JPH02217182A - Method for joining materials of copper or copper alloy - Google Patents

Method for joining materials of copper or copper alloy

Info

Publication number
JPH02217182A
JPH02217182A JP3693789A JP3693789A JPH02217182A JP H02217182 A JPH02217182 A JP H02217182A JP 3693789 A JP3693789 A JP 3693789A JP 3693789 A JP3693789 A JP 3693789A JP H02217182 A JPH02217182 A JP H02217182A
Authority
JP
Japan
Prior art keywords
core material
copper
materials
copper alloy
side materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3693789A
Other languages
Japanese (ja)
Inventor
Kazuhiko Asano
浅野 和彦
Tatsunori Nakajima
中嶋 辰紀
Masumitsu Soeda
副田 益光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3693789A priority Critical patent/JPH02217182A/en
Publication of JPH02217182A publication Critical patent/JPH02217182A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a clad material having a sound joint surface at a low cost by putting a side material on a core material on both sides of a Sn- plated layer and heating both materials as they are pressurized without giving plastic deformation. CONSTITUTION:A core material of copper or copper alloy and a side material of copper or copper alloy are joined. Therefore, Sn is plated at least on one of the core material and the side material. The side material is put on the core material on both sides of the plated layer and they are heated as they are pressurized without giving plastic deformation. Consequently, desired mechanical properties can be given respectively to the core material and the side material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は芯材及び側材に相互に異なる機械的性質を付与
したクラツド材を製造するのに好適の銅又は銅合金材の
接合方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for joining copper or copper alloy materials suitable for producing a cladding material in which the core material and the side materials have mutually different mechanical properties. .

[従来の技術] 従来、クラツド材は芯材と側材とを重ね合わせて、これ
らを熱間又は冷間で圧延することにより芯材及び側材に
塑性変形を加えて圧着するか、又は芯材と側材とを火薬
の畑発のエネルギで圧着(爆着)して製造されている。
[Prior Art] Conventionally, cladding materials are produced by overlapping a core material and side materials and applying plastic deformation to the core material and side materials by hot or cold rolling, or by crimping the core material and side materials. It is manufactured by crimping (explosion bonding) the wood and side materials using energy from gunpowder fields.

また、前記冷間圧延による圧着法では、鋼材と半田材と
の間に錫(Sn)めっき層を介在させて冷間圧延するこ
とにより銅−半田クラツド材を製造する方法も提案され
ている(特開昭59−209500号)。この方法にお
いては、錫めっき層により半田材中の鉛(pb)の酸化
を抑制し、接合界面の健全性を向上させている。
Furthermore, in the crimping method using cold rolling, a method has also been proposed in which a copper-solder clad material is produced by interposing a tin (Sn) plating layer between the steel material and the solder material and cold rolling the material ( JP-A-59-209500). In this method, the tin plating layer suppresses oxidation of lead (PB) in the solder material and improves the soundness of the bonding interface.

「発明が解決しようとする課題] しかしながら、上述した従来のクラツド材の製造方法に
おいては、いずれも芯材及び側材が塑性変形を受ける。
``Problems to be Solved by the Invention'' However, in the above-mentioned conventional methods for manufacturing cladding materials, the core material and the side materials undergo plastic deformation.

このため、以下に示すような問題点がある。Therefore, there are problems as shown below.

先ず、圧延及び爆着のいずれの場合も、比較的大型且つ
複雑な設備が必要である。例えば、冷間圧延でクラツド
材を製造する場合は、1パス当りの圧下量を30%以上
にすることが一般的であるため、広幅のクラツド材を製
造するためには極めて大型の圧延機が必要となる。また
、熱間圧延によりクラツド材を製造する場合は、高温に
おける芯材又は側材の酸化を防止するために、特別の対
策を講じる必要があり煩雑である。一方、爆着法におい
ては、火薬を爆発させるため、装置の強度が十分に高い
ことが必要であり、極めて大がかりな装置を設けること
が必要となる。
First, both rolling and explosion bonding require relatively large and complicated equipment. For example, when manufacturing cladding materials by cold rolling, the rolling reduction per pass is generally 30% or more, so an extremely large rolling mill is required to manufacture wide cladding materials. It becomes necessary. Furthermore, when producing a clad material by hot rolling, special measures must be taken to prevent oxidation of the core material or side materials at high temperatures, which is complicated. On the other hand, in the explosive bonding method, in order to explode the gunpowder, the strength of the device must be sufficiently high, and it is necessary to provide an extremely large-scale device.

