JPH02251545A - Porous film of ultra-high-molecular weight polyethylene and production thereof - Google Patents

Porous film of ultra-high-molecular weight polyethylene and production thereof

Info

Publication number
JPH02251545A
JPH02251545A JP1193167A JP19316789A JPH02251545A JP H02251545 A JPH02251545 A JP H02251545A JP 1193167 A JP1193167 A JP 1193167A JP 19316789 A JP19316789 A JP 19316789A JP H02251545 A JPH02251545 A JP H02251545A
Authority
JP
Japan
Prior art keywords
film
porous
molecular weight
pores
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193167A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
一夫 山本
Akio Yamaguchi
山口 章夫
Yozo Nagai
陽三 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JPH02251545A publication Critical patent/JPH02251545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To provide the subject film having a specific porous structure, exhibiting high elongation to prevent unexpected failure under practical stress, having excellent handleability and producible without difficulty. CONSTITUTION:An ultra-high-molecular weight polyethylene having a viscosity- average molecular weight of >=500,000 is dissolved in a good solvent to obtain a dope. A film produced by using the dope is immersed into a poor solvent to remove the good solvent from the film and the obtained porous film is drawn to obtain the objective film having a porous layer with a number of pores and two dense layers with a number of fine pores of a smaller pore diameter than the pore of the porous layer, wherein said dense layers are formed continuous to both faces of the porous layer. The film is used in the form of a laminated film produced by laminating two or more films.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超高分子量ポリエチレン(以下、UHPgと称
−1)多孔質フィルム〇その製〕箆法および該多孔質フ
ィルム2枚以上を重ね合わせて収る積層多孔質フィルム
IC関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to ultra-high molecular weight polyethylene (hereinafter referred to as UHPg-1) porous film, its production by a method and the superimposition of two or more sheets of the porous film. The present invention relates to a laminated porous film IC that can fit into a cell.

(従来の技術) 電池用七パレータ、コンデンサー用隔膜、各種分離膜等
に多孔質フィルムを用いろことがあり9、この多孔質フ
ィルムの1つとしてuHpa製のものが知られている。
(Prior Art) Porous films are sometimes used for battery diaphragms, capacitor diaphragms, various separation membranes, etc.9, and one made of uHpa is known as one of these porous films.

このU HP E多孔質フィルムは。UIII’E扮末
を金型に充填し。これを加圧条件’FにおいてU HP
 gの融点以上vr:、加熱1°ることにより焼結して
ブロック状体とし1次いて冷却して金型から取り出し6
−t′の後ブロック状体を周方向IC沿って所定厚さに
切削する方法に、J:りで得て(八る。
This U HP E porous film. Fill the mold with UIII'E powder. Under pressurizing condition 'F, U HP
vr: above the melting point of g, sintered by heating 1° to form a block-like body, first cooled, and taken out from the mold 6
After -t', the block-shaped body is cut to a predetermined thickness along the circumferential direction IC.

上記方法によって得られるフィルムの多孔質構造は6咳
フイルムを所定位置で切断1−2その断面1&:電子顧
徽鏡(倍率は200倍程度)により観察することi< 
、!: D確gできZ)。
The porous structure of the film obtained by the above method can be determined by cutting the film at a predetermined position 1-2 and observing its cross section with an electronic microscope (magnification is about 200x).
,! : D sureg able Z).

本発明者の観察に、J: m”1.ば。上記従来品は孔
径がほぼ等しい多数の微孔が断面全面に#11丁均−圧
分布しでいることが判った。
The present inventor observed that J: m"1.B. It was found that the above conventional product had a large number of fine pores having approximately the same diameter and uniform pressure distribution over the entire cross section.

(発明が解決し):うとする課紀) 従来の1JHPE多孔質フイバ・ムにおける均一孔径お
よび微孔の均一分布は好ましいものであるが、一方、該
フィルムは伸びが小さく切i1、易いという短所を有し
ており、工業的使用には懸念があつl二。
Although the uniform pore size and uniform distribution of micropores in the conventional 1JHPE porous fiber are favorable, the film has the disadvantage that it has low elongation and is easy to cut. There are concerns about industrial use.

例えば。UNiPE多孔質フィルムをリチウム電池の化
パレータに用いる場合。負極上ic多孔[フィルム全多
重巻きり、更l/i:該フィルムJ:に、正極を配置1
−/ H1仁f1. tクースtF:、1iI入するこ
とがあるが、負極上への巻き付は罠際し、あるいはケー
スに挿入する除に作用する応力MCJ:l多孔質フィル
ムが切断してし1うこともあった。
for example. When UNiPE porous film is used as a lithium battery pallet. IC porous on negative electrode [Film fully wound, additional l/i: Positive electrode is placed on the film J: 1
-/H1ren f1. tCoos tF:, 1iI may occur, but the stress MCJ:l that acts when wrapping it on the negative electrode or when inserting it into the case may cause the porous film to break. Ta.

