JPH02251384A - Method for mutual joining copper or copper alloy - Google Patents

Method for mutual joining copper or copper alloy

Info

Publication number
JPH02251384A
JPH02251384A JP7288989A JP7288989A JPH02251384A JP H02251384 A JPH02251384 A JP H02251384A JP 7288989 A JP7288989 A JP 7288989A JP 7288989 A JP7288989 A JP 7288989A JP H02251384 A JPH02251384 A JP H02251384A
Authority
JP
Japan
Prior art keywords
plating layer
core material
copper
materials
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7288989A
Other languages
Japanese (ja)
Inventor
Kazuhiko Asano
浅野 和彦
Masumitsu Soeda
副田 益光
Tatsunori Nakajima
中嶋 辰紀
Hiromi Ishida
石田 太海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7288989A priority Critical patent/JPH02251384A/en
Publication of JPH02251384A publication Critical patent/JPH02251384A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the joint which has various desired mechanical characteristics and is defectless by providing a Cu plating layer on one joint surface of copper or copper alloy materials and further providing an Sn plating layer thereon, then superposing the joint surface on the other joint surface and heating the materials while pressurizing the same. CONSTITUTION:The Cu plating layer and the Sn plating layer are disposed between the core material and side material of the copper or copper alloy and the core material and the side material are heated. The Cu in the core material and the side material is diffused into the Sn plating layer and the core material and the side material are joined by one kind of the diffusion joining utilizing the high-speed diffusion of the Cu atoms in the Sn plating layer. The clad material having the excellent joint strength is obtd. simply by applying the pressurizing force to the extent of bringing the core material and the side material into tight contact with each other without plastically deforming the materials.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、銅または銅合金材同士の接合方法に関し、特
には芯材および側材に相互に異なる機械的性質を付与し
た銅または銅合金クラツド材を製造するのに好適な銅ま
たは銅合金材同士の接合方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for joining copper or copper alloy materials, and particularly relates to a method for joining copper or copper alloy materials, particularly copper or copper alloy materials having mutually different mechanical properties imparted to the core material and side materials. The present invention relates to a method for joining copper or copper alloy materials suitable for manufacturing cladding materials.

〔従来の技術〕[Conventional technology]

従来、銅または銅合金クラツド材は、芯材と側材とを重
ね合わせ、これらを熱間または冷間で圧延することによ
り芯材と側材に塑性変形を加えて圧着するか、または芯
材と側材とを火薬の爆発エネルギで圧着(爆着)して製
造されている。また、前記冷間圧延による圧着法では、
鋼材と半田材との間にSnメッキ層を介在させて冷間圧
延することにより銅−半田クラツド材を製造する方法も
提案されている(特開昭59−209500号公報)、
この方法においては、Snメッキ層により半田材中の鉛
の酸化を抑制し、接合界面の健全性を向上させている。
Conventionally, copper or copper alloy clad materials are produced by overlapping a core material and side materials, applying plastic deformation to the core material and side materials by hot or cold rolling, or crimping the core material and side materials. It is manufactured by crimping (explosion bonding) the and side materials using the explosive energy of gunpowder. In addition, in the crimping method using cold rolling,
A method of manufacturing a copper-solder clad material by interposing a Sn plating layer between the steel material and the solder material and cold rolling has also been proposed (Japanese Patent Laid-Open No. 59-209500).
In this method, the Sn plating layer suppresses oxidation of lead in the solder material and improves the soundness of the bonding interface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来のクラツド材の製造方法に
おいては、いずれも芯材および側材が塑性変形を受ける
。このため、以下に示すような問題点がある。
However, in the above-described conventional method for producing cladding materials, the core material and the side materials undergo plastic deformation. Therefore, there are problems as shown below.

先ず、圧延および爆着のいずれの場合も、比較的大型且
つ複雑な設備が必要である0例えば、冷間圧延でクラツ
ド材を製造する場合は、lパス当たりの圧下量を30%
以上にすることが一般的であるため、広幅のクラシト材
を製造するためには極めて大型の圧延機が必要となる。
First, both rolling and explosion bonding require relatively large and complicated equipment. For example, when manufacturing clad material by cold rolling, the rolling reduction per pass is 30%.
Since it is common to do the above, an extremely large rolling mill is required to manufacture wide-width Crasito material.

