JPH02253233A - Electro-optical liquid crystal device - Google Patents

Electro-optical liquid crystal device

Info

Publication number
JPH02253233A
JPH02253233A JP1076114A JP7611489A JPH02253233A JP H02253233 A JPH02253233 A JP H02253233A JP 1076114 A JP1076114 A JP 1076114A JP 7611489 A JP7611489 A JP 7611489A JP H02253233 A JPH02253233 A JP H02253233A
Authority
JP
Japan
Prior art keywords
film
optically anisotropic
liquid crystal
refractive index
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076114A
Other languages
Japanese (ja)
Inventor
Motoyuki Toki
元幸 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1076114A priority Critical patent/JPH02253233A/en
Priority to DE69008875T priority patent/DE69008875T2/en
Priority to EP90300373A priority patent/EP0379315B1/en
Priority to US07/466,232 priority patent/US5142393A/en
Publication of JPH02253233A publication Critical patent/JPH02253233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To increase the refractive index of an optically anisotropic film in a perpendicular direction and to make it possible to widen the visual angle of an optical liq. crystal device by using a uniaxially stretched polystyrene film as the optically anisotropic film having an optical axis in one direction of the surface and optically negative uniaxial property. CONSTITUTION:The principal chain of the molecular structure of a polystyrene film is a polymer of vinyl groups and the side chain is phenyl groups. When the polystyrene film is stretched, the principal chain elongates in the stretching direction and the phenyl groups are aligned in a direction perpendicular to the stretching direction. Since the refractive index in the direction of the aligned phenyl groups is generally higher than that of alkyl groups, the refractive index in a direction perpendicular to the stretching direction becomes higher than that in the stretching direction. Accordingly, the stretched polystyrene film is an optically anisotropic film having an optical axis in the stretching direction and causing negative double refraction. Since polystyrene can reduce the required film thickness by two figures, a low-cost film having high homogeneity is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複屈折効果を利用する液晶電気光学素子の視野
角を広げる視角補償板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a viewing angle compensator that widens the viewing angle of a liquid crystal electro-optical element that utilizes the birefringence effect.

〔従来の技術〕[Conventional technology]

ホモジニアス配向した液晶を2枚の電極基板間に挟持し
てなる液晶電気光学素子の視角範囲を広げるには、光学
異方体膜である視角補償板を該液晶電気光学素子に適応
する方法がある。これについては、特願昭63−198
506に詳し、(開示されている。すなわち、光学異方
体膜はその3つの主要な屈折率Nl01Neat N3
@の内、N5.が他の2つの屈折率N10、N、。、よ
りも小さく、かつNloとN2゜が同値であり、さらに
N seに対応する軸が光学異方体膜の面内の一方向に
有るものである。この光学異方体膜を、そのNs、軸を
液晶の分子軸に合わせて配置することにより、視野角の
変化に対応して起こる液晶の△nの変化をキャンセルす
ることで視角を広げる作用を発するものである。
In order to widen the viewing angle range of a liquid crystal electro-optic device in which a homogeneously aligned liquid crystal is sandwiched between two electrode substrates, there is a method of applying a viewing angle compensation plate, which is an optically anisotropic film, to the liquid crystal electro-optic device. . Regarding this, the patent application 1986-198
506 (disclosed in detail), i.e., the optically anisotropic film has its three main refractive indices Nl01Neat N3
Of @, N5. are the other two refractive indices N10, N,. , Nlo and N2° are the same value, and the axis corresponding to N se is in one direction within the plane of the optically anisotropic film. By arranging this optically anisotropic film so that its Ns axis is aligned with the molecular axis of the liquid crystal, it has the effect of widening the viewing angle by canceling the change in △n of the liquid crystal that occurs in response to changes in the viewing angle. It is something that emanates.

ところで、光学異方体膜としては、高分子フィルムタイ
プと、ディスコティック液晶タイプの2種類が考えられ
るが、コストや製作の容易さから高分子フィルムタイプ
がよいと考えられる。高分子フィルムタイプは、ポリメ
チルメタクリレート(PMMA)やポリα−フルオロア
クリル酸メチル(PMFA)のように、延伸することに
よって、延伸方向の直角方向の屈折率が大きくなり負の
光学的異方性を示す高分子である必要が有る。
By the way, there are two types of optically anisotropic films: a polymer film type and a discotic liquid crystal type, but the polymer film type is considered to be better in terms of cost and ease of production. Polymer film types, such as polymethyl methacrylate (PMMA) and polymethyl fluoroacrylate (PMFA), increase the refractive index in the direction perpendicular to the stretching direction by stretching, resulting in negative optical anisotropy. It is necessary that the polymer exhibits the following.