また。上記方法VC,末って得らh、るU HP E多
孔質フイ4・ムの気、孔率の貫−@は約40%程度であ
りにハ、以上の電気1孔率(伐望み得′fx、かつ六・
2.かような低気孔本は。r、、 tl、を(℃パレー
タとして電池に組み込んだ際に内部抵抗の増大を引き起
すので。1唆しいものでしtない。
Also. The porosity of the above-mentioned method VC and the resulting porous film is about 40%, and the porosity of the porous film is about 40%. 'fx, katsuroku・
2. Such a low pore book. When r,, tl, (℃) is incorporated into a battery as a palletator, it causes an increase in internal resistance.

従って7本発明は伸びが大きく。しかも気孔率の高いU
HPff多孔貝フィルムおよびその製造法を提供]るこ
とを目的とする。
Therefore, the present invention has a large elongation. Moreover, U with high porosity
The purpose of the present invention is to provide a HPff porous shell film and a method for producing the same.

(S題fE解決・するための手段) 本発明VC,係るUPiPg多孔質フィルムは、多数の
気孔を有する多孔質層と。跋気孔、!:りも孔径の小さ
な多数の微孔を有し且つ前記多孔質層の両面1−(形嘆
され7を緻密層から成るもので心る。
(Means for solving the problem fE) The VC of the present invention and the UPiPg porous film have a porous layer having a large number of pores. Hollow hole! : The porous layer has a large number of micropores with small pore diameters, and both sides 1-(7) of the porous layer are composed of dense layers.

以下。図面を参照しながら本発明の詳細な説明する。図
面は本発明に係ろtJxipa多孔質フィルムを所定位
置で厚さ方向に切断し。千の断面の多孔ljs造1Z模
式的に示したものである。
below. The present invention will be described in detail with reference to the drawings. The drawings show a porous film according to the present invention cut in the thickness direction at predetermined positions. This is a schematic diagram of a multi-hole structure 1Z with a cross section of 1,000 mm.

この図面において61はフィルムの厚さ方向における略
中央部にダイ゛る多孔質層であり。核層lの両面上には
緻密層2カ・よび3が形収さiている。
In this drawing, reference numeral 61 denotes a porous layer that is dimpled approximately at the center in the thickness direction of the film. Compact layers 2 and 3 are formed on both sides of the nuclear layer 1.

多孔質層1.緻密層283は何れも多数の気孔を有する
多孔′R構造でおる点で共通ブるが。多孔質層lの気孔
4の孔径は両緻蜜NJ2,3の気孔5゜6の孔径よりも
大である。気孔4.5.60孔径は多孔質フィルムの用
途に応じて変わり得るが。
Porous layer 1. The dense layer 283 has a common feature in that it has a porous structure having a large number of pores. The pore size of the pores 4 in the porous layer 1 is larger than the pore size of the pores 5°6 in both dense NJs 2 and 3. Although the pore size may vary depending on the application of the porous film.

通常。気孔4の孔径は約2=50μ幌。気孔5.6の孔
径は約0.1〜10μ躯である。
usually. The pore diameter of pore 4 is approximately 2=50μ. The pore size of the pores 5.6 is about 0.1 to 10 μm.

この多孔質フィルム(厚さは通常5〜200p鶴)は上
記した如く。多孔質層lと緻密層2.3の気孔の孔径が
異なるものであるが6本発明icおいては多孔1!tI
Wjlに存1゛る気孔4の最大孔径(Da)と8両緻密
層に存する気孔5.6の最大孔径(市)の比(Da/D
a) t:1筐しくは3以上、より好゛ましくは4〜2
0と1゛る。
This porous film (usually having a thickness of 5 to 200 layers) is as described above. Although the pore diameters of the porous layer 1 and the dense layer 2.3 are different, in the IC of the present invention, the pore size is 1! tI
The ratio (Da/D
a) t: 1 case, preferably 3 or more, more preferably 4 to 2
There are 0 and 1.

また、この多孔質フィルムにおける緻!層2゜3の厚さ
1゜幻はフィルムの製造条件によって変わり得るが1通
常。凪1.i!は各々約1〜10μmである。
Also, the density of this porous film is high! The thickness of the layer 2.3 may vary depending on the manufacturing conditions of the film, but is usually 1. Nagi 1. i! are about 1-10 μm each.

なお 多孔質フィルムの構成素材であるUI玉PEは粘
度平均分子量(以下8分子)、1と称す)が50万以上
でめp。一般のポリエチレンのそれが約30万以下であ
るのに比べ大きなものである。jかようなIJHPEと
しては。例えば三片石油化学工業社製。
In addition, the UI ball PE, which is the constituent material of the porous film, has a viscosity average molecular weight (hereinafter referred to as 8 molecules, referred to as 1) of 500,000 or more. This is larger than that of general polyethylene, which is about 300,000 or less. As such IJHPE. For example, manufactured by Mikata Petrochemical Industry Co., Ltd.

