JPH02251904A - Diffraction grating and production thereof - Google Patents

Diffraction grating and production thereof

Info

Publication number
JPH02251904A
JPH02251904A JP7568589A JP7568589A JPH02251904A JP H02251904 A JPH02251904 A JP H02251904A JP 7568589 A JP7568589 A JP 7568589A JP 7568589 A JP7568589 A JP 7568589A JP H02251904 A JPH02251904 A JP H02251904A
Authority
JP
Japan
Prior art keywords
grating
diffraction
substrate
ion beam
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7568589A
Other languages
Japanese (ja)
Other versions
JP2841441B2 (en
Inventor
Kazuo Sano
佐野 一雄
Tetsuya Nagano
哲也 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1075685A priority Critical patent/JP2841441B2/en
Publication of JPH02251904A publication Critical patent/JPH02251904A/en
Application granted granted Critical
Publication of JP2841441B2 publication Critical patent/JP2841441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high diffraction efficiency in a wide wavelength range by continuously changing the inclination angle (Blaze angle) of the side faces of the grating grooves having a sawtooth-shaped section in the direction intersecting with the grating grooves. CONSTITUTION:The diffraction grating patterns of a photoresist is formed on a substrate surface and are irradiated with an ion beam from a diagonal direction. Etching is thereby progressed as shown by (a) to (c) and the grating grooves having the sawtooth-shaped section are formed. The point or the line irradiated with the ion beam on the substrate moves and the incident angle of the ion beam on the substrate changes when the grating substrate is rotated. The diffraction grating with which the inclination angle of the groove side faces changes continuously is then obtd. The conditions of a Blaze diffraction is generated at any point of the grating surface at an arbitrary wavelength when such diffraction grating is used. The high diffraction efficiency in the range before and after this point is thus obtd. and the area part of the high diffraction efficiency moves on the grating surface in synchronization with the wavelength scanning of a spectroscope. The diffraction efficiency high in average over the wide wavelength range is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はブレーズ波長が場所により異なる回折格子とか
フレネルゾーンプレートのような回折素子およびその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a diffraction element such as a diffraction grating or Fresnel zone plate in which the blaze wavelength varies depending on the location, and a method for manufacturing the same.

(従来の技術) エシェレット型の反射回折格子やは入射光の入射方向と
回折光検出方向を決めると、一つの特定波長でブレーズ
回折が行われ、通常このブレーズ波長を基準に成る波長
範囲を分光器の測定範囲としている。しかしこの範囲に
おける回折効率の平均は第6図に点線1で示すように低
い。また一つの回折格子でカバーできる波長範囲は限定
され、より広い波長範囲をカバーできる分光器を得るた
めには、ブレーズ波長の異る複数の回折格子を用意して
切換えるようにする必要があり、回折格子の切換え機構
は複雑で高精度が要求されるため、分光器の価格が高く
なると云う問題があり、回折格子切換波長の前後で測定
結果を整合させるため面倒なデータ処理を必要とする。
(Prior art) With an echelette-type reflection diffraction grating, when the direction of incidence of incident light and the direction of detection of diffracted light are determined, blazed diffraction is performed at one specific wavelength, and normally the wavelength range that is based on this blazed wavelength is spectrally analyzed. This is the measurement range of the instrument. However, the average diffraction efficiency in this range is low as indicated by the dotted line 1 in FIG. Furthermore, the wavelength range that can be covered by one diffraction grating is limited, and in order to obtain a spectrometer that can cover a wider wavelength range, it is necessary to prepare and switch between multiple diffraction gratings with different blaze wavelengths. The diffraction grating switching mechanism is complex and requires high precision, which increases the price of the spectrometer, and requires troublesome data processing to match measurement results before and after the diffraction grating switching wavelength.

このため回折格子の格子面の場所によりブレーズ波長が
異るような回折格子により、一つの回折格子でカバーで
きる波長範囲を拡大する試みがなされている。
For this reason, attempts have been made to expand the wavelength range that can be covered by one diffraction grating by using a diffraction grating in which the blaze wavelength differs depending on the location of the grating surface of the diffraction grating.