次に、例えば、硬度等の機械的性質が異なる金属又は合
金同士を冷間圧延してクラツド材を製造する場合、硬度
が低い金属又は合金と硬度が高い金属又は合金とは塑性
変形時における挙動が相互に異なるため、クラツド率を
制御することが困難であり、また、芯材又は側材に歪が
発生し易いという問題点がある。このため、芯材及び側
材の機械的性質が相互に異なるクラツド材を製造する場
合には、特別の配慮が必要である。
Next, for example, when producing a clad material by cold rolling metals or alloys with different mechanical properties such as hardness, the behavior of the metal or alloy with lower hardness and the metal or alloy with higher hardness during plastic deformation is Since the cladding ratios are different from each other, it is difficult to control the cladding ratio, and there are also problems in that distortion is likely to occur in the core material or the side materials. For this reason, special consideration is required when manufacturing cladding materials in which the mechanical properties of the core and side materials differ from each other.

更に、芯材及び側材に塑性変形を与える従来のクラツド
材の製造方法では、芯材と側材とに相互に異なる所望の
機械的性質を付与することは困難である。例えば、芯材
を硬く側材を軟らかくすることは極めて困難である。即
ち、冷間圧延法においては、芯材及び側材は同時に塑性
変形を受けるが、この塑性変形により芯材及び側材の特
性は夫々本来具備していた特性と異なったものになって
しまう。このため、一般的には、圧延によりクラツド材
を得た後、このクラツド材を所定の温度に加熱焼鈍して
硬さの調整を図っている。しかし、この場合も芯材と側
材とが異なる軟化特性を有している場合は芯材及び側材
を所望の硬度にすることは極めて困難である。また、硬
度以外の物理的及び化学的性質を調整する場合も同様の
問題点を有している。
Furthermore, in the conventional manufacturing method of cladding materials in which plastic deformation is applied to the core material and the side materials, it is difficult to impart different desired mechanical properties to the core material and the side materials. For example, it is extremely difficult to make the core material hard and the side materials soft. That is, in the cold rolling method, the core material and the side materials undergo plastic deformation at the same time, but due to this plastic deformation, the characteristics of the core material and the side materials become different from their original characteristics. For this reason, generally, after obtaining a clad material by rolling, the clad material is heated and annealed to a predetermined temperature to adjust the hardness. However, in this case as well, if the core material and the side materials have different softening properties, it is extremely difficult to make the core material and the side materials have the desired hardness. Further, similar problems arise when adjusting physical and chemical properties other than hardness.

本発明はかかる問題点に鑑みでなされたものであって、
芯材及び側材の機械的特性を任意に設定することができ
ると共に、簡便な装置を使用して容易にクラツド材を製
造することができる銅又は銅合金材の接合方法を提供す
ることを目的とする。
The present invention has been made in view of such problems, and includes:
The purpose of the present invention is to provide a method for joining copper or copper alloy materials, which allows the mechanical properties of the core material and side materials to be arbitrarily set, and which also allows easy production of cladding materials using simple equipment. shall be.

[課題を解決するための手段] 本発明に係る銅又は銅合金材の接合方法は、銅又は銅合
金からなる芯材と銅又は銅合金からなる側材とを接合す
る接合方法において、前記芯材及び側材のうち少なくと
もいずれか一方の面にSnめっきを施す工程と、このめ
っき層を間に挾んで前記芯材及び側材を重ね合わせ塑性
変形を与えない範囲で加圧しつつ加熱する工程とを有す
ることを特徴とする。
[Means for Solving the Problems] A method for joining copper or copper alloy materials according to the present invention is a joining method for joining a core material made of copper or a copper alloy and a side material made of copper or a copper alloy. A step of applying Sn plating to at least one surface of the core material and the side material, and a step of overlapping the core material and the side material with this plating layer sandwiched in between and heating while applying pressure within a range that does not cause plastic deformation. It is characterized by having the following.