商品名ハイゼツクスミリオン。へ中スト社製。商品名ホ
スタレンGUR等の市販品を用い得る。
Product name: Hi-Zex Million. Manufactured by Hechust. Commercially available products such as the trade name Hostalen GUR can be used.

仁の多孔質フィルムはその+なくとも2枚を重ね合わ?
7を積層多孔質フィルムとして用いることもできる。こ
の積層フィルムは取り扱い易さの点で多孔質フィルムの
2枚以上を密着一体化させることが好筐Lh、多孔質フ
ィルム相互の密着一体化Fi、例えば。少な(とも1対
の圧着ロール間に多孔質フィルム(2枚以上)1:′通
ブ方法にノ、:っで達成できる。仁の圧着を加熱条件下
(ただし。多孔質フィルムの融点よりも低−@度)で行
なう仁とは。密着強度向上の点で好ま1−い。
Is Jin's porous film superimposed on at least two layers?
7 can also be used as a laminated porous film. For ease of handling, it is preferable for this laminated film to integrate two or more porous films in close contact with each other, e.g. This can be achieved by passing the porous film (2 or more sheets) between a pair of pressure rolls under heating conditions (but above the melting point of the porous film). It is preferable to improve adhesion strength.

なお。IE池川用パレータとして積層多孔質フィルム金
円いる場合(は。強度および電気抵抗を考慮し、積層後
の厚さを約15−= 4 Oμ躯とするのが好適である
In addition. When a laminated porous film is used as a pallet for IE Ikegawa (in consideration of strength and electrical resistance, it is preferable that the thickness after lamination is approximately 15-=4 Oμ).

次に8本発明の他の態様である多孔質フィルムの製造法
について述べる。この方法は、つぎの4つの工程: a)分子量50万以上のUHPEを良溶媒に溶解する工
程。
Next, a method for manufacturing a porous film, which is another embodiment of the present invention, will be described. This method includes the following four steps: a) A step of dissolving UHPE with a molecular weight of 500,000 or more in a good solvent.

b)この溶液を用いてフィルム成形する工程。b) Forming a film using this solution.

C)該フィルムを貧溶媒中に浸漬し、フィルム中から前
記良溶媒を除去することにより、多孔質化する工程。
C) A step of making the film porous by immersing the film in a poor solvent and removing the good solvent from the film.

d〕上記多孔1JIiフィルムを延伸する工程、を含む
ことを特徴とするものである。
d] stretching the porous 1JIi film.

この方法のa)工程においては、UHPEがJL溶媒V
C溶解される。UHPgd前記の如く分子量が高く。
In step a) of this method, the UHPE is JL solvent V
C is dissolved. UHPgd has a high molecular weight as mentioned above.

比較的難溶性であるので加熱溶解法を採用するのが好ま
しいものである。例えば、所定の容器中にUHPg粉末
と良溶媒を入れ、撹拌しながら除々に昇温し、#I解さ
せる方法が適用でき、270熱溶解時の最終的な温度り
通常的100〜180℃であり、所要時間は約10分〜
10時間である。
Since it is relatively poorly soluble, it is preferable to use a heating dissolution method. For example, a method can be applied in which UHPg powder and a good solvent are placed in a predetermined container, the temperature is gradually raised while stirring, and the final temperature at the time of hot melting is usually 100 to 180℃. Yes, it takes about 10 minutes
It is 10 hours.

この工程において用いる溶媒はUHPEf:WI解し得
るものであれば特に限定されず、中シレン、デカリン、
ノナン、デカン、ウンデカン等を用いることができる。
The solvent used in this step is not particularly limited as long as it can be dissolved in UHPEf:WI, such as medium silene, decalin,
Nonane, decane, undecane, etc. can be used.

また、上記溶解工程において得られるUHPff 溶液
中(DUHPff11fft!、約0.1〜20重量%
、!:スル17)が好ましいと判明している。濃度の上
限はUHPEの良fnsへのm鮮度によって定まる。ま
た、この溶液濃度が低すぎると0機絨的強度の大きな多
孔質フィルムが得られ難い。
In addition, in the UHPff solution obtained in the above dissolution step (DUHPff11fft!, about 0.1 to 20% by weight)
,! : Sur 17) has been found to be preferable. The upper limit of concentration is determined by the freshness of UHPE to good fns. Furthermore, if the concentration of this solution is too low, it will be difficult to obtain a porous film with high zero mechanical strength.