また熱間圧延によりクラツド材を製造する場合は、高温
における芯材と側材の酸化を防止するために、特別の対
策を講じる必要があり煩雑である。一方、爆着法におい
ては、火薬を爆発させるため、装置の強度が充分に高い
ことが必要であり、極めて大掛かりな装置を設けること
が必要となる。
Furthermore, when producing cladding materials by hot rolling, it is necessary to take special measures to prevent oxidation of the core material and side materials at high temperatures, which is complicated. On the other hand, in the explosive bonding method, in order to explode the gunpowder, the strength of the device must be sufficiently high, and it is necessary to provide an extremely large-scale device.

次に、例えば、硬度等の機械的性質が異なる金属または
合金同士を冷間圧延でクラツド材を製造する場合、硬度
が低い金属または合金と硬度が高い金属または合金とは
塑性変形時における挙動が相互に異なるため、クラツド
率を制御することが困難であり、また芯材または側材に
歪みが発生し易いという問題点がある。このため、芯材
および側材の機械的性質が相互に異なるクラツド材を製
造する場合には、特別の配慮が必要である。
Next, for example, when producing a clad material by cold rolling metals or alloys with different mechanical properties such as hardness, the behavior of the metal or alloy with lower hardness and the metal or alloy with higher hardness during plastic deformation is different. Since they are different from each other, it is difficult to control the cladding ratio, and there are problems in that the core material or side materials are likely to be distorted. For this reason, special consideration is required when producing cladding materials in which the mechanical properties of the core and side materials differ from each other.

さらに、芯材および側材に塑性変形を与える従来のクラ
ツド材の製造方法では、芯材と側材とに相互に異なる所
望の機械的性質を付与することは困難である0例えば、
芯材を硬く側材を軟らか(することは撓めて困難である
。即ち、冷間圧延法においては、芯材および側材は同時
に塑性変形を受けるが、この塑性変形により芯材および
側材の特性は各々本来具備していた特性と異なったもの
になってしまう、このため、−i的には、圧延によりク
ラツド材を得た後、このクラツド材を所定の温度に加熱
焼鈍して硬さの調整を図っている。
Furthermore, with the conventional manufacturing method of cladding material that applies plastic deformation to the core material and side materials, it is difficult to impart desired mechanical properties that are different from each other to the core material and side materials.
It is difficult to make the core material hard and the side materials soft because it bends.In other words, in the cold rolling method, the core material and side materials undergo plastic deformation at the same time, but this plastic deformation causes the core material and side materials to The properties of each material will be different from those originally possessed. Therefore, in terms of -i, after obtaining a clad material by rolling, this clad material is heated and annealed to a predetermined temperature to harden it. We are trying to adjust the

しかし、この場合も芯材と側材とが異なる軟化特性を有
している場合は芯材および側材を所望の硬度にすること
は極めて困難である。また硬度以外の物理的および化学
的性質を!IJ整する場合も同様の問題点を有している
However, in this case as well, if the core material and the side materials have different softening properties, it is extremely difficult to make the core material and the side materials have the desired hardness. Also physical and chemical properties other than hardness! Similar problems arise when adjusting the IJ.

本発明はかかる問題点に鑑みてなされたものであって、
芯材および側材の機械的特性を任意に設定することがで
きると共に、簡便な装置を使用して容易にクラツド材を
製造することができる銅または銅合金材同士の接合方法
を提供することを目的とするものである。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for joining copper or copper alloy materials, which allows the mechanical properties of the core material and side materials to be arbitrarily set, and also allows easy production of cladding materials using a simple device. This is the purpose.

(課題を解決するための手段〕 上記目的を達成するために、本発明に係わる銅または銅
合金材同士の接合方法は、一つには、銅または銅合金材
の一方の接合面上にCuメッキ層を設けた後、さらにそ
の上にSnメッキ層を設け、他方の接合面と重ね合わせ
ると共に、加圧しつつ加熱するものである。
(Means for Solving the Problems) In order to achieve the above object, the method for joining copper or copper alloy materials according to the present invention includes, in part, a method for bonding copper or copper alloy materials to each other. After the plating layer is provided, a Sn plating layer is further provided on top of the plating layer, which is overlapped with the other bonding surface and heated while being pressurized.