[作用コ 本発明においては、銅又は銅合金の芯材及び側材の相互
間にSnめっき層を配設して芯材と側材とを加熱する。
[Function] In the present invention, a Sn plating layer is disposed between a core material and a side material made of copper or a copper alloy, and the core material and the side material are heated.

そうすると、Snめっき層中に芯材及び側材中のCuが
拡散し、Snめっき層の内部におけるCu原子の高速拡
散を利用した一種の拡散接合により芯材と側材とが接合
される。この場合に、芯材と側材とを密着させる程度の
加圧力は印加するが、芯材と側材とが塑性変形を受ける
ような強大な圧力は印加しない。従って、この接合工程
において、芯材及び側材の機械的特性は実質的に変化し
ないので、最終的に要求される特性を備えた芯材及び側
材を接合工程に供することができる。換言すれば、クラ
ツド材製品として要求される特性を備えた芯材及び側材
を接合することにより所定の特性を有するクラツド材を
製造することができるので、任意の機械的特性を備えた
クラット材を容易に製造することができる。
Then, Cu in the core material and the side material diffuses into the Sn plating layer, and the core material and the side material are joined by a type of diffusion bonding that utilizes high-speed diffusion of Cu atoms inside the Sn plating layer. In this case, pressure is applied to the extent that the core material and the side materials are brought into close contact with each other, but such pressure that the core material and the side materials undergo plastic deformation is not applied. Therefore, in this joining process, the mechanical properties of the core material and the side materials do not substantially change, so that the core material and the side materials that finally have the required properties can be subjected to the joining process. In other words, a clad material with predetermined characteristics can be manufactured by joining a core material and side materials that have the characteristics required for a clad material product, so a clad material with arbitrary mechanical properties can be manufactured. can be easily manufactured.

次に、めっき層をSnに限定する理由について説明する
Next, the reason why the plating layer is limited to Sn will be explained.

金属同士を金属原子の拡散により接合する方法は公知の
技術であるが、この技術を工業的に使用するためには拡
散による接合が経済的に可能な時間内で行われる必要が
ある。
A method of bonding metals together by diffusion of metal atoms is a well-known technique, but in order to use this technique industrially, bonding by diffusion must be performed within an economically possible time.

一般に、金属中において原子が拡散する機構は原子空孔
を媒介として拡散が進行する空孔拡散機構と、原子と原
子との間の空隙を移動する格子間拡散機構とが主要なも
のである。この場合に、後者の格子間拡散機構による拡
散の方が原子の拡散速度は速い。しかし、Sn中におけ
るAu、AgCu及びZn等の各金属原子の拡散はこれ
らの機構とは異なり、前記金属原子が結晶格子間に位置
してSn原子と対をなし、これが再配向したり、別のS
n原子と再結晶しながら拡散するデイプロン(Dipl
on)機構に支配される(中部英雄 日本金属学会報 
第22巻第6号第480〜487頁)。
In general, the main mechanisms by which atoms diffuse in metals are a vacancy diffusion mechanism in which diffusion progresses through atomic vacancies, and an interstitial diffusion mechanism in which atoms move through gaps between atoms. In this case, the rate of atomic diffusion is faster in the latter interstitial diffusion mechanism. However, the diffusion of metal atoms such as Au, AgCu, and Zn in Sn differs from these mechanisms; the metal atoms are located between crystal lattices and form pairs with Sn atoms, which may reorient or separate. S of
Diplons diffuse while recrystallizing with n atoms.
on) Controlled by the mechanism (Hideo Chubu, Journal of the Japan Institute of Metals)
Vol. 22, No. 6, pp. 480-487).

このデイプロン機構により前記金属原子は極めて速い速
度でSn中に拡散する。本発明はこのデイプロン機構を
工業的に利用したものである。
Due to this diplon mechanism, the metal atoms diffuse into Sn at an extremely high rate. The present invention utilizes this diplon mechanism industrially.