上記a)工程によって得られft−UHPE fs液は
次いでフィルム成形工程b) K供せられる。
The ft-UHPE fs liquid obtained by step a) above is then subjected to film forming step b) K.

UHPff ll液からのフィルム成形は0通常、約1
00〜180℃の加熱条件下で行なう。フィルム成形の
方法は何ら格別である必要はなく、Tダイ押出法、イン
フレーク璽ン法等公知のプラスチック成膜技術を採用で
きる。
Film forming from UHPffll liquid is 0, usually about 1
It is carried out under heating conditions of 00 to 180°C. The film forming method does not need to be any special method, and any known plastic film forming technique such as T-die extrusion method or flake wrapping method can be used.

かようなり)工程によって得られるJILIIF媒含有
フィ媒含有フィルム状物置1次への浸漬工程C)に供せ
られる。
The JILIIF medium-containing film storage obtained by step C) is subjected to dipping step C).

ここで用いる貧溶媒は、 UHPffを溶解しないが。The poor solvent used here does not dissolve UHPff.

前記jL溶媒と相溶する%hOであればよく、水や各種
の有機溶媒が使用できるが、なかでもアルコール類、特
にメタノールが好ましい。これら溶媒は2種以上を混合
して用いることもできる。
Any %hO that is compatible with the jL solvent may be used, and water and various organic solvents can be used, but alcohols, particularly methanol, are preferred. These solvents can also be used in combination of two or more.

この浸漬により、フィルム状物中の良溶媒が貧溶媒によ
って抽出除去され、その結果、フィルム状物が多孔質化
される。そして、このフィルム状物は、その厚さ方向の
中央部における孔径の大きな気孔を多数有する多孔質層
と、該多孔質層の両面上に形成された孔径の小さな気孔
を多数有する緻密層から収る特有の多孔構造を示すもの
となる。
By this immersion, the good solvent in the film-like material is extracted and removed by the poor solvent, and as a result, the film-like material becomes porous. This film-like material consists of a porous layer having many large pores in the central part in the thickness direction, and a dense layer having many small pores formed on both sides of the porous layer. It exhibits a unique porous structure.

この理由は必らずしも明らかではないが、フィルム状物
の表面近傍に存するJL醪媒と中央部に存する良溶媒で
は、貧ms中への抽出速度に差が生じ、これに起因して
、フィルム中央部に形成される多孔質層の気孔と、該屡
の両面上に形成される緻密層の気孔では、その孔径が異
なると推論される。
The reason for this is not necessarily clear, but there is a difference in the rate of extraction into the poor ms between the JL mortar present near the surface of the film and the good solvent present in the center. It is inferred that the pores in the porous layer formed in the center of the film and the pores in the dense layer formed on both sides of the film are different in pore size.

例えば、フィルム状物の表面近傍では良溶媒量に対し貧
溶媒は多量であり(貧溶媒リッチ)、jL潜媒は急速に
抽出除去されて、その結果、比較的孔径の小さな気孔が
形成され、一方、フィルム状物の中央部(厚さ方向にお
ける中央部)での抽出は1表面から除々に浸透する少量
の貧溶媒のもとで行なわれることになり(良溶媒リッチ
)、JiL11!1媒の抽出速度は緩慢となり、その結
果、比較的孔径の大きな気孔が形成されるのではないか
と思料される。
For example, near the surface of a film-like material, the amount of poor solvent is large compared to the amount of good solvent (poor solvent rich), and the jL latent medium is rapidly extracted and removed, resulting in the formation of pores with relatively small pore diameters. On the other hand, extraction at the center of the film-like material (center in the thickness direction) is performed under a small amount of poor solvent that gradually permeates from one surface (rich in good solvent). It is thought that the extraction rate of is slow, and as a result, pores with a relatively large pore size are formed.

上記の如く、工程C)の実施により、多孔質層とは、 
UHPEの分子量、用いる溶媒の種類等の製造条件やフ
ィルムの總厚みによる変動は比較的少なく0通常、各々
約1−10μ蟻であることが判明している。
As mentioned above, by performing step C), the porous layer is
It has been found that variations due to manufacturing conditions such as the molecular weight of UHPE, the type of solvent used, and the total thickness of the film are relatively small and are usually about 1 to 10 microns each.

まt、工程C)によって形成される多孔質層および緻密
層における気孔の孔径は、主として良溶媒の貧溶媒への
抽出速度によって決定され、抽出速度が大きい稚気孔の
孔径は小さくなる。
The pore diameters of the pores in the porous layer and the dense layer formed by step C) are mainly determined by the rate of extraction of a good solvent into a poor solvent, and the pore diameter of young pores with a high extraction rate becomes small.