〔発明が解決しようとする課題] しかし、前述の従来技術における高分子フィルムタイプ
の光学異方体膜は、主にPMMA(’PMFAであり、
これらは延伸により発生するΔnの値が小さく、厚みを
1〜2mmと云う厚膜にする必要があり、コスト高であ
ったり、製造が困難であるという問題点があった。
[Problems to be Solved by the Invention] However, the polymer film type optically anisotropic film in the above-mentioned prior art is mainly composed of PMMA ('PMFA),
These have a problem that the value of Δn generated by stretching is small and that it is necessary to form a thick film with a thickness of 1 to 2 mm, resulting in high cost and difficulty in manufacturing.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、延伸により発生するΔnを大き
くシ、必要なフィルムの厚みを薄くすることにより、安
価で製造容易な光学異方体膜を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to increase the Δn generated by stretching and reduce the required thickness of the film, thereby achieving optical anisotropy that is inexpensive and easy to manufacture. It provides body membranes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電気光学素子は対向する2枚の電極基板間にホ
モジニアス配向した液晶を挟持してなる液晶セルと、該
素子の視角特性を広くする光学異方体膜と、それらを挟
んで両側に配置された一対の偏光板とを具備した液晶電
気光学素子に於て、光軸が光学異方体膜の面内の一方向
にあり、光学的に負の一軸性を有する光学異方体膜が、
ポリスチレンフィルムの一軸延伸体であることを特徴と
する。
The electro-optical device of the present invention includes a liquid crystal cell in which a homogeneously aligned liquid crystal is sandwiched between two opposing electrode substrates, an optically anisotropic film that widens the viewing angle characteristics of the device, and an optically anisotropic film on both sides sandwiching them. In a liquid crystal electro-optical element comprising a pair of arranged polarizing plates, an optically anisotropic film having an optical axis in one direction within the plane of the optically anisotropic film and having optically negative uniaxiality. but,
It is characterized by being a uniaxially stretched polystyrene film.

〔作 用J 本発明の高分子フィルムは、延伸することにより、延伸
方向の直角方向の屈折率が延伸方向の屈折率よりも大き
くなり、光学的に負の屈折率異方体を形成することにな
る。この原理をここに説明する。
[Function J] By stretching the polymer film of the present invention, the refractive index in the direction perpendicular to the stretching direction becomes larger than the refractive index in the stretching direction, forming an optically negative refractive index anisotropic body. become. This principle will be explained here.

最初に、通常の延伸により正の複屈折性を示す屈折率異
方体を形成する高分子フィルムの場合を説明する。この
タイプの高分子フィルムには、ポリカーボネートフィル
ムやポリエチレンフィルムが有る。これらの高分子は、
主鎖方向に分子が伸びており、ベンゼン環等の屈折率を
高める基も主鎖内に存在しているため、延伸することに
より主鎖を延伸方向に揃えると、主鎖方向の屈折率が、
その直角方向の屈折率よりも大きくなる。従ってこの場
合は正の複屈折性を示す光学異方体膜となる。
First, the case of a polymer film that forms a refractive index anisotropic body exhibiting positive birefringence through normal stretching will be described. This type of polymer film includes polycarbonate film and polyethylene film. These polymers are
The molecules extend in the direction of the main chain, and there are also groups in the main chain that increase the refractive index, such as benzene rings, so if the main chain is aligned in the stretching direction by stretching, the refractive index in the main chain direction will increase. ,
It becomes larger than the refractive index in the perpendicular direction. Therefore, in this case, the optically anisotropic film exhibits positive birefringence.

これに対して、本発明の高分子フィルムは、ポリスチレ
ンフィルムであるので1分子構造は主鎖がビニル基の重
合物であり側鎖がフェニル基である。従ってポリスチレ
ンフィルムを延伸した場合には、主鎖は延伸方向に揃っ
て伸び、側鎖のフェニル基は延伸方向と垂直方向に揃う
ことになる。
On the other hand, since the polymer film of the present invention is a polystyrene film, its monomolecular structure is a polymer in which the main chain is a vinyl group and the side chain is a phenyl group. Therefore, when a polystyrene film is stretched, the main chain extends in the direction of stretching, and the phenyl groups in the side chains extend in a direction perpendicular to the direction of stretching.