ところで、Cu原子がこのデイプロン機構により拡散す
るめっき金属としてはSnの外にpbがある。しかし、
pbは銅合金の熱間脱性を招来するために、pbを含む
合金はスクラップとして再利用できないという事情があ
り、このため、pbめっき層を利用することは工業的に
好ましいものではない。従って、本発明においてはSn
めっき層を銅又は銅合金材の接合に利用する。
Incidentally, in addition to Sn, there is PB as a plating metal in which Cu atoms diffuse by this diplon mechanism. but,
Since PB causes hot deoxidization of copper alloys, alloys containing PB cannot be reused as scrap, and for this reason, it is not industrially preferable to use a PB plating layer. Therefore, in the present invention, Sn
The plating layer is used for joining copper or copper alloy materials.

[実施例] 次に、本発明の実施例について説明する。本実施例は、
銅又は銅合金の芯材に銅又は銅合金の側材を接合してク
ラツド材を製造するものである。
[Example] Next, an example of the present invention will be described. In this example,
A cladding material is manufactured by joining a copper or copper alloy side material to a copper or copper alloy core material.

先す、芯材又は側材にSnめっきを施す。このSnめっ
きは芯材及び側材の両方の接合面に施してもよいし、い
ずれか一方の接合面にのみ施してもよい、また、Snめ
っきする面は芯材又は側材の片面又は両面のいずれでも
よい。更に、Snめっきは光沢めっきでも又は無光沢め
っきでもよく、その効果は同一である。
First, apply Sn plating to the core material or side materials. This Sn plating may be applied to both the joint surfaces of the core material and the side materials, or it may be applied only to either joint surface, and the surface to be Sn plated may be one or both sides of the core material or the side materials. Either of these is fine. Furthermore, the Sn plating may be a bright plating or a matte plating, and the effect is the same.

Snめっき層の厚さは接合効果上、特に限定するもので
はないが、Snめっき層が厚過ぎると後述する工程で所
要加熱時間が長くなり、製造コストが増大してしまう。
The thickness of the Sn plating layer is not particularly limited in view of the bonding effect, but if the Sn plating layer is too thick, the heating time required in the process described below will be longer, and the manufacturing cost will increase.

一方、めっき層の厚さが薄過ぎると、めっきのむらが発
生する。これらの理由により、Snめっき層の厚さは0
.3乃至10μmとすることが好ましい。
On the other hand, if the thickness of the plating layer is too thin, uneven plating will occur. For these reasons, the thickness of the Sn plating layer is 0.
.. The thickness is preferably 3 to 10 μm.

次に、芯材と側材とをSnめっき層を介して重ね合わせ
、芯材及び側材が塑性変形しない程度の圧力を印加しつ
つ加熱する。この加圧は、芯材と側材とを密着させて前
述のデイプロン機構によるCu原子の拡散を十分なもの
にし、芯材と側材との間を強固に接合するために行うも
のである。従って、芯材又は側材が塑性変形する程の過
剰な加圧は芯材又は側材の機械的特性が変化するので回
避する必要がある。芯材及び側材の接触が十分保なれて
いる場合は、このときの加圧力を殆どOkg / cr
dにしても芯材と側材とを十分にクラット化することが
できる。しがし、より一層健全なりラッド材を得るため
には、芯材又は側材の耐力の10乃至80%の範囲の圧
力で加圧することが好ましい。
Next, the core material and the side materials are overlapped with the Sn plating layer interposed therebetween, and heated while applying pressure to an extent that the core material and the side materials do not undergo plastic deformation. This pressurization is performed in order to bring the core material and the side material into close contact with each other, to ensure sufficient diffusion of Cu atoms by the above-mentioned diplon mechanism, and to firmly bond the core material and the side material. Therefore, it is necessary to avoid applying excessive pressure to the extent that the core material or the side materials undergo plastic deformation, since this will change the mechanical properties of the core material or the side materials. If the contact between the core material and side material is maintained sufficiently, the pressing force at this time should be approximately Okg/cr.
Even if it is d, the core material and side materials can be sufficiently made into crat. However, in order to obtain a more sound rudd material, it is preferable to apply pressure at a pressure in the range of 10 to 80% of the yield strength of the core material or side material.