なお、他の条件が同じであれば、用いるUl(Pgの分
子量が大きい程、多孔質層および緻密層に形成される気
孔の孔径は共に小さくなる傾向を示す。
Note that, if other conditions are the same, the larger the molecular weight of the Ul(Pg used), the smaller the pore diameters of the pores formed in both the porous layer and the dense layer tend to be.

従って、 UIIPEの分子量を適宜選択することによ
っても、多孔質層および緻密層に形成される気孔の孔径
f両層に形成される気孔の最大孔径比をコントロールす
ることが可能である。
Therefore, by appropriately selecting the molecular weight of UIIPE, it is possible to control the maximum pore diameter ratio f of pores formed in both layers.

かように、浸漬は多孔質構造形成の几めのもので、貧溶
媒への浸漬時間は艮浴媒を抽出除去し得るのであれば特
に限定されないが0通常、0.1〜30分程度である。
As described above, the immersion is a method for forming a porous structure, and the immersion time in the poor solvent is not particularly limited as long as the bathing medium can be extracted and removed, but it is usually about 0.1 to 30 minutes. be.

本発明の方法においては、 C)工程によって多孔質化
せしめられたフィルム状物が1次いで延伸工程d)に供
せられる。この延伸は多孔質層および緻密層の気孔の孔
径を拡大することにより気孔率を高めると共にフィルム
強度を向上せしめることを目的として行なうものである
。延伸鉱通常1軸延伸であるが2軸延伸を行なってもよ
%A、延伸温度はUHPEの融点よりも低い温度であれ
ばよいが。
In the method of the present invention, the film material made porous in step C) is then subjected to stretching step d). This stretching is carried out for the purpose of increasing the porosity and film strength by enlarging the pore diameters of the porous layer and the dense layer. Stretched ore is usually uniaxially stretched, but biaxially stretched may also be used.The stretching temperature may be lower than the melting point of UHPE.

実用上は約lθ〜130℃である。筐t、延伸率は通常
20%以上好筐しくFi50〜500%である。
Practically, it is about lθ to 130°C. The housing and stretching ratio are usually 20% or more, preferably Fi50 to 500%.

このようにして得られるUHPID多孔質シートは。The UHPID porous sheet obtained in this way.

厚さが約5〜200μ蟻、気孔率が約20〜90%であ
る。
The thickness is about 5-200μ, and the porosity is about 20-90%.

また、この多孔質シートは架橋されたものであっても曳
く、架橋は例えば延伸工程の前あるいは後に行なうこと
ができる。
Further, this porous sheet may be drawn even if it is crosslinked, and the crosslinking can be performed, for example, before or after the stretching step.

(実施例) 以下、実施例により本発明をI!に詳細に説明する。(Example) Hereinafter, the present invention will be explained with reference to Examples. will be explained in detail.

実施例1 ガラス容器に中シレン100 を置部、デカリン100
重量部およびUHPE粉末(分子量200万0粒径30
μsm)10重量部を入れ、撹拌しなから液温を25℃
から140℃まで昇温せしめ、更に同温度で1時間撹拌
を続け、UHPEflW解せしめる。
Example 1 Place 100% of Nakasilene in a glass container and 100% of Decalin.
Parts by weight and UHPE powder (molecular weight 2,000,000, particle size 30
Add 10 parts by weight of μsm), and while stirring, raise the liquid temperature to 25℃.
The temperature was increased from 140°C to 140°C, and stirring was continued for 1 hour at the same temperature to dissolve UHPEflW.

このUHPji2 !液をTダイ(温度135℃)を用
いて厚さ60μ鴫のフィルム状に押出し、室温まで冷却
する。
This UHPji2! The liquid is extruded into a film with a thickness of 60 μm using a T-die (temperature: 135° C.) and cooled to room temperature.

次に、このフィルム状物をメタノール(液温25℃)中
Jlc5分間浸漬し、キシレンおよびデカリンをメタノ
ールで抽出除去することにより、多孔質層と緻密層を形
成して引き上げ、風乾する。
Next, this film-like material is immersed in methanol (liquid temperature: 25° C.) for 5 minutes, and xylene and decalin are extracted and removed with methanol, thereby forming a porous layer and a dense layer, which are then pulled up and air-dried.

次イ”t”、 cしを温度100’C,速度500m/
分0条件で1軸方向に200%延伸し、多孔質フィルム
を得た。
Next, ``t'', temperature 100'C, speed 500m/
A porous film was obtained by stretching 200% in the uniaxial direction under conditions of 0 minutes.

実施例2 分子量60万1粒径150IIsのUHPE粉末を用い
る以外は実施例1と同様に作業し、多孔質フィルムを得
念。
Example 2 The same procedure as in Example 1 was carried out except that UHPE powder with a molecular weight of 600,001 and a particle size of 150IIs was used to obtain a porous film.

