JPH02251107A - Choke coil - Google Patents
Choke coilInfo
- Publication number
- JPH02251107A JPH02251107A JP7361689A JP7361689A JPH02251107A JP H02251107 A JPH02251107 A JP H02251107A JP 7361689 A JP7361689 A JP 7361689A JP 7361689 A JP7361689 A JP 7361689A JP H02251107 A JPH02251107 A JP H02251107A
- Authority
- JP
- Japan
- Prior art keywords
- core
- choke coil
- magnetic
- magnetic flux
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011162 core material Substances 0.000 claims abstract description 35
- 230000004907 flux Effects 0.000 claims abstract description 34
- 230000035699 permeability Effects 0.000 claims abstract description 28
- 125000006850 spacer group Chemical group 0.000 claims abstract description 23
- 239000000696 magnetic material Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims abstract description 5
- 238000005520 cutting process Methods 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229920002635 polyurethane Polymers 0.000 abstract description 2
- 239000004814 polyurethane Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Coils Or Transformers For Communication (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チョークコイルに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a choke coil.
アモルファスコアのような高透磁率材料のコアを用いた
チョークコイルは、飽和起磁力(コア内部の磁束密度が
飽和値に達する時の起磁力)が小さいという問題かある
。すなわち、導線に電流を流すと、比較的小さな電流値
でコア内部が容易に飽和磁束密度に達してしまう。A choke coil using a core made of a high magnetic permeability material such as an amorphous core has a problem in that the saturation magnetomotive force (the magnetomotive force when the magnetic flux density inside the core reaches a saturation value) is small. That is, when a current is passed through the conducting wire, the inside of the core easily reaches the saturation magnetic flux density with a relatively small current value.
このため従来のチョークコイルにあっては、環状コアの
一部を切欠してギャップを設けることによって飽和起磁
力を高くし、キャップ内にギャップ長を決めるための樹
脂製スペーサを挿入している。For this reason, in conventional choke coils, a part of the annular core is cut out to provide a gap to increase the saturation magnetomotive force, and a resin spacer is inserted into the cap to determine the gap length.
しかしながら、ギャップ内に樹脂製スペーサを利・大し
た従来のチョークコイルては、ギャップ部における磁束
漏れが大きく、周囲の電子部品と磁気的干渉を起こして
ノイズの原因となるという欠点があった。しかも、この
ようなチョークコイルでは、飽和起磁力を高くするため
にギャップ長を大きくすると漏れ磁束が増大し、漏れ磁
束を減少させるためにキャップ長を小さくすると飽和起
磁力を十分に高くてきないという相反する問題かあった
。However, conventional choke coils in which a resin spacer is used in the gap have the drawback that magnetic flux leakage is large in the gap, causing magnetic interference with surrounding electronic components and causing noise. Moreover, in such a choke coil, if the gap length is increased to increase the saturation magnetomotive force, the leakage flux will increase, and if the cap length is decreased to reduce the leakage flux, the saturation magnetomotive force will not be sufficiently high. There were contradictory issues.
しかして、本発明は上記従来例の欠点に鑑みてなされた
ものであり、その目的とするところは飽和起磁力が高く
、しかも磁束漏れの少ない高透磁率のチョークコイルを
提供することにある。The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and its object is to provide a choke coil with high saturation magnetomotive force and high magnetic permeability with little magnetic flux leakage.
このため、本発明のチョークコイルは、環状をした高透
磁率材料のコアの一部を切欠してギャップを設け、コア
材料よりも低透磁率で飽和磁束密度の高い磁性材料によ
って形成されたスペーサを前記キャップ内に挿入し、コ
アに導線を巻回したことを特徴としている。Therefore, in the choke coil of the present invention, a gap is provided by cutting out a part of the annular core made of a high magnetic permeability material, and a spacer is formed of a magnetic material having lower magnetic permeability and higher saturation magnetic flux density than the core material. is inserted into the cap, and a conductive wire is wound around the core.