従来の上述した試みは格子面を幾つかのゾーンに分け、
各ゾーンは夫々一定のブレーズ波長を持っているような
回折格子を用いるもので、成る波長範囲での平均の回折
効率を高め、回折格子の切換えも必要でなくなったが、
相隣るブレーズ波長の中間部分の波長では両側のブレー
ズ波長の光に比し回折効率が低(、目標としている波長
範囲全体にわたって平均した回折効率を引下げている。
The conventional attempts mentioned above divide the lattice plane into several zones,
Each zone uses a diffraction grating that has a fixed blaze wavelength, which increases the average diffraction efficiency in the wavelength range and eliminates the need to switch diffraction gratings.
Wavelengths in the middle of adjacent blaze wavelengths have lower diffraction efficiency than light at the blaze wavelengths on both sides (this lowers the average diffraction efficiency over the entire target wavelength range).

またこのように部分的に段階的にブレーズ角の異る格子
は作るのが甚だ面倒である。
Furthermore, it is extremely troublesome to create such a grid in which the blaze angles differ in stages.

(発明が解決しようとする課題) 波長による回折効率の変化をなくシ、広い波長範囲にわ
たって平均して高い回折効率が得られる回折格子を提供
しようとするものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a diffraction grating that eliminates changes in diffraction efficiency due to wavelength and provides high diffraction efficiency on average over a wide wavelength range.

(課題を解決するための手段) 断面鋸歯状の格子溝を有する回折格子において、上記格
子溝側面の傾斜角(ブレーズ角)を、第1図に示すよう
に格子溝と交わる方向に連続的に変化させた。またその
ような傾斜角が変化する格子溝を形成するためイオンエ
ツチング法を用い、格子基板面にレジスト膜によって格
子パターンを形成し、イオンビームを格子溝を形成すべ
き上記格子基板に斜め方向から基板面の一点或は−線に
照射し、上記基板を基板面から離れた軸を中心に揺動さ
せるようにした。
(Means for Solving the Problem) In a diffraction grating having grating grooves with a sawtooth cross section, the inclination angle (blaze angle) of the side surface of the grating grooves is continuously adjusted in the direction intersecting the grating grooves as shown in FIG. Changed. In addition, in order to form such grating grooves with varying inclination angles, an ion etching method is used to form a grating pattern with a resist film on the grating substrate surface, and an ion beam is applied from an oblique direction to the grating substrate where the grating grooves are to be formed. The light was irradiated to one point or a negative line on the substrate surface, and the substrate was swung around an axis distant from the substrate surface.

(作用) 第5図に示す格子溝において、θは溝側面の傾斜角(ブ
レーズ角)でnはこの溝側面に立てた法線、Nは格子面
の法線である。Liは入射光、Ldは回折光で、角度φ
は分光器の入射スリットと出射スリットの配置によって
決まる。ブレーズ回折は入射光Liと回折光Ldが格子
溝面において鏡面反射の関係になる回折であるから、ブ
レーズ波長λ゛は λ = 2 dc、、φsinθ・(1)である。他方
波長走査は格子面法線Nの方向を入射光Li、出射光L
dのなす角を2等分する方向を基準にして右或は左へ回
転させることによって行われる。今この基準方向からの
回転角をθ′とするとき、Ld方向の回折光波長λは λ= 2 dstnφsinθ8 で表わされる。従って格子の回転角θ゛と格子溝側面の
傾斜角θとを等しくなるとき、格子面のその部分ではブ
レーズ回折が起ることになる。格子溝側面の傾斜角を可
変にすることはできないが、例えば格子面の一端から他
端にかけて漸時傾斜角θが変っていると、任意の波長に
おいて格子面のどこかでブレーズ回折の条件が成立し、
格子面のその前後成る範囲の面積では高い回折効率が得
られ、分光器の波長走査に伴ってこの回折効率の高い面
積部分が格子面上を移動して行くことになり、広い波長
範囲にわたって平均して高い回折効率が得られることに
なる。
(Function) In the lattice groove shown in FIG. 5, θ is the inclination angle (blaze angle) of the groove side surface, n is the normal line to the groove side surface, and N is the normal line to the lattice surface. Li is the incident light, Ld is the diffracted light, and the angle φ
is determined by the arrangement of the entrance slit and exit slit of the spectrometer. Since blazed diffraction is diffraction in which the incident light Li and the diffracted light Ld are in a specular reflection relationship on the grating groove surface, the blaze wavelength λ′ is λ = 2 dc, φsinθ·(1). On the other hand, wavelength scanning uses the direction of the lattice surface normal N as the incident light Li and the output light L.
This is done by rotating the angle to the right or left based on the direction that bisects the angle formed by d. Now, when the rotation angle from this reference direction is θ', the wavelength λ of the diffracted light in the Ld direction is expressed as λ=2 dstnφsin θ8. Therefore, when the rotation angle θ of the grating and the inclination angle θ of the side surface of the grating groove are made equal, blazed diffraction will occur in that part of the grating surface. Although it is not possible to make the inclination angle of the side surface of the grating groove variable, for example, if the inclination angle θ gradually changes from one end of the grating surface to the other, the conditions for blazed diffraction will be established somewhere on the grating surface at any wavelength. established,
High diffraction efficiency is obtained in the area in front and behind the lattice plane, and as the spectrometer scans the wavelength, this area with high diffraction efficiency moves on the lattice plane, and the average over a wide wavelength range is As a result, high diffraction efficiency can be obtained.