実施例3 ガラス容器にキシレン100 [置部、デカリンフ5重
量部およびUHPE粉末(分子量150万0粒径50μ
惰)8重量部を入れ、撹拌しなから液温を25℃から1
40℃まで昇温せしめ、更に同温度で1時間撹拌を続け
、 U)IPffを溶解せしめる。
Example 3 100 parts of xylene was placed in a glass container, 5 parts by weight of Decalymp and UHPE powder (molecular weight 1.5 million, particle size 50 μm)
Add 8 parts by weight of inertia) and lower the liquid temperature from 25°C to 1°C without stirring.
The temperature was raised to 40°C, and stirring was continued for 1 hour at the same temperature to dissolve U) IPff.

このUHPEM液をTダイ(温度135℃)を用いテ厚
す60μ鶴のフィルム状に押出し、室温まで冷却する。
This UHPEM liquid was extruded into a 60 μm thick film using a T-die (temperature: 135° C.) and cooled to room temperature.

次に、このフィルム状物をメタノール(液温25℃)中
に10分間浸漬し、!?シレンおよびデカリンをメタノ
ールで抽出除去することにより、多孔質層と緻密層を形
成して引き上げ、風乾する。
Next, this film-like material was immersed in methanol (liquid temperature 25°C) for 10 minutes. ? Silene and decalin are extracted and removed with methanol to form a porous layer and a dense layer, which are pulled up and air-dried.

次いで、これを温度100℃、速度500m/分の条件
で1軸方向に300%延伸し、厚さ25μ喝の多孔質フ
ィルムを得る。
Next, this is stretched 300% in the uniaxial direction at a temperature of 100° C. and a speed of 500 m/min to obtain a porous film with a thickness of 25 μm.

その後、この多孔質フィルム2枚を重ね合わせ。Then, these two porous films were stacked together.

1対の圧着ロール(一方が金属筒−ル、他方がゴムロー
ル)を通し、フィルム相互を密着一体化せしめ、厚さ2
5μ喝の積層多孔質フィルムを得比。
The films are passed through a pair of pressure rolls (one is a metal cylinder roll, the other is a rubber roll), and the films are tightly integrated into each other to a thickness of 2.
A laminated porous film with a thickness of 5 μm was obtained.

なお、金属ロールは105℃に加熱して用い、ロール間
圧力は線圧0.3 ky/caとした。
Note that the metal rolls were heated to 105° C. and the pressure between the rolls was set to a linear pressure of 0.3 ky/ca.

比較例 実施例1で用い友と同じUHPE粉末1 kgを金型(
内径120111で、中心部に50mのマンドレルをセ
ット)に充填し、更に圧力をかけてその充填高さが約1
9 CIl (見かけ密度0.55)になるように調整
する。
Comparative Example 1 kg of the same UHPE powder used in Example 1 was placed in a mold (
A mandrel with an inner diameter of 120111 and a length of 50 m is set in the center), and further pressure is applied until the filling height is approximately 1.
Adjust to 9 CIl (apparent density 0.55).

次いで、温度160℃、圧力5017/−の条件で4時
間辺熱加圧し、室温(25℃)で8時間放冷して金型か
ら取り出し6円筒状多孔質体を得、更に旋盤により厚さ
50μ喚のフィルム状に切削した。
Next, it was heated and pressed for 4 hours at a temperature of 160°C and a pressure of 5017/-, and then left to cool at room temperature (25°C) for 8 hours, taken out from the mold to obtain a cylindrical porous body, and further turned into a cylindrical porous body with a lathe. It was cut into a film with a thickness of 50 μm.

実施例および比較例によって得られた多孔質フィルムに
ついて下記試験を行ない、得られた結果をM1表に示す
The following tests were conducted on the porous films obtained in Examples and Comparative Examples, and the results are shown in Table M1.

〔イ〕フィルム厚さ ダイヤルゲージ(1/1000sn)により測定し次。[B] Film thickness Measured using a dial gauge (1/1000sn).

〔口〕 多孔質層、緻密層の厚さおよび最大孔径を走査
型電子顕微@I/Cより、フィルム断面を観察測定(倍
率2000倍)シ比。なお、各多孔質フィルムにおける
両数密層の厚さおよび最大孔径はほぼ同じであるので、
第1表には一方の緻密層のデータを示し比。
[Note] The thickness and maximum pore diameter of the porous layer and dense layer were measured by observing a cross section of the film using a scanning electron microscope @I/C (magnification: 2000x). In addition, since the thickness and maximum pore diameter of both dense layers in each porous film are almost the same,
Table 1 shows the data for one of the dense layers and the ratio.

〔ハ〕気孔率 多孔質フィルムを縦、横の寸法が各々25amになるよ
うに切断し、その厚さ(至)、を量(8を測定し1式(
1)によって見掛けrl!i度(2)を算出し。
[C] Porosity Cut the porous film so that the vertical and horizontal dimensions are 25 am each, measure the thickness (total), and make 1 set (
1) Appearance rl! Calculate i degrees (2).

