JPH02251107A - Choke coil - Google Patents

Choke coil

Info

Publication number
JPH02251107A
JPH02251107A JP7361689A JP7361689A JPH02251107A JP H02251107 A JPH02251107 A JP H02251107A JP 7361689 A JP7361689 A JP 7361689A JP 7361689 A JP7361689 A JP 7361689A JP H02251107 A JPH02251107 A JP H02251107A
Authority
JP
Japan
Prior art keywords
core
choke coil
magnetic
magnetic flux
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7361689A
Other languages
Japanese (ja)
Inventor
Toru Harada
徹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP7361689A priority Critical patent/JPH02251107A/en
Publication of JPH02251107A publication Critical patent/JPH02251107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To obtain a choke coil characterized by high saturation magnetomotive force, less magnetic flux leakage and high permeability by inserting a spacer which is formed with a magnetic material whose permeability is lower than that of a core material and whose saturation magnetic flux density is higher than that of the core material into a gap. CONSTITUTION:In a choke coil A, a part of a toroidal core 1 which is formed with a high permeability magnetic material such as an amorphous material is cut out, and a gap 2 is provided. A spacer 3 comprising a magnetic material characterized by low permeability and high saturation magnetic flux density is inserted into the gas 2. A conductor wire 4 such as polyurethane coated copper wire and the like is wound around the core 1 many number of turns, and the coil is formed. When a large current is made to flow through the conductor wire 4 until the magnetic flux density in the core 1 is saturated, the choke coil having highly saturated magnetomotive force is obtained. As the gap 2, the magnetic material whose permeability is relatively low is used. In this way, the saturation magnetomotive force of the choke coil having the high permeability can be made high, and the leaking magnetic flux at the gap part is made less. Magnetic interference with surrounding electric parts can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チョークコイルに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a choke coil.

〔背景技術〕[Background technology]

アモルファスコアのような高透磁率材料のコアを用いた
チョークコイルは、飽和起磁力(コア内部の磁束密度が
飽和値に達する時の起磁力)が小さいという問題かある
。すなわち、導線に電流を流すと、比較的小さな電流値
でコア内部が容易に飽和磁束密度に達してしまう。
A choke coil using a core made of a high magnetic permeability material such as an amorphous core has a problem in that the saturation magnetomotive force (the magnetomotive force when the magnetic flux density inside the core reaches a saturation value) is small. That is, when a current is passed through the conducting wire, the inside of the core easily reaches the saturation magnetic flux density with a relatively small current value.

このため従来のチョークコイルにあっては、環状コアの
一部を切欠してギャップを設けることによって飽和起磁
力を高くし、キャップ内にギャップ長を決めるための樹
脂製スペーサを挿入している。
For this reason, in conventional choke coils, a part of the annular core is cut out to provide a gap to increase the saturation magnetomotive force, and a resin spacer is inserted into the cap to determine the gap length.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、ギャップ内に樹脂製スペーサを利・大し
た従来のチョークコイルては、ギャップ部における磁束
漏れが大きく、周囲の電子部品と磁気的干渉を起こして
ノイズの原因となるという欠点があった。しかも、この
ようなチョークコイルでは、飽和起磁力を高くするため
にギャップ長を大きくすると漏れ磁束が増大し、漏れ磁
束を減少させるためにキャップ長を小さくすると飽和起
磁力を十分に高くてきないという相反する問題かあった
However, conventional choke coils in which a resin spacer is used in the gap have the drawback that magnetic flux leakage is large in the gap, causing magnetic interference with surrounding electronic components and causing noise. Moreover, in such a choke coil, if the gap length is increased to increase the saturation magnetomotive force, the leakage flux will increase, and if the cap length is decreased to reduce the leakage flux, the saturation magnetomotive force will not be sufficiently high. There were contradictory issues.

しかして、本発明は上記従来例の欠点に鑑みてなされた
ものであり、その目的とするところは飽和起磁力が高く
、しかも磁束漏れの少ない高透磁率のチョークコイルを
提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and its object is to provide a choke coil with high saturation magnetomotive force and high magnetic permeability with little magnetic flux leakage.