次に上述したような回折格子を製作するに当ってイオン
エツチング法を用い、試料面に斜めにイオンビームを照
射すると、格子パターンを形成しているレジストに従っ
て形成される溝は断面が左右非対称な形となり、鋸子状
断面の溝が形成されて、格子基板を格子基板から離れた
位置にある軸によって回転させると、基板上のイオンビ
ーム照射点或は線が基板面を移動し、かつイオンビーム
の基板への入射角が変化するから、溝側面の傾斜角が連
続的に変化した回折格子が得られる。
Next, when manufacturing the above-mentioned diffraction grating using the ion etching method and irradiating the sample surface with an ion beam obliquely, the grooves formed according to the resist forming the grating pattern will have an asymmetrical cross section. When the grating substrate is rotated by an axis located away from the grating substrate, the ion beam irradiation point or line on the substrate moves on the substrate surface, and the ion beam Since the angle of incidence on the substrate changes, a diffraction grating in which the inclination angle of the groove side surface changes continuously can be obtained.

(実施例) 回折格子を製作する基板面にフォトレジスト層を形成し
、レーザー光の二光束干渉パターンを露光して現像し、
基板面に7オトレジストの回折格子パターンを形成する
。フォトレジストの回折格子パターンを形成した基板面
の拡大図は第2図のようになっており、これに斜め方向
からイオンビームを照射してイオンエツチングを行うと
同図にイ22ロ、ハ示すようにエツチングが進行して鋸
歯状断面の格子溝が出来る。こ\でイオンビームと形成
される溝側面とのなす角εは予め実験によって求めてお
く。
(Example) A photoresist layer is formed on the surface of the substrate on which the diffraction grating is to be manufactured, and a two-beam interference pattern of laser light is exposed and developed.
A diffraction grating pattern of 7 photoresists is formed on the substrate surface. An enlarged view of the substrate surface on which the photoresist diffraction grating pattern has been formed is shown in Figure 2, and when ion etching is performed by irradiating it with an ion beam from an oblique direction, the results shown in A22B and C are shown in the same figure. As the etching progresses, a lattice groove with a serrated cross section is created. Here, the angle ε between the ion beam and the side surface of the groove to be formed is determined in advance by experiment.

