient of resistance can be obtained. Therefore, the present invention greatly contributes to expanding the scope of use and improving reliability of metal oxide film resistors in the electronic industry.

【図面の簡単な説明】 第1図は本発明の酸化金属皮膜抵抗器の断面図、第2図
は同斜視図である。 第3図は本発明の酸化金属皮膜抵抗器の製造に用いられ
る着膜装置の1例を、断面図を含めて示した概略図であ
る。 符  合  説  明 l・・・・・・絶縁基体 2・・・・・・第1の酸化金属皮膜 3・・・・・・第2の酸化金属皮膜 4・・・・・・第3の酸化金属皮膜 5・・・・・・キャップ   6・・・・・・リード7
・・・・・・外装保護v4 8・・・・・・炉9・・・
・・・籠    lO・・・・原料溶液供給装置II・
・・・・・空気を圧縮する装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a metal oxide film resistor of the present invention, and FIG. 2 is a perspective view thereof. FIG. 3 is a schematic view, including a cross-sectional view, of an example of a film deposition apparatus used for manufacturing the metal oxide film resistor of the present invention. Symbol Explanation l...Insulating base 2...First metal oxide film 3...Second metal oxide film 4...Third oxide Metal film 5...Cap 6...Lead 7
...Exterior protection v4 8...Furnace 9...
... Basket lO ... Raw material solution supply device II.
...A device that compresses air

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基体の表面に、酸化錫を主成分とする酸化金
属皮膜を有してなる構造の酸化金属皮膜抵抗器であって
、前記酸化金属皮膜が、絶縁基体表面に直接接する第1
の酸化金属皮膜と、該第1の酸化金属皮膜の上に被覆さ
れた、第1の酸化金属皮膜より比抵抗の小さい第2の酸
化金属皮膜と、さらに該第2の酸化金属皮膜の上に被覆
された、第1の酸化金属皮膜より比抵抗が小さく第2の
酸化金属皮膜とは異なる比抵抗を有する第3の酸化金属
皮膜とからなる3層構成の酸化金属皮膜であることを特
徴とする3層構成の酸化金属皮膜抵抗器。
(1) A metal oxide film resistor having a structure including a metal oxide film containing tin oxide as a main component on the surface of an insulating base, wherein the metal oxide film is in direct contact with the surface of the insulating base.
a second metal oxide film coated on the first metal oxide film and having a lower specific resistance than the first metal oxide film, and further on the second metal oxide film. The metal oxide film is coated with a three-layered metal oxide film consisting of a third metal oxide film having a resistivity lower than that of the first metal oxide film and a resistivity different from that of the second metal oxide film. A three-layer metal oxide film resistor.
(2)前記第1の酸化金属皮膜が鉄、インジウム、ニッ
ケル、リン、亜鉛、カドミウム、及びアンチモンからな
る群より選ばれた少なくとも1種の元素を補助成分とし
て含む主成分が酸化錫の厚さ0.05〜5μmの薄膜で
あり、前記第2の酸化金属皮膜が、アンチモン、ニッケ
ル、クロム、フッ素、リン、ヒ素、鉄、マンガン、バリ
ウム、ビスマス、コバルト、亜鉛、銅、ボロン、カドミ
ウムおよびバナジウムからなる群より選ばれた少なくと
も1種の元素を補助成分として含む主成分が酸化錫の厚
さ0.003〜2μmの薄膜であり、前記第3の酸化金
属皮膜が、アンチモン、ニッケル、クロム、フッ素、リ
ン、ヒ素、鉄、マンガン、バリウム、ビスマス、コバル
ト、亜鉛、銅、ボロン、カドミウムおよびバナジウムか
らなる群より選ばれた少なくとも1種の元素を補助成分
として含む主成分が酸化錫の厚さ0.003〜2μmの
薄膜である請求項1記載の3層構成の酸化金属皮膜抵抗
器。
(2) The first metal oxide film has a thickness of tin oxide as a main component containing at least one element selected from the group consisting of iron, indium, nickel, phosphorus, zinc, cadmium, and antimony as an auxiliary component. The second metal oxide film is a thin film of 0.05 to 5 μm, and the second metal oxide film contains antimony, nickel, chromium, fluorine, phosphorus, arsenic, iron, manganese, barium, bismuth, cobalt, zinc, copper, boron, cadmium, and vanadium. The main component is a thin film of tin oxide with a thickness of 0.003 to 2 μm, and the third metal oxide film contains antimony, nickel, chromium, The thickness of the main component is tin oxide, which contains as an auxiliary component at least one element selected from the group consisting of fluorine, phosphorus, arsenic, iron, manganese, barium, bismuth, cobalt, zinc, copper, boron, cadmium, and vanadium. The three-layer metal oxide film resistor according to claim 1, which is a thin film of 0.003 to 2 μm.
JP1073880A 1989-03-28 1989-03-28 Metal oxide film resistor of three-layer structure Pending JPH02253601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073880A JPH02253601A (en) 1989-03-28 1989-03-28 Metal oxide film resistor of three-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073880A JPH02253601A (en) 1989-03-28 1989-03-28 Metal oxide film resistor of three-layer structure

Publications (1)

Publication Number Publication Date
JPH02253601A true JPH02253601A (en) 1990-10-12

Family

ID=13530963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073880A Pending JPH02253601A (en) 1989-03-28 1989-03-28 Metal oxide film resistor of three-layer structure

Country Status (1)

Country Link
JP (1) JPH02253601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367805A (en) * 2001-06-04 2002-12-20 Koa Corp Resistor and its manufacturing method
KR100398019B1 (en) * 2001-08-30 2003-09-19 정영찬 Method for manufacturing the film of a high capacity and high property metal oxide film resistor which insulation substrate is substituted with low content alumina

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367805A (en) * 2001-06-04 2002-12-20 Koa Corp Resistor and its manufacturing method
KR100398019B1 (en) * 2001-08-30 2003-09-19 정영찬 Method for manufacturing the film of a high capacity and high property metal oxide film resistor which insulation substrate is substituted with low content alumina

Similar Documents

Publication Publication Date Title
DE60120522T2 (en) Child safety seat
US5889459A (en) Metal oxide film resistor
DE60210522T2 (en) Thermistor and method for its production
TWI580937B (en) Temperature sensor and its manufacturing method
TWI564552B (en) Temperature sensor
JPH04230011A (en) Manufacture of single layer capacitor
US3310718A (en) Impedance element with alloy connector
JPH02253601A (en) Metal oxide film resistor of three-layer structure
EP0289601A1 (en) Zinc-metallized base material for metallized capacitor and process for its production
JPH02238602A (en) Oxide metal film resistor constituted of three layers
PH26750A (en) Metal oxide film resistor
JPH02256201A (en) Metal oxide film resistor
JPH0770425B2 (en) Capacitor manufacturing method
CA2368337C (en) Thermistor and method of manufacture
JPH0423401B2 (en)
JP3169181B2 (en) Chip type positive temperature coefficient thermistor
JPH08236306A (en) Chip type thermistor and manufacture thereof
JPH02238605A (en) Manufacture of oxide metal film resistor
JP3608754B2 (en) Chip-type thin film thermistor element, manufacturing method thereof, and crystal oscillator
JP2759762B2 (en) Chip type thin film thermistor element and method of manufacturing the same
JP3600493B2 (en) Metal oxide film resistor
JP3625129B2 (en) Thick film resistor paste
JPH0974003A (en) Ceramic electronic parts
CN117255439A (en) Heating element and processing method thereof
JPH04287307A (en) Manufacture of surface mounting type laminated film capacitor