〔課題を解決するための手段〕[Means to solve the problem]

このため、本発明のチョークコイルは、環状をした高透
磁率材料のコアの一部を切欠してギャップを設け、コア
材料よりも低透磁率で飽和磁束密度の高い磁性材料によ
って形成されたスペーサを前記キャップ内に挿入し、コ
アに導線を巻回したことを特徴としている。
Therefore, in the choke coil of the present invention, a gap is provided by cutting out a part of the annular core made of a high magnetic permeability material, and a spacer is formed of a magnetic material having lower magnetic permeability and higher saturation magnetic flux density than the core material. is inserted into the cap, and a conductive wire is wound around the core.

〔作用〕[Effect]

本発明にあっては、高透磁率のコアを用いたチョークコ
イルにおいて、コアにギャップを設けであるので、チョ
ークコイルの飽和起磁力を高くできる。
In the present invention, in a choke coil using a core with high magnetic permeability, a gap is provided in the core, so that the saturation magnetomotive force of the choke coil can be increased.

しかも、コアのギャップ内に磁性材料(透磁率〉1)の
スペーサを挿入しであるので、ギャップ部分においても
磁性材料のスペーサ内に磁束を閉じ込めて漏れ磁束を少
なくすることができ、周囲の電子部品との磁気的干渉を
小さくしてノイズの発生等を抑制することができる。
Moreover, since a spacer made of magnetic material (magnetic permeability>1) is inserted into the gap of the core, the magnetic flux can be confined within the spacer made of magnetic material even in the gap part, reducing magnetic flux leakage, and the surrounding electrons It is possible to suppress the generation of noise by reducing magnetic interference with components.

また、スペーサ材料としてコアの透磁率に近い高透磁率
の磁性材料を用いると、キャップの設けられていないコ
アに近似するのて、コア内部の磁束密度が飽和し易くな
るが、本発明のチョークコイルでは低透磁率の磁性材料
を用いているので、大きな飽和起磁力を維持することが
できる。
Furthermore, if a magnetic material with a high magnetic permeability close to that of the core is used as a spacer material, the magnetic flux density inside the core becomes more likely to saturate as it approximates a core without a cap, but the choke of the present invention Since the coil uses a magnetic material with low magnetic permeability, a large saturation magnetomotive force can be maintained.

さらに、スペーサとして飽和磁束密度の高い磁性材料を
用いているので、コアよりも先にスペーサが飽和してし
まうことによってコア内部の磁束り、:度の増加が抑え
られることもなく、より飽和しにくいチョークコイルを
得ることができる。
Furthermore, since a magnetic material with a high saturation magnetic flux density is used as the spacer, the spacer saturates before the core, and the increase in magnetic flux inside the core is not suppressed and becomes more saturated. You can get a choke coil that is difficult to use.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図に基づいて詳述する。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に本発明のチョークコイルの一例を示す。このチ
ョークコイルAは、アモルファス桐材のような高透磁率
の磁性材料によって形成されたトロイタル型のコア]の
一部を切欠してキャップ2を設け、このギャップ2内に
低透磁率で飽和磁束密度の大きな磁性材料によって形成
され/ごスペーサ3を挿入し、コア1の周囲にポリウレ
タン被覆銅線等の導線4を多数回巻いたちのである。
FIG. 1 shows an example of the choke coil of the present invention. This choke coil A has a cap 2 formed by cutting out a part of a troital-shaped core made of a magnetic material with high magnetic permeability such as amorphous paulownia wood, and a saturation magnetic flux with low magnetic permeability in this gap 2. A spacer 3 made of a high-density magnetic material is inserted, and a conducting wire 4 such as a polyurethane-coated copper wire is wound around the core 1 many times.

第2図に示すものは、透磁率μm50000の角型コア
1にギャップ長(。−2,2mmの空間キャップ2を設
け、キャップ2内に透磁率μm10のスペーサ3を挿入
したチョークコイルAを想定し、コンピュータを用いて
有要素法解析によってシュミレーションした磁束密度分
布図である。このチョークコイルにおけるインダクタン
スしは375μHであった。
The one shown in Fig. 2 assumes a choke coil A in which a space cap 2 with a gap length (.-2.2 mm) is provided on a square core 1 with a magnetic permeability of 50,000 μm, and a spacer 3 with a magnetic permeability of 10 μm is inserted into the cap 2. This is a magnetic flux density distribution diagram simulated by element analysis using a computer.The inductance in this choke coil was 375 μH.