本発明にあっては、高透磁率のコアを用いたチョークコ
イルにおいて、コアにギャップを設けであるので、チョ
ークコイルの飽和起磁力を高くできる。In the present invention, in a choke coil using a core with high magnetic permeability, a gap is provided in the core, so that the saturation magnetomotive force of the choke coil can be increased.
しかも、コアのギャップ内に磁性材料(透磁率〉1)の
スペーサを挿入しであるので、ギャップ部分においても
磁性材料のスペーサ内に磁束を閉じ込めて漏れ磁束を少
なくすることができ、周囲の電子部品との磁気的干渉を
小さくしてノイズの発生等を抑制することができる。Moreover, since a spacer made of magnetic material (magnetic permeability>1) is inserted into the gap of the core, the magnetic flux can be confined within the spacer made of magnetic material even in the gap part, reducing magnetic flux leakage, and the surrounding electrons It is possible to suppress the generation of noise by reducing magnetic interference with components.
また、スペーサ材料としてコアの透磁率に近い高透磁率
の磁性材料を用いると、キャップの設けられていないコ
アに近似するのて、コア内部の磁束密度が飽和し易くな
るが、本発明のチョークコイルでは低透磁率の磁性材料
を用いているので、大きな飽和起磁力を維持することが
できる。Furthermore, if a magnetic material with a high magnetic permeability close to that of the core is used as a spacer material, the magnetic flux density inside the core becomes more likely to saturate as it approximates a core without a cap, but the choke of the present invention Since the coil uses a magnetic material with low magnetic permeability, a large saturation magnetomotive force can be maintained.
さらに、スペーサとして飽和磁束密度の高い磁性材料を
用いているので、コアよりも先にスペーサが飽和してし
まうことによってコア内部の磁束り、:度の増加が抑え
られることもなく、より飽和しにくいチョークコイルを
得ることができる。Furthermore, since a magnetic material with a high saturation magnetic flux density is used as the spacer, the spacer saturates before the core, and the increase in magnetic flux inside the core is not suppressed and becomes more saturated. You can get a choke coil that is difficult to use.
以下、本発明の実施例を添付図に基づいて詳述する。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1図に本発明のチョークコイルの一例を示す。このチ
ョークコイルAは、アモルファス桐材のような高透磁率
の磁性材料によって形成されたトロイタル型のコア]の
一部を切欠してキャップ2を設け、このギャップ2内に
低透磁率で飽和磁束密度の大きな磁性材料によって形成
され/ごスペーサ3を挿入し、コア1の周囲にポリウレ
タン被覆銅線等の導線4を多数回巻いたちのである。FIG. 1 shows an example of the choke coil of the present invention. This choke coil A has a cap 2 formed by cutting out a part of a troital-shaped core made of a magnetic material with high magnetic permeability such as amorphous paulownia wood, and a saturation magnetic flux with low magnetic permeability in this gap 2. A spacer 3 made of a high-density magnetic material is inserted, and a conducting wire 4 such as a polyurethane-coated copper wire is wound around the core 1 many times.
第2図に示すものは、透磁率μm50000の角型コア
1にギャップ長(。−2,2mmの空間キャップ2を設
け、キャップ2内に透磁率μm10のスペーサ3を挿入
したチョークコイルAを想定し、コンピュータを用いて
有要素法解析によってシュミレーションした磁束密度分
布図である。このチョークコイルにおけるインダクタン
スしは375μHであった。The one shown in Fig. 2 assumes a choke coil A in which a space cap 2 with a gap length (.-2.2 mm) is provided on a square core 1 with a magnetic permeability of 50,000 μm, and a spacer 3 with a magnetic permeability of 10 μm is inserted into the cap 2. This is a magnetic flux density distribution diagram simulated by element analysis using a computer.The inductance in this choke coil was 375 μH.
一方、第3図に示すものは、透磁率μm50000の角
型コア1aにキャップ長1 o=0.26mmの空間キ
ャップ2aを設けた従来例のチョークコイルBを想定し
、コンピュータを用いて有限要素法解析によってシュミ
レーションした磁束密度分布図である。On the other hand, the one shown in FIG. 3 assumes a conventional choke coil B in which a square core 1a with a magnetic permeability of 50,000 μm is provided with a space cap 2a with a cap length of 1 o = 0.26 mm, and a finite element 2 is a magnetic flux density distribution diagram simulated by method analysis.