また一つには、銅または銅合金材の一方の接合面上にC
uメッキ層を設け、他方の接合面上にSnメッキ層を設
け、これら接合面を重ね合わせる・と共に、加圧しつつ
加熱するものである。
Another method is to apply C on one joint surface of copper or copper alloy material.
A U plating layer is provided, a Sn plating layer is provided on the other bonding surface, and these bonding surfaces are overlapped and heated while being pressurized.

また一つには、銅または銅合金材の接合面上にCuメッ
キ層を設けた後、いづれか一方の接合面上にSnメッキ
層を設け、これら接合面を重ね合わせると共に、加圧し
つつ加熱するものである。
Another method is to provide a Cu plating layer on the bonding surfaces of copper or copper alloy materials, then provide a Sn plating layer on one of the bonding surfaces, overlap these bonding surfaces, and heat them while applying pressure. It is something.

〔作  用〕[For production]

本発明においては、銅または銅合金の芯材および側材の
相互間にCuメッキ層とSnメッキ層とを配設して芯材
と側材とを加熱する。そうすると、Snメッキ層中に芯
材および側材中のCuが拡散し、Snメッキ層内部にお
けるCu原子の高速拡散を利用した一種の拡散接合によ
り芯材と側材とが接合される。この場合に、芯材と側材
とを塑性変形させることな(芯材と側材とを密着させる
程度の加圧力を印加するだけでより接合強度に優れたク
ラツド材が得られる。
In the present invention, a Cu plating layer and a Sn plating layer are disposed between a core material and a side material made of copper or a copper alloy, and the core material and the side material are heated. Then, the Cu in the core material and the side material diffuses into the Sn plating layer, and the core material and the side material are joined by a type of diffusion bonding that utilizes high-speed diffusion of Cu atoms inside the Sn plating layer. In this case, a cladding material with better bonding strength can be obtained without plastically deforming the core material and the side materials (simply by applying a pressing force sufficient to bring the core material and the side materials into close contact with each other).

次に接合面間にCuメッキ層とSnメッキ層とを介在さ
せる理由について説明する。
Next, the reason why the Cu plating layer and the Sn plating layer are interposed between the bonding surfaces will be explained.

金属同士を金属原子の拡散により接合する方法は公知の
技術であるが、この技術を工業的に使用するためには拡
散による接合が経済的に可能な時間内で行われ・る必要
がある。−最に、金属中において原子が拡散する機構は
原子空孔を媒介として拡散が進行する空孔拡散機構と、
原子と原子との間の間隙を移動する格子間拡散ja措と
が主要なものである。この場合に、後者の格子開拡+1
5[a構による拡散の方が原子の拡散速度は連い、しか
し、Sn中におけるAu、 Ag、 CuおよびZn等
の各金属原子の拡散はこれらの機構とは異なり、前記金
属原子が結晶格子間に位置してSn原子と対をなし、こ
れが再配向したり、別のSn原子と再結合しながら拡散
するダイプロン(Diplon)a横に支配される(日
本金属学会報、第22巻、第6号、第480頁〜第48
7頁)、このダイプロン機構により前記金属原子は極め
て早い速度でSn中に拡散する0本発明はこのダイプロ
ン機構を工業的に利用したものである。ところで、Cu
原子がこのダイプロン機構によりIJ!A敗するメッキ
金属としてはSnの外にPbがある。しかし、pbは、
銅合金の熱間脆性を招来する他、pbを含む銅合金はス
クラップとじて再利用できないという事情があり、この
ため、pbメッキ層を利用することは工業的に好ましい
ものではない、従って、本発明においてはSnメッキ層
を利用するものである。
A method of bonding metals together by diffusion of metal atoms is a well-known technique, but in order to use this technique industrially, bonding by diffusion must be performed within an economically possible time. -Finally, the mechanism by which atoms diffuse in metals is the vacancy diffusion mechanism in which diffusion progresses through atomic vacancies.
Interstitial diffusion, which moves through the gaps between atoms, is the main one. In this case, the latter lattice expansion +1
The diffusion rate of atoms is faster in the case of diffusion using the 5[a structure.However, the diffusion of metal atoms such as Au, Ag, Cu, and Zn in Sn is different from these mechanisms, and the diffusion rate of atoms is higher in the case of diffusion using the a-structure. Diploon a, which is located in between and forms a pair with a Sn atom, reorients or diffuses while recombining with another Sn atom, is dominated laterally (Journal of the Japan Institute of Metals, Vol. 22, Vol. No. 6, pp. 480-48
(p. 7), this diplon mechanism causes the metal atoms to diffuse into Sn at an extremely high rate.The present invention is an industrial application of this diplon mechanism. By the way, Cu
Due to this diplon mechanism, atoms are IJ! In addition to Sn, there is Pb as a plating metal that fails A. However, pb is
In addition to causing hot embrittlement of copper alloys, copper alloys containing PB cannot be reused as scrap, and for this reason, it is not industrially preferable to use PB plating layers. The invention utilizes a Sn plating layer.