更にUHPffの真北!1(ト)を用い1式(II)に
よって気孔率を算出し友。
Furthermore, due north of UHPff! Calculate the porosity using Equation 1 (II) using 1 (G).

k゛ なお1式(1)におけるDおよびEの単位は。k゛ In addition, the units of D and E in Formula 1 (1) are as follows.

「μ鴫」および「y」である。"μ髫" and "y".

〔二〕伸びおよび引張り強度 幅20關のサンプルを作成し、ASTM−D−882に
規定する方法に準じて測定した。
[2] Elongation and tensile strength Samples with a width of 20 degrees were prepared and measured according to the method specified in ASTM-D-882.

〔ホ〕内部抵抗 JIS−C−2313に準じて測定(!度25℃)した
。なお、電解液としてはプロピレンカーボネートと1,
3−ジオキソランを重量比l:lで混合し、これに電解
質として過塩素酸リチウムを1モル/I溶解させたもの
を用いた。
[E] Internal resistance Measured according to JIS-C-2313 (at 25°C). In addition, the electrolyte is propylene carbonate and 1,
3-dioxolane was mixed at a weight ratio of 1:1, and 1 mol/I of lithium perchlorate was dissolved therein as an electrolyte.

以下余白 第  1  表 フィルムは伸びが大きく、実用に供した際に作用する応
力によっても不用意に破断するようなことが無くて使い
勝手が良く、ま北本発明の方法によれば、特有の多孔構
造を有する多孔質フィルムを容易に製造し得る。
The following is a margin: Table 1 The film has a high elongation and is easy to use as it will not break accidentally even under the stress that is applied when it is put into practical use. A porous film having the following properties can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

図面図は本発明に係るUIIPff多孔質フィルムの多
孔質構造の模式図である。 l・・・多孔質層  2.3・・・緻密層4.5.6・
・・気孔 秦実施例3においては、「フィルム厚さ」および「内部
抵抗」が積層多孔質フィルムのデータであり、他はこの
積MJフィルム作成に用いた多孔質フィルムのデータで
ある。 (発明の効果) 上記実施例および比教例に示されているように。
The drawing is a schematic diagram of the porous structure of the UIIPff porous film according to the present invention. l... Porous layer 2.3... Dense layer 4.5.6.
... In Example 3, the "film thickness" and "internal resistance" are the data of the laminated porous film, and the other data are the data of the porous film used to create this laminated MJ film. (Effects of the Invention) As shown in the above embodiments and teaching examples.

Claims (3)

【特許請求の範囲】[Claims] (1)多数の気孔を有する多孔質層と、該気孔よりも孔
径の小さな多数の微孔を有し且つ前記多孔質層の両面上
に形成された緻密層から成る超高分子量ポリエチレン多
孔質フィルム。
(1) An ultra-high molecular weight polyethylene porous film consisting of a porous layer having a large number of pores and a dense layer having a large number of micropores with a smaller pore diameter than the pores and formed on both sides of the porous layer. .
(2)つぎの4つの工程: (a)粘度平均分子量50万以上の超高分子量ポリエチ
レンを良溶媒に溶解する工程。 (b)この溶液を用いてフィルム成形する工程。 (c)該フィルムを貧溶媒中に浸漬し、フィルム中から
前記良溶媒を除去することにより、 多孔質化する工程。 (d)上記多孔質フィルムを延伸する工程。 を含む超高分子量ポリエチレン多孔質フィルムの製造法
(2) The following four steps: (a) A step of dissolving ultra-high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more in a good solvent. (b) Forming a film using this solution. (c) A step of making the film porous by immersing the film in a poor solvent and removing the good solvent from the film. (d) A step of stretching the porous film. A method for producing an ultra-high molecular weight polyethylene porous film comprising:
(3)多数の気孔を有する多孔質層と、該気孔よりも孔
径の小さな多数の微孔を有し且つ前記多孔質層の両面上
に形成された緻密層から成る超高分子量ポリエチレン多
孔質フィルムの少なくとも2枚が重ね合わされて成る積
層多孔質フィルム。
(3) An ultra-high molecular weight polyethylene porous film consisting of a porous layer having a large number of pores and a dense layer having a large number of micropores with a smaller pore diameter than the pores and formed on both sides of the porous layer. A laminated porous film formed by overlapping at least two sheets of.
JP1193167A 1988-12-23 1989-07-26 Porous film of ultra-high-molecular weight polyethylene and production thereof Pending JPH02251545A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-327244 1988-12-23
JP32724488 1988-12-23

Publications (1)

Publication Number Publication Date
JPH02251545A true JPH02251545A (en) 1990-10-09