一方、第3図に示すものは、透磁率μm50000の角
型コア1aにキャップ長1 o=0.26mmの空間キ
ャップ2aを設けた従来例のチョークコイルBを想定し
、コンピュータを用いて有限要素法解析によってシュミ
レーションした磁束密度分布図である。
On the other hand, the one shown in FIG. 3 assumes a conventional choke coil B in which a square core 1a with a magnetic permeability of 50,000 μm is provided with a space cap 2a with a cap length of 1 o = 0.26 mm, and a finite element 2 is a magnetic flux density distribution diagram simulated by method analysis.

この第2図及び第3図を比較すると明らかなように、本
発明のチョークコイルAと従来例のチョークコイルBで
°は、インダクタンスの大きさは同程度であり、ギャッ
プ長はかえって本発明のチョークコイルAのほうが大き
いにも拘らず、漏れ磁束は本発明のチョークコイルAの
ほうが少なくなっている。また、両チョークコイルA、
Bの飽和起磁力は同程度であった。
As is clear from a comparison of FIGS. 2 and 3, the choke coil A of the present invention and the choke coil B of the conventional example have approximately the same inductance, and the gap length of the choke coil B of the present invention is on the contrary. Although the choke coil A is larger, the leakage magnetic flux is smaller in the choke coil A of the present invention. In addition, both choke coils A,
The saturation magnetomotive force of B was about the same.

このように、本発明のチョークコイルAでは、コア1に
ギャップ2を設けであるので、コア1内部の磁束密度が
飽和するまてに、導線4に大きな電流を流すことができ
、高飽和起磁力を持つチョ−クコイルが得られる。しか
も、このキャップ2何空間ギャップでなく、磁性材料の
スペーサ3を挿入されているので、磁束をスペーサ3内
に閉し込めて漏れ磁束を小さくすることがてきる。ここ
でスペーサ3の透磁率が1であると、樹脂製スペーサの
場合と同じであるのて、スペーサ3は磁性体(透磁率μ
〉1)である必要があるが、逆に透磁率がコア1と同程
度に高いと、キャップ2のない状態に近似し、飽和起磁
力が小さくなるので、比較的低透磁率の磁性材料を用い
る必要かある。
In this way, in the choke coil A of the present invention, since the gap 2 is provided in the core 1, a large current can be passed through the conductor 4 before the magnetic flux density inside the core 1 is saturated, and a high saturation phenomenon can be achieved. A choke coil with magnetic force is obtained. Moreover, since the spacer 3 made of a magnetic material is inserted into the cap 2 instead of a space gap, the magnetic flux can be confined within the spacer 3 and leakage magnetic flux can be reduced. Here, if the magnetic permeability of the spacer 3 is 1, it is the same as in the case of a resin spacer, so the spacer 3 is made of a magnetic material (magnetic permeability μ
〉1) However, conversely, if the magnetic permeability is as high as that of the core 1, it will approximate the state without the cap 2 and the saturation magnetomotive force will be small, so it is necessary to use a magnetic material with a relatively low magnetic permeability. Is it necessary to use it?

また、スペーサ材料の飽和磁束密度か低いと、コア1の
磁束密度か飽和する前にスペーサ3の磁束密度が飽和す
るので、スペーサ3の磁性材料としではコア1と同程度
もしくはコア1よりも飽和磁束密度の高いものを用いる
必要がある。さらに、本発明のチョークコイルAでは、
空間ギャップに比べてギャップにおける透磁率が大きく
なる点では飽和起磁力を下げる方向に寄与する反面、ギ
ャップ長を大きくてきる点と共に漏れ磁束が少なくなる
点では飽和起磁力を大きくする方向に寄与するので、従
来例のチョークコイルBと同程度もしくはそれ以上の高
飽和起磁力を得ることが可能である。
In addition, if the saturation magnetic flux density of the spacer material is low, the magnetic flux density of spacer 3 will be saturated before the magnetic flux density of core 1 is saturated, so the magnetic material of spacer 3 will have a saturation level equal to or higher than that of core 1. It is necessary to use one with high magnetic flux density. Furthermore, in the choke coil A of the present invention,
The point where the magnetic permeability in the gap becomes larger than that of the spatial gap contributes to lowering the saturation magnetomotive force, while the point where the gap length increases and the leakage flux decreases contributes to increasing the saturation magnetomotive force. Therefore, it is possible to obtain a high saturation magnetomotive force comparable to or higher than that of the choke coil B of the conventional example.