また接合面間にCuメッキ層を介在させるのは、Snメ
ッキ層を加工された銅および銅合金材の表面に直接設け
るよりもCuメッキ層を介在させた方が拡11シ速度が
早くなるためである。
In addition, the reason why the Cu plating layer is interposed between the bonding surfaces is that the expansion speed is faster when the Cu plating layer is interposed than when the Sn plating layer is directly provided on the surface of processed copper and copper alloy materials. It is.

このようなことから、銅および銅合金材の接合面間にC
uメッキ層とSnメッキ層とを配設するものであるが、
そのメッキ層の設は方は、Cuメッキ層は芯材と側材の
うちの少なくともいずれか一方の表面に設けられればよ
(、またSnメッキ層は芯材と側材のうちのいずれか一
方の表面またはCuメ2−ト層の表面に設けられればよ
い、またメッキは光沢メッキまたは無光沢メッキのいず
れでもよく、その効果はほぼ同じである。さらにCuメ
ッキ層の厚さは特に限定するものではないが、Snメッ
キ層の厚さと同等程度かそれ以下出もよい。またSnメ
ツ、ト層の厚さは接合効果上、特に限定するものではな
いが、Snメッキ層が厚すぎると、拡散に時間がかかり
所要加熱時間が長くなり、製造コストが増大する。一方
Snメッキ層が薄すぎると、メンキむらが発生するので
、これらの理由により、0.3μ−〜10μmとするこ
とが好ましい。
For this reason, C between the joint surfaces of copper and copper alloy materials.
Although a U plating layer and a Sn plating layer are provided,
As for how to provide the plating layer, the Cu plating layer should be provided on the surface of at least one of the core material and the side material (and the Sn plating layer should be provided on the surface of at least one of the core material and the side material). The plating may be either bright plating or matte plating, and the effect is almost the same.Furthermore, the thickness of the Cu plating layer is not particularly limited. Although it is not necessary, it may be the same or less than the thickness of the Sn plating layer.Also, the thickness of the Sn plating layer is not particularly limited in terms of bonding effect, but if the Sn plating layer is too thick, Diffusion takes time, the required heating time increases, and manufacturing costs increase.On the other hand, if the Sn plating layer is too thin, uneven coating will occur, so for these reasons, it is preferable to set the thickness to 0.3 μm to 10 μm. .