このときの加熱温度は、例えば、温度が23℃のときに
おけるSn中のCu原子の拡散係数が約4X10−9と
十分に大きく、Cu拡散速度が速いため、特に高温にす
る必要はない。一方、加熱温度が高過ぎる場合は、芯材
及び側材の表面が酸化したり、特性が変化することがあ
るので、加熱温度は300℃以下にすることが好ましい
The heating temperature at this time does not need to be particularly high because, for example, the diffusion coefficient of Cu atoms in Sn at a temperature of 23° C. is approximately 4×10 −9 , which is sufficiently large and the Cu diffusion rate is fast. On the other hand, if the heating temperature is too high, the surfaces of the core material and side materials may be oxidized or their properties may change, so the heating temperature is preferably 300° C. or lower.

なお、めっき工程と加熱圧着工程とは連続的に行うこと
もできるが、個別的に行っても良い。また、加熱圧着工
程においてロール対により芯材及び側材に連続的に圧力
を加えてもよいし、バッチ式で芯材及び側材の全面に圧
力を加えて接合することもできる。
Note that the plating process and the heat-pressing process can be performed continuously, but they may also be performed separately. Further, in the heat-press bonding step, pressure may be continuously applied to the core material and side materials using a pair of rolls, or pressure may be applied to the entire surface of the core material and side materials in a batch method.

次に、本実施例方法により実際にクラツド材を製造した
結果について説明する。
Next, the results of actually manufacturing a clad material using the method of this example will be explained.

衷11LL 芯材用として、厚さが0.8mm、ビッカース硬さが1
80のりん青銅板材を用意し、側材用として、厚さが0
.4開、ビッカース硬さが1ooのりん脱酸銅板材を用
意して、各板材がら一辺が200mmの正方形の芯材及
び側材を切り出した。次に、側材の片面をマスキングし
、他方の面に厚さが1.0μmの無光沢Snめっきを施
しな。このときのめっき条件を下記に示す。
Thickness 11LL For core material, thickness 0.8mm, Vickers hardness 1
Prepare 80mm phosphor bronze plate material and use it as side material with a thickness of 0.
.. A phosphorus-deoxidized copper plate material having a diameter of 4 mm and a Vickers hardness of 10 mm was prepared, and a square core material and side material each having a side of 200 mm were cut out from each plate material. Next, one side of the side material was masked, and the other side was coated with matte Sn plating with a thickness of 1.0 μm. The plating conditions at this time are shown below.

めっき液; S n S 04        40g
/ (IH2804100g/j’ クレソ゛−ルスル)オン酸 30g71分散剤    
     10g/Jl電流密度;  2.5A/dm
2 液温  ;20℃ 次に、この側材のめっき面を内側にして芯材と重ね合わ
せ、これを150’Cに加熱したポットプレス装置に設
置し、5kg / crdの圧力を印加して30分間保
持した。これにより、芯材及び側材中のCu原子がSn
めっき層中に拡散し、芯材と側材が接合されてクラツド
材が製造された。
Plating solution; S n S 04 40g
/ (IH2804100g/j'cresol)onic acid 30g71 Dispersant
10g/Jl current density; 2.5A/dm
2 Liquid temperature: 20°C Next, this side material was stacked on the core material with the plated surface inside, and this was placed in a pot press device heated to 150'C, and a pressure of 5kg/crd was applied to 30°C. Hold for minutes. As a result, Cu atoms in the core material and side materials become Sn
It diffused into the plating layer, and the core material and side materials were joined to produce a cladding material.

次いで、このクラツド材をホットプレス装置がら取出し
、冷却した。
The clad material was then taken out of the hot press and cooled.

上述の如く製造しなりん青銅とりん脱酸銅とのクラツド
材について、以下に示す試験を行った。
The following tests were conducted on the cladding materials of phosphor bronze and phosphorus deoxidized copper produced as described above.