一般にフェニル基の向いている方向の屈折率は、アルキ
ル基の屈折率よりも大きい為、延伸方向と垂直方向の屈
折率が延伸方向より大きくなることになる。そのため、
ポリスチレンフィルムの延伸膜は延伸方向を光軸とする
負の複屈折性を示す光学異方体膜となる。
Generally, the refractive index in the direction in which the phenyl group faces is greater than the refractive index of the alkyl group, so the refractive index in the direction perpendicular to the stretching direction is greater than that in the stretching direction. Therefore,
The stretched polystyrene film becomes an optically anisotropic film exhibiting negative birefringence with the stretching direction as the optical axis.

またポリスチレンフィルムは側鎖にフェニル基を有して
いるため従来に使用されていたPMMAと比べるとΔn
を2桁程度大きくする事ができる。そのため必要な膜の
厚みを2桁薄くできる事になる。従って安価で均質性の
高い膜にすることができる。
In addition, since polystyrene film has phenyl groups in its side chains, it has a Δn
can be increased by about two orders of magnitude. Therefore, the required film thickness can be reduced by two orders of magnitude. Therefore, a film with high homogeneity can be obtained at low cost.

〔実 施 例1 以下に実施例で更に詳しく説明する。[Implementation example 1] This will be explained in more detail in Examples below.

実施例1゜ 透明電極基板間に液晶(△n=0.15)を入れホモジ
ニアス配向させた。このセル厚を6.0μmにし、レタ
ーデーションΔnXdを0.90μmとなるように設定
した。
Example 1 A liquid crystal (Δn=0.15) was placed between transparent electrode substrates and homogeneously aligned. The cell thickness was set to 6.0 μm, and the retardation ΔnXd was set to 0.90 μm.

一方、光学異方体膜を以下のようにして作成した。市販
のポリスチレンフィルム(厚み50μm)を120℃で
0.5mm/seeのスピードで延伸し、膜厚40um
で延伸率1.4のフィルムが得られた。このフィルムの
ΔnXdは0.9μmであり液晶セルと丁度マツチング
したフィルムが得られた。フィルムと液晶セルを重ね、
その両側に偏光板を設けてクロスニコルにすると、明ら
かに視角が広がっていることが分かった。
On the other hand, an optically anisotropic film was created as follows. A commercially available polystyrene film (thickness: 50 μm) was stretched at 120°C at a speed of 0.5 mm/see to a film thickness of 40 μm.
A film with a stretching ratio of 1.4 was obtained. The ΔnXd of this film was 0.9 μm, and a film that perfectly matched with the liquid crystal cell was obtained. Layering film and liquid crystal cells,
It was found that when polarizing plates were placed on both sides to form a crossed nicol, the viewing angle was clearly widened.

ところで、比較のためPMMAフィルムを延伸した0条
件は、膜厚2mmのシートを、150℃で015mm/
secのスピードで延伸した。これで膜厚1.2mmの
シートが得られ、△nXdがやはり0.9μmであった
。このように同じ△nXdの膜にしようとするとPMM
Aではポリスチレンフィルムより厚みを40倍厚くしな
ければならない。
By the way, for comparison, the PMMA film was stretched under the 0 condition, in which a sheet with a film thickness of 2 mm was stretched at 150°C and stretched at 015 mm/
It was stretched at a speed of sec. A sheet with a film thickness of 1.2 mm was thus obtained, and ΔnXd was also 0.9 μm. If you try to make a film of the same △nXd like this, PMM
In A, the thickness must be made 40 times thicker than the polystyrene film.

このようにポリスチレンフィルムを使用すると、従来の
高分子フィルムより延伸によって発生する屈折率差が大
きくなり膜厚を薄くすることができる。そのため、コス
ト、製造の容易さを考えると、本実施例の方法はたいへ
ん優れていることが分かる。
When a polystyrene film is used in this way, the difference in refractive index caused by stretching is larger than that of conventional polymer films, and the film thickness can be made thinner. Therefore, it can be seen that the method of this example is very superior in terms of cost and ease of manufacture.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明によれば、ポリスチレンフィ
ルムは延伸方向よりその垂直方向の屈折率が大きくなり
、負の複屈折性を示す光学的異方体膜とすることができ
る。このようにして得られる異方体膜は、液晶光学素子
の視角を広げる効果を有する。
As described above, according to the present invention, the polystyrene film has a higher refractive index in the direction perpendicular to the stretching direction than in the stretching direction, and can be made into an optically anisotropic film exhibiting negative birefringence. The anisotropic film obtained in this manner has the effect of widening the viewing angle of the liquid crystal optical element.