次に、芯材と側材とをCuメッキ層とSnメッキ層を介
して重ね合わせ、芯材および側材が塑性変形しない程度
の圧力を印加しつつ加熱する。その加圧は、芯材と側材
とを密着させて前述のダイプロン機構によるCu原子の
拡散を充分なものにし、芯材と側材との間を強固に接合
するために行うものである。このように、芯材および側
材の接触が充分像たれている場合は、この時の加圧力を
殆ど0にg/c−にしても芯材と側材とを充分にクラッ
ドすることができる。しかし、より一層健全なりラッド
材を得るためには、芯材または側材の耐力の10〜80
%の範囲の圧力で加圧することがこのましい、またこの
時の加熱温度は、例えば温度が23°Cの時におけるS
n中のCu原子の拡散係数が約4XIO−”と充分大き
(、Cu原子の拡散速度が早いため、特に高温にする必
要はない、一方、加熱温度が高すぎる場合は、芯材およ
び側材が酸化したり、特性が変化することがあるので、
加熱温度は300°C以下にすることが好ましい。
Next, the core material and the side materials are overlapped with each other via the Cu plating layer and the Sn plating layer, and the core material and the side materials are heated while applying pressure to an extent that the core material and the side materials do not undergo plastic deformation. This pressurization is performed in order to bring the core material and the side material into close contact, to ensure sufficient diffusion of Cu atoms by the above-mentioned diplon mechanism, and to firmly join the core material and the side material. In this way, if the contact between the core material and the side materials is sufficiently sharp, the core material and the side materials can be sufficiently clad even if the pressing force at this time is set to almost 0 g/c-. . However, in order to obtain a more sound rudd material, it is necessary to increase the yield strength of the core material or side materials by 10 to 80
It is preferable to pressurize at a pressure in the range of
The diffusion coefficient of Cu atoms in n is sufficiently large at approximately 4 may be oxidized or its properties may change,
The heating temperature is preferably 300°C or less.

尚、メッキ工程と加熱圧着工程とは連続的に行うことも
できるが、個別的に行ってもよい、また加熱圧着工程に
おいて、ロール対により芯材および側材に連続的に圧力
を加えてもよいし、バッチ式で芯材および側材の全面に
圧力を加えて接合することもできる。
The plating process and the heat-compression bonding process can be carried out continuously, but they can also be carried out separately.Also, in the heat-bonding process, pressure may be continuously applied to the core material and the side material by a pair of rolls. Alternatively, it is also possible to join by applying pressure to the entire surface of the core material and side materials in a batch method.

〔実 施 例〕〔Example〕

次に、本発明に係わる実施例を説明する。 Next, embodiments according to the present invention will be described.

実−JLJfl 土 芯材として、厚さがO,hm、ビッカース硬さが180
のりん青銅板材と、側材として、厚さが0.4am、ピ
ンカース硬さが100のりん脱酸銅板材とをJfl ;
?!し、各板材から一辺が20kwの正方形の芯材およ
び側材を切り出した0次に、側材の片面にマスキングを
施し他面に厚さ1.0μ−の無光沢Cuメッキを施した
後、さらにその上に厚さl。0μ−の無光沢Snメッキ
を施した。この時のメッキ条件を下記に示す。
Fruit - JLJfl As a soil core material, thickness is O, hm, Vickers hardness is 180
A phosphor bronze plate material and a phosphorus deoxidized copper plate material with a thickness of 0.4 am and a Pinkers hardness of 100 as side materials were used as Jfl;
? ! Then, a square core material and side material each having a side of 20 kW were cut out from each plate material. Next, one side of the side material was masked and the other side was coated with matte Cu plating with a thickness of 1.0 μ. Furthermore, there is a thickness l on top of that. 0μ-matte Sn plating was applied. The plating conditions at this time are shown below.

■:Cuメッキ 1) メッキ浴組成 CuS045+1!0       190g/ IH
!S0.          50g/IC130m1
/1 2) 電解条件 電流密度 3A/da”、  温度 20’C■:Sn
メッキ 1) メッキ浴組成 5nSOa           40g/l+1.S
0.          100g/lクレゾールスル
フォン酸  30g/1分散剤        、  
 log/12)電解条件 電流密度 2.5A/da”、  温度 20°C次に
、この側材のメッキ面を内側にして、芯材と直に重ね合
わせたものと、芯材に厚さ1μ■のCuメッキを設け、
このメッキ面を重ね合わせたものとを作製した。それぞ
れ150°Cに加熱したホットプレス装置に設置し、5
Kg/cjの圧力を印加し°ζ30分間保持した。これ
により、芯材および側材中のCu原子がSnメッキ層中
に拡散し、芯材と側材が1妾合されてクラツド材が製造
された。
■: Cu plating 1) Plating bath composition CuS045+1!0 190g/IH
! S0. 50g/IC130m1
/1 2) Electrolysis conditions Current density 3A/da", temperature 20'C ■: Sn
Plating 1) Plating bath composition 5nSOa 40g/l+1. S
0. 100g/l cresol sulfonic acid 30g/1 dispersant,
log/12) Electrolytic conditions Current density: 2.5 A/da", temperature: 20°C Next, the plated side of this side material was placed on the core material directly, and the core material was coated with a thickness of 1 μm. ■Cu plating is provided,
A product in which these plated surfaces were overlapped was fabricated. Each was placed in a hot press device heated to 150°C, and
A pressure of Kg/cj was applied and maintained for 30 minutes. As a result, the Cu atoms in the core material and the side materials were diffused into the Sn plating layer, and the core material and the side materials were combined to produce a cladding material.