この第2図及び第3図を比較すると明らかなように、本
発明のチョークコイルAと従来例のチョークコイルBで
°は、インダクタンスの大きさは同程度であり、ギャッ
プ長はかえって本発明のチョークコイルAのほうが大き
いにも拘らず、漏れ磁束は本発明のチョークコイルAの
ほうが少なくなっている。また、両チョークコイルA、
Bの飽和起磁力は同程度であった。As is clear from a comparison of FIGS. 2 and 3, the choke coil A of the present invention and the choke coil B of the conventional example have approximately the same inductance, and the gap length of the choke coil B of the present invention is on the contrary. Although the choke coil A is larger, the leakage magnetic flux is smaller in the choke coil A of the present invention. In addition, both choke coils A,
The saturation magnetomotive force of B was about the same.
このように、本発明のチョークコイルAでは、コア1に
ギャップ2を設けであるので、コア1内部の磁束密度が
飽和するまてに、導線4に大きな電流を流すことができ
、高飽和起磁力を持つチョ−クコイルが得られる。しか
も、このキャップ2何空間ギャップでなく、磁性材料の
スペーサ3を挿入されているので、磁束をスペーサ3内
に閉し込めて漏れ磁束を小さくすることがてきる。ここ
でスペーサ3の透磁率が1であると、樹脂製スペーサの
場合と同じであるのて、スペーサ3は磁性体(透磁率μ
〉1)である必要があるが、逆に透磁率がコア1と同程
度に高いと、キャップ2のない状態に近似し、飽和起磁
力が小さくなるので、比較的低透磁率の磁性材料を用い
る必要かある。In this way, in the choke coil A of the present invention, since the gap 2 is provided in the core 1, a large current can be passed through the conductor 4 before the magnetic flux density inside the core 1 is saturated, and a high saturation phenomenon can be achieved. A choke coil with magnetic force is obtained. Moreover, since the spacer 3 made of a magnetic material is inserted into the cap 2 instead of a space gap, the magnetic flux can be confined within the spacer 3 and leakage magnetic flux can be reduced. Here, if the magnetic permeability of the spacer 3 is 1, it is the same as in the case of a resin spacer, so the spacer 3 is made of a magnetic material (magnetic permeability μ
〉1) However, conversely, if the magnetic permeability is as high as that of the core 1, it will approximate the state without the cap 2 and the saturation magnetomotive force will be small, so it is necessary to use a magnetic material with a relatively low magnetic permeability. Is it necessary to use it?
また、スペーサ材料の飽和磁束密度か低いと、コア1の
磁束密度か飽和する前にスペーサ3の磁束密度が飽和す
るので、スペーサ3の磁性材料としではコア1と同程度
もしくはコア1よりも飽和磁束密度の高いものを用いる
必要がある。さらに、本発明のチョークコイルAでは、
空間ギャップに比べてギャップにおける透磁率が大きく
なる点では飽和起磁力を下げる方向に寄与する反面、ギ
ャップ長を大きくてきる点と共に漏れ磁束が少なくなる
点では飽和起磁力を大きくする方向に寄与するので、従
来例のチョークコイルBと同程度もしくはそれ以上の高
飽和起磁力を得ることが可能である。In addition, if the saturation magnetic flux density of the spacer material is low, the magnetic flux density of spacer 3 will be saturated before the magnetic flux density of core 1 is saturated, so the magnetic material of spacer 3 will have a saturation level equal to or higher than that of core 1. It is necessary to use one with high magnetic flux density. Furthermore, in the choke coil A of the present invention,
The point where the magnetic permeability in the gap becomes larger than that of the spatial gap contributes to lowering the saturation magnetomotive force, while the point where the gap length increases and the leakage flux decreases contributes to increasing the saturation magnetomotive force. Therefore, it is possible to obtain a high saturation magnetomotive force comparable to or higher than that of the choke coil B of the conventional example.