Claims (1)

【特許請求の範囲】[Claims] 対向する2枚の電極基板間にホモジニアス配向した液晶
を挟持してなる液晶セルと、該素子の視角特性を広くす
る光学異方体膜と、それらを挟んで両側に配置された一
対の偏光板とを具備した液晶電気光学素子に於て、光軸
が光学異方体膜の面内の一方向にあり、光学的に負の一
軸性を有する光学異方体膜が、ポリスチレンフィルムの
一軸延伸体であることを特徴とする液晶電気光学素子。
A liquid crystal cell consisting of a homogeneously aligned liquid crystal sandwiched between two opposing electrode substrates, an optically anisotropic film that widens the viewing angle characteristics of the element, and a pair of polarizing plates placed on both sides of the cell. In a liquid crystal electro-optical element comprising: an optically anisotropic film having an optical axis in one direction within the plane of the optically anisotropic film and having negative optical uniaxiality, the optically anisotropic film has a uniaxially stretched polystyrene film A liquid crystal electro-optical element characterized by a body.
JP1076114A 1989-01-19 1989-03-28 Electro-optical liquid crystal device Pending JPH02253233A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1076114A JPH02253233A (en) 1989-03-28 1989-03-28 Electro-optical liquid crystal device
DE69008875T DE69008875T2 (en) 1989-01-19 1990-01-12 Electro-optical liquid crystal display device.
EP90300373A EP0379315B1 (en) 1989-01-19 1990-01-12 Electro-optical liquid crystal device
US07/466,232 US5142393A (en) 1989-01-19 1990-01-19 Electro-optical liquid crystal device with compensator having negative optical anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076114A JPH02253233A (en) 1989-03-28 1989-03-28 Electro-optical liquid crystal device

Publications (1)

Publication Number Publication Date
JPH02253233A true JPH02253233A (en) 1990-10-12

Family

ID=13595874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076114A Pending JPH02253233A (en) 1989-01-19 1989-03-28 Electro-optical liquid crystal device

Country Status (1)

Country Link
JP (1) JPH02253233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115224A (en) * 1990-09-05 1992-04-16 Nec Corp Liquid crystal display device
EP0482620A2 (en) * 1990-10-24 1992-04-29 Nitto Denko Corporation Birefringent film, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115224A (en) * 1990-09-05 1992-04-16 Nec Corp Liquid crystal display device
EP0482620A2 (en) * 1990-10-24 1992-04-29 Nitto Denko Corporation Birefringent film, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
EP0482620B1 (en) * 1990-10-24 1997-03-05 Nitto Denko Corporation Birefringent film, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display

Similar Documents

Publication Publication Date Title
JP2640083B2 (en) Optical compensation sheet and liquid crystal display device using the same
KR910012768A (en) LCD with improved visual characteristics
JP3165168B2 (en) Polarizing plate and liquid crystal display
JP2004157523A5 (en)
JPH04371903A (en) Polarization plate and liquid crystal display device
TW200615624A (en) Liquid crystal display device
JPH0313916A (en) Phase difference plate and liquid crystal electro-optical device using this plate
JP2003015134A (en) Liquid crystal display device
JPH0545520A (en) Polarizing plate and liquid crystal display device
JPH0247629A (en) Liquid crystal electrooptic element
KR20020073418A (en) Optical film, polarizer and liquid-crystal display device
JP2880614B2 (en) Optical compensation sheet and liquid crystal display device using the same
JPH04343303A (en) Polarizing plate and liquid crystal display device
JPH02253233A (en) Electro-optical liquid crystal device
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JP2780188B2 (en) Phase difference plate and liquid crystal electro-optical element using the same
JP2004026925A5 (en)
JPH0688909A (en) Production of double refraction film and liquid crystal display device using the double refraction film
JP2779822B2 (en) Liquid crystal electro-optical element
JP2811396B2 (en) Liquid crystal display device using optical compensation sheet
JPH02306217A (en) Liquid crystal electrooptical element
JPH0329921A (en) Phase difference plate and liquid crystal electrooptical element using this plate
JPH07128659A (en) Liquid crystal display element formed by using optical anisotropic element
JPH02287316A (en) Liquid crystal elecetrooptical element
JP2975518B2 (en) Liquid crystal display and phase difference plate