しかして、スペーサ3の磁性材料としては、透磁率μが
数10程度で、飽和磁束密度の高いものを用いるのが適
当てあり、例えば圧粉磁心等を用いるとよい。
Therefore, as the magnetic material for the spacer 3, it is appropriate to use a material with a magnetic permeability μ of about several 10 and a high saturation magnetic flux density; for example, a powder magnetic core or the like may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高透磁率のチョークコイルの飽和起磁
力を高くすることができる。同時に、ギャップ部分での
漏れ磁束も少なくできるので、周囲の電子部品との磁気
的干渉を抑制でき、チョークコイルがノイズ発生の原因
となることを防止できる。
According to the present invention, the saturation magnetomotive force of a choke coil with high magnetic permeability can be increased. At the same time, leakage magnetic flux at the gap can be reduced, so magnetic interference with surrounding electronic components can be suppressed, and the choke coil can be prevented from causing noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示ず平面図、第2図は同上
のチョークコイルの有限要素法解析による磁束密度分布
図、第3図は従来例のチョークコイルの有限要素法解析
による磁束密度分布図である。 1・・・コア 2・・・ギャップ 3・・・スペーサ 4・・・導線 特許出願人 株式会社 村田製作所 代理人  弁理士 中 野 雅 房 トt さ1
Fig. 1 is a plan view of an embodiment of the present invention, Fig. 2 is a magnetic flux density distribution diagram obtained by finite element analysis of the same choke coil as described above, and Fig. 3 is a diagram of the conventional choke coil obtained by finite element analysis. It is a magnetic flux density distribution diagram. 1...Core 2...Gap 3...Spacer 4...Conductor Patent Applicant Murata Manufacturing Co., Ltd. Representative Patent Attorney Masaru Nakano Fusato Sa1

Claims (1)

【特許請求の範囲】[Claims] (1)環状をした高透磁率材料のコアの一部を切欠して
ギャップを設け、コア材料よりも低透磁率で飽和磁束密
度の高い磁性材料によって形成されたスペーサを前記ギ
ャップ内に挿入し、コアに導線を巻回したことを特徴と
するチョークコイル。
(1) A gap is created by cutting out a part of the annular core of a high magnetic permeability material, and a spacer made of a magnetic material with lower magnetic permeability and higher saturation magnetic flux density than the core material is inserted into the gap. , a choke coil characterized by a conductor wound around the core.
JP7361689A 1989-03-24 1989-03-24 Choke coil Pending JPH02251107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7361689A JPH02251107A (en) 1989-03-24 1989-03-24 Choke coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7361689A JPH02251107A (en) 1989-03-24 1989-03-24 Choke coil

Publications (1)

Publication Number Publication Date
JPH02251107A true JPH02251107A (en) 1990-10-08

Family

ID=13523443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7361689A Pending JPH02251107A (en) 1989-03-24 1989-03-24 Choke coil

Country Status (1)