しかして、スペーサ3の磁性材料としては、透磁率μが
数10程度で、飽和磁束密度の高いものを用いるのが適
当てあり、例えば圧粉磁心等を用いるとよい。Therefore, as the magnetic material for the spacer 3, it is appropriate to use a material with a magnetic permeability μ of about several 10 and a high saturation magnetic flux density; for example, a powder magnetic core or the like may be used.
本発明によれば、高透磁率のチョークコイルの飽和起磁
力を高くすることができる。同時に、ギャップ部分での
漏れ磁束も少なくできるので、周囲の電子部品との磁気
的干渉を抑制でき、チョークコイルがノイズ発生の原因
となることを防止できる。According to the present invention, the saturation magnetomotive force of a choke coil with high magnetic permeability can be increased. At the same time, leakage magnetic flux at the gap can be reduced, so magnetic interference with surrounding electronic components can be suppressed, and the choke coil can be prevented from causing noise.
第1図は本発明の一実施例を示ず平面図、第2図は同上
のチョークコイルの有限要素法解析による磁束密度分布
図、第3図は従来例のチョークコイルの有限要素法解析
による磁束密度分布図である。
1・・・コア
2・・・ギャップ
3・・・スペーサ
4・・・導線
特許出願人 株式会社 村田製作所
代理人 弁理士 中 野 雅 房
トt
さ1Fig. 1 is a plan view of an embodiment of the present invention, Fig. 2 is a magnetic flux density distribution diagram obtained by finite element analysis of the same choke coil as described above, and Fig. 3 is a diagram of the conventional choke coil obtained by finite element analysis. It is a magnetic flux density distribution diagram. 1...Core 2...Gap 3...Spacer 4...Conductor Patent Applicant Murata Manufacturing Co., Ltd. Representative Patent Attorney Masaru Nakano Fusato Sa1
Claims (1)
ギャップを設け、コア材料よりも低透磁率で飽和磁束密
度の高い磁性材料によって形成されたスペーサを前記ギ
ャップ内に挿入し、コアに導線を巻回したことを特徴と
するチョークコイル。(1) A gap is created by cutting out a part of the annular core of a high magnetic permeability material, and a spacer made of a magnetic material with lower magnetic permeability and higher saturation magnetic flux density than the core material is inserted into the gap. , a choke coil characterized by a conductor wound around the core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7361689A JPH02251107A (en) | 1989-03-24 | 1989-03-24 | Choke coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7361689A JPH02251107A (en) | 1989-03-24 | 1989-03-24 | Choke coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02251107A true JPH02251107A (en) | 1990-10-08 |
Family
ID=13523443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7361689A Pending JPH02251107A (en) | 1989-03-24 | 1989-03-24 | Choke coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02251107A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6346336B1 (en) | 1998-05-27 | 2002-02-12 | Matsushita Electrical Industrial Co., Ltd. | Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device |
EP1498915A1 (en) * | 2003-07-16 | 2005-01-19 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US7023313B2 (en) | 2003-07-16 | 2006-04-04 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US7218197B2 (en) | 2003-07-16 | 2007-05-15 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
JP2008099713A (en) * | 2006-10-17 | 2008-05-01 | Uchihashi Estec Co Ltd | Medical tube and medical device set |
JP2008140838A (en) * | 2006-11-30 | 2008-06-19 | Matsushita Electric Ind Co Ltd | Inductor component and electronic apparatus using the same |
US7760525B2 (en) | 2003-08-21 | 2010-07-20 | Marvell World Trade Ltd. | Voltage regulator |
US7872454B2 (en) | 2003-08-21 | 2011-01-18 | Marvell World Trade Ltd. | Digital low dropout regulator |
JP2012253264A (en) * | 2011-06-06 | 2012-12-20 | Toyota Industries Corp | Magnetic core |
WO2015098579A1 (en) * | 2013-12-25 | 2015-07-02 | アイシン精機株式会社 | Reactor |