第3図は本発明の一実施例のイオンエツチング装置の概
要を示す。Pが回折格子基板であり、0点を中心に回転
可能な腕Aの端に腕Aに直角に固定される。Iはイオン
源で、Sはスリットであり、イオン束を制限して薄い板
状のイオンビームを形成する。このイオンビームBは腕
Aの先端つまり格子基板中央の0点を軸とする回転軌跡
円CとQ点(実際にはQ点を通る図の紙面に垂直な直線
)で交わる。合格子基板Pの右端が上記イオンビームB
に照射される位置にあるとする。このときの基板面とイ
オンビームとのなす角(入射角)をiとする。この位置
から腕Aを時計方向に回転させて格子基板Pの左端がイ
オンビームBに照射されるようになったときのイオンビ
ーム入射角をi゛とすると、(i’−t)は腕Aの回転
角である。腕Aの微小回転角へiに対するイオンビーム
入射角の変化は△iであって、腕Aを図のa、bの範囲
で揺動させながらイオンエツチングを行うと、格子溝は
側面傾斜角が左端から右端へかけて(i゛−ε)から(
i−ε)へとは直線的に小さくなって行く。腕Aの長さ
および回転角は次のようにして決められる。測定波長の
短調波長をλ1長側波長をλ2とすると前記(1)式か
ら格子溝側面傾斜角θはλ1に対して 腕Aの回転角は(θ2−θ1)である。腕Aの長さAは
格子の幅(溝に直角方向の長さ)をXとすると で与えられる。また格子のブレーズ角が小さい方の端が
イオンビームの照射を受ける位置(第1図で基板Pが実
線位置にあるとき)イオンビームと基板面とが01+ε
の角をなすようにイオンビームBに対して腕Aの回転中
心Oを位置させる。
FIG. 3 shows an outline of an ion etching apparatus according to an embodiment of the present invention. P is a diffraction grating substrate, which is fixed at right angles to the end of arm A, which is rotatable around the zero point. I is an ion source, and S is a slit, which limits the ion flux to form a thin plate-shaped ion beam. This ion beam B intersects a rotation locus circle C centered on the tip of the arm A, that is, the zero point at the center of the grating substrate, at a point Q (actually, a straight line passing through point Q and perpendicular to the plane of the drawing). The right end of the successful substrate P is the ion beam B.
Suppose that it is located at a position where it will be irradiated. The angle (incident angle) between the substrate surface and the ion beam at this time is defined as i. If arm A is rotated clockwise from this position and the ion beam incident angle is i゛ when the left end of grating substrate P is irradiated with ion beam B, (i'-t) is arm A. is the rotation angle of The change in the ion beam incident angle with respect to the minute rotation angle i of arm A is △i, and when ion etching is performed while arm A is oscillated within the ranges a and b in the figure, the side inclination angle of the grating groove is From the left end to the right end (i゛-ε) to (
i−ε), it decreases linearly. The length and rotation angle of arm A are determined as follows. Assuming that the minor wavelength of the measurement wavelength is λ1 and the longer wavelength is λ2, from the above equation (1), the grating groove side surface inclination angle θ is λ1, and the rotation angle of arm A is (θ2−θ1). The length A of the arm A is given by where X is the width of the grating (the length in the direction perpendicular to the groove). Also, at the position where the end of the grating with the smaller blaze angle is irradiated with the ion beam (when the substrate P is at the solid line position in Figure 1), the distance between the ion beam and the substrate surface is 01+ε
The center of rotation O of the arm A is positioned with respect to the ion beam B so as to form an angle of .

ホログラフィによって記録した同心円状の格子パターン
の場合は第3図でイオンビームBを平板状でなく、細い
ビーム状として基板上の一点を中心に微小領域を照射す
るようにし、第4図に示すように腕への端から直角に第
2腕A゛を出し、格子基板Pを第2腕A′上の一点Wを
中心に回転できるようにし、同心円状回折格子パターン
の中心点をこのWに合わせて、腕への揺動と共に基板P
をWを中心に回転させるようにして、曲がった溝に対し
、一定の溝側面傾斜角を与えるようにする。
In the case of a concentric lattice pattern recorded by holography, the ion beam B is not shaped like a flat plate as shown in Figure 3, but is shaped like a thin beam to irradiate a minute area centered on one point on the substrate, as shown in Figure 4. A second arm A' is extended at right angles from the end to the arm, and the grating substrate P is rotated around a point W on the second arm A', and the center point of the concentric diffraction grating pattern is aligned with this W. The board P moves as the arm swings.
is rotated around W to give a constant groove side inclination angle to the curved groove.

上述説明では回折格子は平面型であるが格子溝の側面傾
斜角の変化は格子の幅方向に厳密な関数関係で変化させ
る必要はな(、要はθ1からθ2に連続にかつ平均角即
ち −fθdx が(θ2−θ1)/Xと余り違わないようになっておれ
ばよいので、第3図或は第4図の装置をそのま\用いる
ことができる。
In the above explanation, the diffraction grating is a planar type, but it is not necessary to change the side inclination angle of the grating groove in a strict functional relationship in the width direction of the grating (in short, it is necessary to change it continuously from θ1 to θ2 and at an average angle of - Since it is sufficient that fθdx is not much different from (θ2-θ1)/X, the apparatus shown in FIG. 3 or 4 can be used as is.