■このクラツド材から小片を切り出してその断面を光学
顕微鏡で観察した。第1図はこの断面の金属組織写真(
倍率1000倍)である。
■A small piece was cut out from this crud material and its cross section was observed using an optical microscope. Figure 1 is a photograph of the metallographic structure of this cross section (
(1000x magnification).

この第1図から明らかなように、芯材と側材との境界部
分には空洞等の欠陥がなく、両者は健全に接合されてい
た。
As is clear from FIG. 1, there were no defects such as cavities at the boundary between the core material and the side materials, and the two were soundly joined.

■芯材及び側材のビッカース硬さを測定した。■The Vickers hardness of the core material and side materials was measured.

その結果、芯材のビッカース硬さは180であり、側材
のビッカース硬さは99であり、芯材のビッカース硬さ
は接合前と同一であり、側材のビッカース硬さも接合前
と殆ど同一である。
As a result, the Vickers hardness of the core material was 180, and the Vickers hardness of the side materials was 99. The Vickers hardness of the core material was the same as before joining, and the Vickers hardness of the side materials was also almost the same as before joining. It is.

■このクラツド材を400℃の温度で5分間加熱し、接
合の健全性を試べた。
■This clad material was heated at 400°C for 5 minutes to test the soundness of the joint.

その結果、ふくれ及び剥離等の不都合は発生しなかった
As a result, no problems such as blistering or peeling occurred.

上述の如く、本実施例においては芯材及び側材が塑性変
形せず、その機械的特性を殆ど変化させることなく、極
めて健全な接合面を有するクラツド材を製造できた。
As described above, in this example, the core material and the side materials were not plastically deformed, and a cladding material having an extremely sound joint surface could be manufactured without substantially changing its mechanical properties.

実施例2 芯材用に幅が250mm、厚さが0.6mm、ビッカー
ス硬さが80の黄銅板のコイルを用意し、側材用に幅が
250市、厚さが0.2韻、ビッカース硬さが60の無
酸素銅板のコイルを用意した。そして、無酸素銅板のコ
イルから巻き解いた側材の片面に光沢Snめっきを0.
5μmの厚さに施した。次いで、このめっき面を間に挾
んでこの側材と黄銅板のコイルから巻き解いた芯材とを
重ね合わせ、これを250℃に加熱したシリコンゴム製
のロールを有するホットラミネータに通板した。このと
き、ロールの加圧力は5kg / crdとし、通板速
度は2m/分とした。
Example 2 A brass plate coil with a width of 250 mm, a thickness of 0.6 mm, and a Vickers hardness of 80 was prepared for the core material, and a coil of a brass plate with a width of 250 mm, a thickness of 0.2 mm, and a Vickers hardness of 80 was prepared for the side material. A coil made of an oxygen-free copper plate having a hardness of 60 was prepared. Then, one side of the side material unwound from the oxygen-free copper plate coil is coated with 0.0% bright Sn plating.
It was applied to a thickness of 5 μm. Next, this side material and a core material unwound from a coil of brass plate were overlapped with the plated surface sandwiched therebetween, and this was passed through a hot laminator having silicone rubber rolls heated to 250°C. At this time, the pressing force of the roll was 5 kg/crd, and the sheet passing speed was 2 m/min.

上述の如くして得られたクラツド材から所定の寸法の試
験片を切り出し、その断面を光学顕微鏡で観察して芯材
と側材との接合の状態を調べた。
A test piece of a predetermined size was cut from the cladding material obtained as described above, and its cross section was observed with an optical microscope to examine the state of the bond between the core material and the side material.

また、第1の実施例と同様に、ビッカース硬さ並びに加
熱後のふくれ及び剥離の有無を調べた。その結果、芯材
及び側材のビッカース硬さは接合前と同様であり、また
、芯材及び側材は極めて健全に接合されていた。
In addition, as in the first example, the Vickers hardness and the presence or absence of blistering and peeling after heating were examined. As a result, the Vickers hardness of the core material and side materials was the same as before joining, and the core material and side materials were joined extremely soundly.