上述の如く製造されたりん青銅とりん脱酸銅とのクラツ
ド材について、以下に示す試験を行った、■:このクラ
ツド材から小片を切り出して、その断面を光学顕微鏡で
観察した。第1図は図面代用の、この断面の金B組織写
真(倍率1000(α)である、この第1図から明らか
なように、芯材と側材との境界部分には空洞等の欠陥が
なく、両者は健全に接合されていた。■:芯材と側材の
背面より芯材および側材のビッカース硬さを測定した。
The following tests were conducted on the cladding material of phosphor bronze and phosphorus-deoxidized copper produced as described above. (1): A small piece was cut out from this cladding material, and its cross section was observed with an optical microscope. Figure 1 is a photograph of the gold B structure of this cross section (magnification: 1000 (α)), which is used as a drawing. As is clear from this figure, there are defects such as cavities at the boundary between the core material and the side material. The two were soundly joined.■: The Vickers hardness of the core material and side materials was measured from the back surfaces of the core materials and side materials.

その結果、芯材のビッカース硬さは180で、接合前と
同じであった。また側材のビッカース硬さは99で、こ
れも接合前と殆ど同じであった。■:クラッド材を40
0”Cの温度で5分間加熱し、接合の健全性を調べた。
As a result, the Vickers hardness of the core material was 180, which was the same as before joining. The Vickers hardness of the side material was 99, which was also almost the same as before joining. ■: Clad material 40
The joints were heated at a temperature of 0''C for 5 minutes and the soundness of the bond was examined.

その結果、ふくれおよび剥離等の欠陥は見当たらなかっ
た。
As a result, no defects such as blistering or peeling were found.

上述の如(、本実施例においては芯材および側材が塑性
変形することな(、しかもその機械的特性を殆ど変化さ
ゼることなく、極めて健全な接合面を有するクラツド材
が製造できた。
As described above, in this example, a cladding material with an extremely sound joint surface was produced without causing plastic deformation of the core material and side materials (and with almost no change in its mechanical properties). .

災−胤−1 芯材として、幅250m5.厚さ0.6鵬−、ビシカー
ス硬さが80の黄銅コイルと、側材として、輻250−
−、厚さ0.2mm、ビッカース硬さが60の無酸素銅
コイルとを用意した。そして、無酸素銅コイルから巻き
解いた側材の片面に厚さ0.5μ朧の光沢Cuメッキを
施した後、さらにその上に厚さ0.5μ曽の光沢Snメ
ッキを施した0次いで、このメッキ面を間に挟んでこの
側材と黄銅コイルから巻き解いた芯材とを重ね合わせ、
これを250℃に加熱したシリコンゴム製のロールを有
するホットラミネータに通板した。この時、ロールの加
圧力は5にg/c1のとし、通板速度2禦/分とした。
Disaster - Seed - 1 As a core material, width 250m5. A brass coil with a thickness of 0.6 mm and a viscous hardness of 80, and a side material with a diameter of 250 mm.
- and an oxygen-free copper coil having a thickness of 0.2 mm and a Vickers hardness of 60 were prepared. Then, after applying glossy Cu plating with a thickness of 0.5μ on one side of the side material unwound from an oxygen-free copper coil, a bright Sn plating with a thickness of 0.5μ was applied on top of it. Layer this side material and the core material unwound from the brass coil with the plated surface in between,
This was passed through a hot laminator having silicone rubber rolls heated to 250°C. At this time, the pressing force of the roll was set to 5 g/c1, and the sheet passing speed was set to 2 g/min.