また第4図の装置を用いると、フレネルゾーンプレート
のようなものでも、中心から外周に向ってブレーズ角が
連続的に異なるものを作ることができる。
Furthermore, by using the apparatus shown in FIG. 4, even something like a Fresnel zone plate can be made with a blaze angle that varies continuously from the center toward the outer periphery.

(発明の効果) ブレーズ角一定の回折格子の回折効率の波長特性は第6
図1のようになっており、波長範囲λ1、λ2間の平均
効率は点線1で示すようになっている。本発明による回
折格子は全面が一波長に対してブレーズ回折を起させる
ものではないから最大効率はブレーズ角一定のものより
低(なるが、波長による回折効率の変化がなくなって第
6図すに示すようになり、全体として広い波長範囲で高
い回折効率を得ることができる。また部分毎に段階的に
ブレーズ角を換えた回折格子よりも製作も容易となる。
(Effect of the invention) The wavelength characteristic of the diffraction efficiency of a diffraction grating with a constant blaze angle is
As shown in FIG. 1, the average efficiency between wavelength ranges λ1 and λ2 is shown by dotted line 1. Since the diffraction grating according to the present invention does not cause blazed diffraction on the entire surface for a single wavelength, the maximum efficiency is lower than that of a grating with a constant blaze angle (although the diffraction efficiency does not change depending on the wavelength, and as shown in Figure 6). As shown, it is possible to obtain high diffraction efficiency over a wide wavelength range as a whole.It is also easier to manufacture than a diffraction grating in which the blaze angle is changed stepwise for each part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明回折格子の断面概念図、第2図はイオン
エツチングの進行説明図、第3図は本発明の一実施例の
装置構成図、第4図は他の実施例の装置構成図、第5図
はブレーズ回折の説明図、第6図は回折格子の回折効率
の波長による変化のグラフである。 P・・・回折格子基板、A・・・回転腕、■・・・イオ
ン源、S・・・スリット。 代理人  弁理士 縣  浩 介
Fig. 1 is a cross-sectional conceptual diagram of the diffraction grating of the present invention, Fig. 2 is an explanatory diagram of the progress of ion etching, Fig. 3 is an apparatus configuration diagram of one embodiment of the invention, and Fig. 4 is an apparatus configuration of another embodiment. 5 is an explanatory diagram of blaze diffraction, and FIG. 6 is a graph of changes in diffraction efficiency of a diffraction grating depending on wavelength. P... Diffraction grating substrate, A... Rotating arm, ■... Ion source, S... Slit. Agent Patent Attorney Kosuke Agata

Claims (2)

【特許請求の範囲】[Claims] (1)断面鋸歯状の格子溝を有する回折素子において、
格子溝の側面傾斜角を格子溝と交わる方向に連続的に変
化させたことを特徴とする回折格子。
(1) In a diffraction element having grating grooves with a sawtooth cross section,
A diffraction grating characterized in that the side inclination angle of the grating grooves is continuously changed in the direction intersecting the grating grooves.
(2)格子溝を形成するためにイオンエッチング法を用
い、イオンビームを格子基板に対し斜め方向から上記基
板面上の一点或は一線に照射せしめ、上記基板を基板面
から離れた軸を中心に揺動させることを特徴とする回折
格子の製作方法。
(2) In order to form the grating grooves, an ion etching method is used to irradiate the grating substrate with an ion beam from an oblique direction to a point or line on the substrate surface, and the substrate is centered on an axis away from the substrate surface. A method for producing a diffraction grating characterized by making it oscillate.
JP1075685A 1989-03-27 1989-03-27 Diffraction grating and manufacturing method thereof Expired - Lifetime JP2841441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075685A JP2841441B2 (en) 1989-03-27 1989-03-27 Diffraction grating and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075685A JP2841441B2 (en) 1989-03-27 1989-03-27 Diffraction grating and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02251904A true JPH02251904A (en) 1990-10-09
JP2841441B2 JP2841441B2 (en) 1998-12-24