更に、このクラツド材の試験片に以下に示す試験を行っ
た。
Furthermore, the following tests were conducted on test pieces of this clad material.

■幅が10順、長さが80mmの試験片を、曲げ半径が
0.9mmで90°の角度に曲げ、その曲げ部分を切断
して断面を顕微鏡で観察した。
(2) A test piece with a width of 10 and a length of 80 mm was bent at an angle of 90° with a bending radius of 0.9 mm, the bent portion was cut, and the cross section was observed using a microscope.

この結果、接合部分におりる芯材と側材との剥離は全く
認められなかった。
As a result, no peeling between the core material and the side materials at the joint was observed.

■直径が60++++nの円盤をポンチ・ダイスで打抜
き、その周端部の断面を拡大鏡で観察した。
(2) A disk with a diameter of 60+++n was punched out using a punch and die, and the cross section of its peripheral edge was observed using a magnifying glass.

この結果、接合部分における芯材と側材との剥離は全く
認められなかった。
As a result, no peeling between the core material and the side materials was observed at the joint portion.

■■で打抜いた円盤を、直径が3311II11のポン
チを使用して深絞り加工し、円筒形に成形した。この円
筒を軸方向に切断し、その断面を拡大鏡で観察した。こ
の結果、接合部分におりる芯材と側材との剥離は全く認
められなかった。
The disk punched in step 2 was deep drawn using a punch with a diameter of 3311II11 to form it into a cylindrical shape. This cylinder was cut in the axial direction, and the cross section was observed with a magnifying glass. As a result, no peeling between the core material and the side materials at the joint was observed.

上述の如く、本実施例方法により製造されたクラツド材
は芯材と側材とが極めて健全に接合されており、種々の
成形加工が可能である。
As mentioned above, in the cladding material manufactured by the method of this embodiment, the core material and the side material are joined extremely soundly, and various molding processes are possible.

なお、本発明方法はクラツド材の製造以外に、任意の形
状の銅又は銅合金の接合方法としても使用できることは
明らかである。
It is clear that the method of the present invention can be used not only for producing cladding materials but also for joining copper or copper alloys of any shape.