上述の如くして得られたクラツド材から所定寸法の試験
片を切り出し、その断面を光学顕微鏡でtLll察して
芯材と側材との接合状態を調べた。その結果は上記実施
例1と同様で、芯材と側材との境界部分には空洞等の欠
陥がなく、両者は健全に接合されていた。また上記実施
例1と同様に、ピンカース硬さ並びに加熱後のふくれお
よび剥離の有無を調べた。その結果、芯材および側材の
ピンカース硬さは接合前とほぼ同じであった。さらに、
このクラツド材の試験片に以下に示す試験を行った。■
二幅10■−8長さ80mmの試験片を曲げ半径0.9
a1mで90度の角度に曲げ、その曲げ部分を切断して
断面を光学顕微鏡で観察した。この結果、接合部分にお
ける芯材と側材との剥凋は全く認められなかった。■:
心直径(i0a++iの円盤をポンチ・ダイスで打ら抜
き、その周端部の断面を拡大鏡で観察した。この結果、
接合部分における芯材と側材との剥離は全(認められな
かった。■二上記■で打ち抜いた円盤を、直径33mm
のポンチを使用して深絞り加工し、円筒形に成形すると
共に、この円筒を軸方向に切断し、その断面を拡大鏡で
観察した、この結果、接合部分における芯材と側材との
剥■は全く認められなかった。
A test piece of a predetermined size was cut from the cladding material obtained as described above, and its cross section was observed with an optical microscope to examine the bonding state between the core material and the side material. The results were the same as in Example 1 above, with no defects such as cavities at the boundary between the core material and the side materials, and the two were soundly joined. In addition, in the same manner as in Example 1 above, the Pinkers hardness and the presence or absence of blistering and peeling after heating were examined. As a result, the Pinkers hardness of the core material and side materials was almost the same as before joining. moreover,
The following tests were conducted on test pieces of this clad material. ■
Bending a test piece with two widths of 10cm-8 and a length of 80mm with a radius of 0.9
It was bent at an angle of 90 degrees at a1m, the bent portion was cut, and the cross section was observed using an optical microscope. As a result, no peeling was observed between the core material and the side materials at the joint portion. ■:
A disk with a core diameter (i0a++i) was punched out with a punch and die, and the cross section of the peripheral end was observed with a magnifying glass.As a result,
No peeling was observed between the core material and the side materials at the joint part.
The cylinder was deep-drawn using a punch and formed into a cylindrical shape, and the cylinder was cut in the axial direction and the cross section was observed with a magnifying glass. ■ was not recognized at all.

上述の如く、本実施例においても得られたクラツド材は
芯材と側材とが極めて健全に接合されており、種々の成
形加工が可能である。
As mentioned above, in the cladding material obtained in this example as well, the core material and side material are bonded extremely soundly, and various molding processes are possible.