Family

ID=13583295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075685A Expired - Lifetime JP2841441B2 (en) 1989-03-27 1989-03-27 Diffraction grating and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2841441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737125A (en) * 1992-10-27 1998-04-07 Olympus Optical Co., Ltd. Diffractive optical element and optical system including the same
US7175773B1 (en) 2004-06-14 2007-02-13 Carl Zeiss Laser Optics Gmbh Method for manufacturing a blazed grating, such a blazed grating and a spectrometer having such a blazed grating
CN105334560A (en) * 2015-11-06 2016-02-17 中国科学技术大学 Method of etching grating groove by rotating etching angle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116602A (en) * 1982-12-23 1984-07-05 Agency Of Ind Science & Technol Production of chirped-grating
JPS60153126A (en) * 1984-01-20 1985-08-12 Nec Corp Formation of adjacent extra minute wires
JPS6127505A (en) * 1984-07-18 1986-02-07 Nippon Sheet Glass Co Ltd Manufacture of blaze optical element
JPS6321128A (en) * 1986-07-15 1988-01-28 Fujikura Ltd Continuous manufacture of crosslinked heat-shrinkable tube
JPH02199401A (en) * 1989-01-30 1990-08-07 Matsushita Electric Ind Co Ltd Production of diffraction grating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116602A (en) * 1982-12-23 1984-07-05 Agency Of Ind Science & Technol Production of chirped-grating
JPS60153126A (en) * 1984-01-20 1985-08-12 Nec Corp Formation of adjacent extra minute wires
JPS6127505A (en) * 1984-07-18 1986-02-07 Nippon Sheet Glass Co Ltd Manufacture of blaze optical element
JPS6321128A (en) * 1986-07-15 1988-01-28 Fujikura Ltd Continuous manufacture of crosslinked heat-shrinkable tube
JPH02199401A (en) * 1989-01-30 1990-08-07 Matsushita Electric Ind Co Ltd Production of diffraction grating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737125A (en) * 1992-10-27 1998-04-07 Olympus Optical Co., Ltd. Diffractive optical element and optical system including the same
US7175773B1 (en) 2004-06-14 2007-02-13 Carl Zeiss Laser Optics Gmbh Method for manufacturing a blazed grating, such a blazed grating and a spectrometer having such a blazed grating
CN105334560A (en) * 2015-11-06 2016-02-17 中国科学技术大学 Method of etching grating groove by rotating etching angle

Also Published As

Publication number Publication date
JP2841441B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
JP2003194744A (en) X-ray diffractometer
JPH02262107A (en) Diffraction grating for optical scanning
US4148549A (en) Diffraction gratings
CN115113313A (en) Method for modifying groove shape of blazed grating by ion beam etching
JPH02251904A (en) Diffraction grating and production thereof
US3600093A (en) Continuously blazed optical monochromator
EP0309990B1 (en) Hologon and method of manufacturing a hologon
US10393584B2 (en) Spectrometer, monochromator, diffraction grating and methods of manufacturing grating and mold
JPH0882551A (en) Manufacture of recessed faced echellette grating
JP3308326B2 (en) Spectroscope
US20220074038A1 (en) Method of manufacturing a linearly variable optical filter
JPS59116602A (en) Production of chirped-grating
JP2001059773A (en) Conical diffraction oblique-incidence spectroscope and diffraction grating therefor
CN106482832A (en) Spectrogrph, single light apparatus, diffraction grating and its manufacture method and master mold fabrication method
JP6954613B2 (en) Manufacturing method of blazed diffraction grating
JP2982832B2 (en) Blaze reflection diffraction grating fabrication method
JPS63187202A (en) Blazed holographic diffraction grating
JPS60229001A (en) Manufacture of integrated diffraction grating
JPH0456284B2 (en)
JPS5952537B2 (en) Automatic mask matching method
JPS6321128B2 (en)
JPS60186806A (en) Manufacture of blazed grating
JP2000146692A (en) Spectroscope
JPH0545508A (en) Patterning method for diffraction grating
JPH0812287B2 (en) How to make a grating