[発明の効果] 以上説明したように、本発明方法によれば、銅又は銅合
金の芯材及び側材のうち少なくともいずれか一方にSn
めっきを施し、次いで、このめっき面を介して芯材と側
材とを重ね合わせて加熱接合するために、芯材及び側材
を塑性変形させることなくクラツド材を製造できる。こ
れにより、複雑且つ大型であって高価な設備を要するこ
となく、芯材及び側材が夫々所望の機械的特性を有する
と共に、極めて健全な接合面を有するクラツド材を低コ
ストで製造することができる。
[Effects of the Invention] As explained above, according to the method of the present invention, Sn is added to at least one of the core material and the side material of copper or copper alloy.
Since the core material and the side materials are plated, and then the core material and the side materials are overlapped and heat-bonded via the plated surfaces, the cladding material can be manufactured without plastically deforming the core material and the side materials. This makes it possible to manufacture cladding materials at low cost, in which the core material and side materials each have the desired mechanical properties and have an extremely sound joint surface, without requiring complicated, large, and expensive equipment. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例により製造されたクララド材の
断面を示す金属顕微鏡写真である。 手続補正書 (方式) 1、事件の表示 平成1年特許願第36937号 2、発明の名称 銅又は銅合金材の接合方法 3、補正をする者 事件との関係    特許出願人 住所 兵庫県神戸市中央区脇浜町1丁目3番18号名称
   (119)株式会社 神 戸 製 鋼 所代表者
亀高素吉 4、代理人 住所 東京都港区浜松町2丁目3番29号 磯山第2ビル4階(〒105) 6、補正の対象 図面及び明細書の図面の簡単な説明の欄7゜ 補正の内容 (1)図面を削除する。 (2)明細書第14頁第19行目乃至第15頁第1行目
の「4、図面の簡単な説明」の欄を削除する。 以上
FIG. 1 is a metallurgical microscope photograph showing a cross section of a Clarad material manufactured according to an example of the present invention. Written amendment (method) 1. Indication of the case Patent Application No. 36937, 1999 2. Name of the invention Method for joining copper or copper alloy materials 3. Person making the amendment Relationship to the case Patent applicant address Kobe City, Hyogo Prefecture 1-3-18 Wakihamacho, Chuo-ku Name (119) Kobe Steel Co., Ltd. Representative: Sokichi Kametaka 4, Agent address: 4th floor, Isoyama Building 2, 2-3-29 Hamamatsucho, Minato-ku, Tokyo 105) 6. Column for brief explanation of drawings subject to amendment and drawings in specification 7゜Contents of amendment (1) Drawings will be deleted. (2) Delete the column "4. Brief description of the drawings" from page 14, line 19 to page 15, line 1 of the specification. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)銅又は銅合金からなる芯材と銅又は銅合金からな
る側材とを接合する接合方法において、前記芯材及び側
材のうち少なくともいずれか一方の面にSnめっきを施
す工程と、このめっき層を間に挾んで前記芯材及び側材
を重ね合わせ塑性変形を与えない範囲で加圧しつつ加熱
する工程とを有することを特徴とする銅又は銅合金材の
接合方法。
(1) In a joining method for joining a core material made of copper or a copper alloy and a side material made of copper or a copper alloy, the step of applying Sn plating to at least one surface of the core material and the side material; A method for joining copper or copper alloy materials, comprising the step of overlapping the core material and the side materials with the plating layer sandwiched therebetween, and heating while applying pressure within a range that does not cause plastic deformation.
JP3693789A 1989-02-16 1989-02-16 Method for joining materials of copper or copper alloy Pending JPH02217182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3693789A JPH02217182A (en) 1989-02-16 1989-02-16 Method for joining materials of copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3693789A JPH02217182A (en) 1989-02-16 1989-02-16 Method for joining materials of copper or copper alloy

Publications (1)

Publication Number Publication Date
JPH02217182A true JPH02217182A (en) 1990-08-29

Family

ID=12483670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3693789A Pending JPH02217182A (en) 1989-02-16 1989-02-16 Method for joining materials of copper or copper alloy

Country Status (1)

Country Link
JP (1) JPH02217182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014115358A1 (en) * 2013-01-25 2017-01-26 株式会社村田製作所 Module and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014115358A1 (en) * 2013-01-25 2017-01-26 株式会社村田製作所 Module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7845203B2 (en) Preparation method of laminated composite materials of different alloys
US4292377A (en) Gold colored laminated composite material having magnetic properties
US3210840A (en) Stainless steel clad aluminum and methods of making same
US4423120A (en) Laminating method and article
EP0060083A1 (en) Titanium clad steel plate
US3261724A (en) Stainless steel clad aluminum and methods of making same
US4500028A (en) Method of forming a composite material having improved bond strength
US4429022A (en) Composite material having improved bond strength
CA1220307A (en) Bonding sheets
US5067649A (en) Bonding metal components
US4980245A (en) Multi-element metallic composite article
JPH02217182A (en) Method for joining materials of copper or copper alloy
US3775067A (en) Copper backed electrical contact
JPH02251384A (en) Method for mutual joining copper or copper alloy
DE4243141C2 (en) Cold-brittle copper-phosphor solder alloys on copper strips
JPH02251385A (en) Method for joining copper or copper alloy to each other
GB2144061A (en) Process for producing aluminium-clad composite materials by roll cladding
JPH044986A (en) Manufacture of nickel and stainless steel clad material
JPS58179582A (en) Production of aluminum coated steel plate
JPS63246238A (en) Vibration-damping metallic plate and manufacture thereof
JP2879725B2 (en) Method of manufacturing clad plate of Ta and Cu
JPH0353074B2 (en)
JP2001058280A (en) Clad material for coin and clad coin
US3632455A (en) Ductile ultrahigh strength steel mainly consisting of quenched and tempered steel and a method of manufacturing the same
JPS6313620A (en) Bending method for resin laminated metal plate