Family

ID=18196938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193167A Pending JPH02251545A (en) 1988-12-23 1989-07-26 Porous film of ultra-high-molecular weight polyethylene and production thereof

Country Status (1)

Country Link
JP (1) JPH02251545A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245923A (en) * 1991-12-30 1993-09-24 Dsm Nv Process for product of porous film having high bursting strength
EP0574588A1 (en) * 1991-12-27 1993-12-22 Mitsui Petrochemical Industries, Ltd. Biaxially oriented high-molecular polyethylene film and production thereof, and surface-modified, biaxially oriented high-molecular polyethylene film and production thereof
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
WO2007015547A1 (en) * 2005-08-04 2007-02-08 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
US20140162109A1 (en) * 2011-07-07 2014-06-12 Toyota Jidosha Kabushiki Kaisha Secondary battery
KR20160005738A (en) 2013-05-07 2016-01-15 데이진 가부시키가이샤 Base for liquid filters
KR20160006723A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
KR20160006722A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
US11931700B2 (en) 2017-03-30 2024-03-19 Teijin Limited Substrate for liquid filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574588A1 (en) * 1991-12-27 1993-12-22 Mitsui Petrochemical Industries, Ltd. Biaxially oriented high-molecular polyethylene film and production thereof, and surface-modified, biaxially oriented high-molecular polyethylene film and production thereof
EP0574588A4 (en) * 1991-12-27 1994-02-02 Mitsui Petrochemical Industries, Ltd.
JPH05245923A (en) * 1991-12-30 1993-09-24 Dsm Nv Process for product of porous film having high bursting strength
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
WO2007015547A1 (en) * 2005-08-04 2007-02-08 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
US20140162109A1 (en) * 2011-07-07 2014-06-12 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9660240B2 (en) * 2011-07-07 2017-05-23 Toyota Jidosha Kabushiki Kaisha Secondary battery including separator containing electroconductive porous layer sandwiched between electroconductive material-free porous layers
KR20160006723A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
KR20160006722A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
KR20160005738A (en) 2013-05-07 2016-01-15 데이진 가부시키가이샤 Base for liquid filters
KR20200122428A (en) 2013-05-07 2020-10-27 데이진 가부시키가이샤 Liquid filter substrate
KR20200122429A (en) 2013-05-07 2020-10-27 데이진 가부시키가이샤 Liquid filter substrate
KR20200123271A (en) 2013-05-07 2020-10-28 데이진 가부시키가이샤 Base for liquid filters
US11338252B2 (en) 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
US11338251B2 (en) 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
US11338250B2 (en) 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
US11931700B2 (en) 2017-03-30 2024-03-19 Teijin Limited Substrate for liquid filter

Similar Documents

Publication Publication Date Title
JP5451839B2 (en) Multilayer microporous membrane, method for producing the same, battery separator and battery
JP5548290B2 (en) Multilayer microporous membrane, battery separator and battery
JP4098401B2 (en) Microporous membrane for battery separator made of polyolefin
TWI414548B (en) Polyolefin multi-layered micro-porous film, method of manufacturing the same, separator for battery and battery
US10079378B2 (en) Polyolefin microporous membrane and production method thereof
US20090134538A1 (en) Method for producing multi-layer, microporous polyolefin membrane
EP1873193A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
US5968994A (en) High strength porous film of polypropylene and process for producing same
JP2010540691A (en) Microporous membranes and methods of making and using such membranes
WO2015194504A1 (en) Polyolefin microporous membrane, separator for cell, and cell
KR20180090725A (en) Laminated polyolefin microporous membrane, a battery separator, and a method for producing the same
JPH02251545A (en) Porous film of ultra-high-molecular weight polyethylene and production thereof
JPWO2018179810A1 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
KR20220051167A (en) Polyolefin microporous membranes, laminates and batteries
KR20200123407A (en) Porous polyolefin film
JP2000007819A (en) Porous film and its production
CN110382605B (en) Polyolefin microporous membrane and battery using the same
JP3486785B2 (en) Battery separator and method of manufacturing the same
JPH0696753A (en) Polyolefine micro-cellular porous film
CN113631643B (en) Polyolefin microporous membrane, battery separator, and secondary battery
JP4021266B2 (en) Method for producing microporous membrane
JP2005255876A (en) Microporous membrane and its manufacturing method
TW201819198A (en) Laminated polyolefin microporous membrane, separator membrane for batteries and manufacturing method thereof, and method for manufacturing laminated polyolefin microporous membrane winder having excellent shutdown characteristics and suiting to provide a uniform thickness to a porous layer
WO2021033733A1 (en) Polyolefin micro porous film, laminate, and battery
WO2022092189A1 (en) Polyolefin multilayer microporous film, production method therefor, and laminated multilayer microporous film