Country Link
JP (1) JPH02251107A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346336B1 (en) 1998-05-27 2002-02-12 Matsushita Electrical Industrial Co., Ltd. Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device
EP1498915A1 (en) * 2003-07-16 2005-01-19 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
US7023313B2 (en) 2003-07-16 2006-04-04 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
US7218197B2 (en) 2003-07-16 2007-05-15 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
JP2008099713A (en) * 2006-10-17 2008-05-01 Uchihashi Estec Co Ltd Medical tube and medical device set
JP2008140838A (en) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd Inductor component and electronic apparatus using the same
US7760525B2 (en) 2003-08-21 2010-07-20 Marvell World Trade Ltd. Voltage regulator
US7872454B2 (en) 2003-08-21 2011-01-18 Marvell World Trade Ltd. Digital low dropout regulator
JP2012253264A (en) * 2011-06-06 2012-12-20 Toyota Industries Corp Magnetic core
WO2015098579A1 (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Reactor
JP2021034478A (en) * 2019-08-21 2021-03-01 株式会社デンソー Reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934610A (en) * 1982-08-20 1984-02-25 Nippon Kinzoku Kk Iron core
JPS6124211A (en) * 1984-07-13 1986-02-01 Hitachi Metals Ltd Magnetic core for polarized choke coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934610A (en) * 1982-08-20 1984-02-25 Nippon Kinzoku Kk Iron core
JPS6124211A (en) * 1984-07-13 1986-02-01 Hitachi Metals Ltd Magnetic core for polarized choke coil

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346336B1 (en) 1998-05-27 2002-02-12 Matsushita Electrical Industrial Co., Ltd. Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device
US7849586B2 (en) 2003-07-16 2010-12-14 Marvell World Trade Ltd. Method of making a power inductor with reduced DC current saturation
US7987580B2 (en) 2003-07-16 2011-08-02 Marvell World Trade Ltd. Method of fabricating conductor crossover structure for power inductor
US7023313B2 (en) 2003-07-16 2006-04-04 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
US7218197B2 (en) 2003-07-16 2007-05-15 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
US7307502B2 (en) 2003-07-16 2007-12-11 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
JP2005039229A (en) * 2003-07-16 2005-02-10 Marvell World Trade Ltd Power inductor reduced in dc current saturation
US7868725B2 (en) 2003-07-16 2011-01-11 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
EP1498915A1 (en) * 2003-07-16 2005-01-19 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
US8028401B2 (en) 2003-07-16 2011-10-04 Marvell World Trade Ltd. Method of fabricating a conducting crossover structure for a power inductor
US7489219B2 (en) 2003-07-16 2009-02-10 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
US7882614B2 (en) 2003-07-16 2011-02-08 Marvell World Trade Ltd. Method for providing a power inductor
US7760525B2 (en) 2003-08-21 2010-07-20 Marvell World Trade Ltd. Voltage regulator
US7872454B2 (en) 2003-08-21 2011-01-18 Marvell World Trade Ltd. Digital low dropout regulator
JP2008099713A (en) * 2006-10-17 2008-05-01 Uchihashi Estec Co Ltd Medical tube and medical device set
JP2008140838A (en) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd Inductor component and electronic apparatus using the same
JP2012253264A (en) * 2011-06-06 2012-12-20 Toyota Industries Corp Magnetic core
US9041500B2 (en) 2011-06-06 2015-05-26 Kabushiki Kaisha Toyota Jidoshokki Magnetic core
WO2015098579A1 (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Reactor
JP2015122456A (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Reactor
JP2021034478A (en) * 2019-08-21 2021-03-01 株式会社デンソー Reactor

Similar Documents

Publication Publication Date Title
JPH02251107A (en) Choke coil
JPS639918A (en) Reactor for blocking radio interference
JP2002083724A (en) Magnetic core and magnetic element
JP3097484B2 (en) choke coil
JPS58186922A (en) Low frequency transformer
JPH04230009A (en) Choke or transformer
JPH02164013A (en) Nonlinear choke coil
JP3005403B2 (en) Magnetic head
JP3151676B2 (en) Data line filter
JP3063557B2 (en) choke coil
JPS5912757Y2 (en) magnetic head
JPH0452970Y2 (en)
JPH11176666A (en) Magnetic shield inductor, and transformer
JPS6039215U (en) Choke coil using drum core winding material
JPH10232141A (en) Method for magnetizing magnetic body and magnetic potentiometer using the same
JPH0245905A (en) Converter transformer
JPS59230190A (en) Magnetic field generating coil
JPH08264325A (en) Chip-type inductor
JPH0231307A (en) Magnetic head
JPH02177102A (en) Modulation magnetic field generating device
JPS59129375U (en) Multipolar magnetizer
JPS59139614A (en) Structure of magnetic core
JPS5619A (en) Magnetic head
Yoshizawa et al. Amorphous Wound Coil(Core)
JPS6120207A (en) Magnetic recording head