尚、上記実施例では本発明をクラツド材に適用した例を
述べたか、任意の形状の銅または銅合金材同士の接合方
法としても充分使用し得ることは明らかである。
In the above embodiments, the present invention was applied to a clad material, but it is clear that the present invention can also be used as a method for joining copper or copper alloy materials of any shape.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係わる銅または銅合金材
同士の接合方法によれば、塑性変形を起こすような大き
な圧力を加えな(でもよいことから、複雑且つ大型であ
って高1西な設備を要することがない上に、得られた銅
または銅合金材同士の接合物は各々所望の機械的特性を
有すると共に、極めて健全な接合状態を有し、且つ低コ
ストで製造することができる。
As explained above, according to the method of joining copper or copper alloy materials according to the present invention, it is possible to do so without applying large pressure that would cause plastic deformation. In addition to not requiring any equipment, the obtained bonded products of copper or copper alloy materials each have the desired mechanical properties, have an extremely sound bonded state, and can be manufactured at low cost. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、断面の金immを示す図面代用顕微鏡写真で
ある。 特許出願人 株式会社神戸製鋼所
FIG. 1 is a photomicrograph substituted for a drawing showing a cross section of a gold imm. Patent applicant Kobe Steel, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)銅または銅合金材同士を接合する方法において、
一方の接合面上にCuメッキ層を設けた後、さらにその
上にSnメッキ層を設け、他方の接合面と重ね合わせる
と共に、加圧しつつ加熱することを特徴とする銅または
銅合金材同士の接合方法。
(1) In the method of joining copper or copper alloy materials,
After a Cu plating layer is provided on one bonding surface, a Sn plating layer is further provided on top of the Cu plating layer, which is overlapped with the other bonding surface, and is heated while applying pressure. Joining method.
(2)銅または銅合金材同士を接合する方法において、
一方の接合面上にCuメッキ層を設け、他方の接合面上
にSnメッキ層を設け、これら接合面を重ね合わせると
共に、加圧しつつ加熱することを特徴とする銅または銅
合金材の接合方法。
(2) In the method of joining copper or copper alloy materials,
A method for joining copper or copper alloy materials, characterized by providing a Cu plating layer on one joint surface, providing a Sn plating layer on the other joint surface, overlapping these joint surfaces, and heating while applying pressure. .
(3)銅または銅合金材同士を接合する方法において、
接合面上にCuメッキ層を設けた後、いづれか一方の接
合面上にSnメッキ層を設け、これら接合面を重ね合わ
せると共に、加圧しつつ加熱することを特徴とする銅ま
たは銅合金材同士の接合方法。
(3) In the method of joining copper or copper alloy materials,
After a Cu plating layer is provided on the joint surfaces, a Sn plating layer is provided on one of the joint surfaces, and these joint surfaces are overlapped and heated while being pressurized. Joining method.
JP7288989A 1989-03-25 1989-03-25 Method for mutual joining copper or copper alloy Pending JPH02251384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7288989A JPH02251384A (en) 1989-03-25 1989-03-25 Method for mutual joining copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7288989A JPH02251384A (en) 1989-03-25 1989-03-25 Method for mutual joining copper or copper alloy

Publications (1)

Publication Number Publication Date
JPH02251384A true JPH02251384A (en) 1990-10-09

Family

ID=13502364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7288989A Pending JPH02251384A (en) 1989-03-25 1989-03-25 Method for mutual joining copper or copper alloy

Country Status (1)

Country Link
JP (1) JPH02251384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113714644A (en) * 2021-09-29 2021-11-30 湖南中南智能激光科技有限公司 Laser welding method for brass and red copper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113714644A (en) * 2021-09-29 2021-11-30 湖南中南智能激光科技有限公司 Laser welding method for brass and red copper

Similar Documents

Publication Publication Date Title
US7845203B2 (en) Preparation method of laminated composite materials of different alloys
US5368661A (en) Method for joining parts of Ni-Ti alloys with different metals
US3261724A (en) Stainless steel clad aluminum and methods of making same
JPS58187285A (en) Method of welding metallic part
US2216510A (en) Method of making contacts
CA1220307A (en) Bonding sheets
JPS5919088A (en) Copper composite material and its manufacture
JPH02251384A (en) Method for mutual joining copper or copper alloy
JPH02251385A (en) Method for joining copper or copper alloy to each other
JPH02217182A (en) Method for joining materials of copper or copper alloy
DE4243141C2 (en) Cold-brittle copper-phosphor solder alloys on copper strips
JPH044986A (en) Manufacture of nickel and stainless steel clad material
JPH0518670B2 (en)
KR20170084824A (en) Heat treatment process for preventing spreading of copper between 2 material and hollow chain product
GB2117282A (en) Method and apparatus for the plating of strip by rolling
JPH023974B2 (en)
JPH01133689A (en) Manufacture of clad material
JPH09300085A (en) Manufacture of clad material having flat joined interface
Beganović et al. INFLUENCE OF SKIN-PASS ROLLING ON STRENGTH AND DUCTILE PROPERTIES OF EXPLOSIVE WELDED THREE-LAYERS STRIP
JPS6313619A (en) Bending method for resin laminated metal plate
JPH08318381A (en) Joining method of metal material
JPH03204185A (en) Manufacture of aluminum clad steel plate
Ott et al. Copper and Nickel Alloys Clad with Platinum and Its Alloys
JPH01218777A (en) Production of laminated material for electronic parts
JPH01278977A (en) Manufacture of copper-nickel clad material