JP2021034478A (en) * | 2019-08-21 | 2021-03-01 | 株式会社デンソー | Reactor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5934610A (en) * | 1982-08-20 | 1984-02-25 | Nippon Kinzoku Kk | Iron core |
JPS6124211A (en) * | 1984-07-13 | 1986-02-01 | Hitachi Metals Ltd | Magnetic core for polarized choke coil |
-
1989
- 1989-03-24 JP JP7361689A patent/JPH02251107A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5934610A (en) * | 1982-08-20 | 1984-02-25 | Nippon Kinzoku Kk | Iron core |
JPS6124211A (en) * | 1984-07-13 | 1986-02-01 | Hitachi Metals Ltd | Magnetic core for polarized choke coil |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6346336B1 (en) | 1998-05-27 | 2002-02-12 | Matsushita Electrical Industrial Co., Ltd. | Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device |
US7849586B2 (en) | 2003-07-16 | 2010-12-14 | Marvell World Trade Ltd. | Method of making a power inductor with reduced DC current saturation |
US7987580B2 (en) | 2003-07-16 | 2011-08-02 | Marvell World Trade Ltd. | Method of fabricating conductor crossover structure for power inductor |
US7023313B2 (en) | 2003-07-16 | 2006-04-04 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US7218197B2 (en) | 2003-07-16 | 2007-05-15 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US7307502B2 (en) | 2003-07-16 | 2007-12-11 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
JP2005039229A (en) * | 2003-07-16 | 2005-02-10 | Marvell World Trade Ltd | Power inductor reduced in dc current saturation |
US7868725B2 (en) | 2003-07-16 | 2011-01-11 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
EP1498915A1 (en) * | 2003-07-16 | 2005-01-19 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US8028401B2 (en) | 2003-07-16 | 2011-10-04 | Marvell World Trade Ltd. | Method of fabricating a conducting crossover structure for a power inductor |
US7489219B2 (en) | 2003-07-16 | 2009-02-10 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US7882614B2 (en) | 2003-07-16 | 2011-02-08 | Marvell World Trade Ltd. | Method for providing a power inductor |
US7760525B2 (en) | 2003-08-21 | 2010-07-20 | Marvell World Trade Ltd. | Voltage regulator |
US7872454B2 (en) | 2003-08-21 | 2011-01-18 | Marvell World Trade Ltd. | Digital low dropout regulator |
JP2008099713A (en) * | 2006-10-17 | 2008-05-01 | Uchihashi Estec Co Ltd | Medical tube and medical device set |
JP2008140838A (en) * | 2006-11-30 | 2008-06-19 | Matsushita Electric Ind Co Ltd | Inductor component and electronic apparatus using the same |
JP2012253264A (en) * | 2011-06-06 | 2012-12-20 | Toyota Industries Corp | Magnetic core |
US9041500B2 (en) | 2011-06-06 | 2015-05-26 | Kabushiki Kaisha Toyota Jidoshokki | Magnetic core |
WO2015098579A1 (en) * | 2013-12-25 | 2015-07-02 | アイシン精機株式会社 | Reactor |
JP2015122456A (en) * | 2013-12-25 | 2015-07-02 | アイシン精機株式会社 | Reactor |
JP2021034478A (en) * | 2019-08-21 | 2021-03-01 | 株式会社デンソー | Reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02251107A (en) | Choke coil | |
JPS639918A (en) | Reactor for blocking radio interference | |
JP2002083724A (en) | Magnetic core and magnetic element | |
JP3097484B2 (en) | choke coil | |
JPS58186922A (en) | Low frequency transformer | |
JPH04230009A (en) | Choke or transformer | |
JPH02164013A (en) | Nonlinear choke coil | |
JP3005403B2 (en) | Magnetic head | |
JP3151676B2 (en) | Data line filter | |
JP3063557B2 (en) | choke coil | |
JPS5912757Y2 (en) | magnetic head | |
JPH0452970Y2 (en) | ||
JPH11176666A (en) | Magnetic shield inductor, and transformer | |
JPS6039215U (en) | Choke coil using drum core winding material | |
JPH10232141A (en) | Method for magnetizing magnetic body and magnetic potentiometer using the same | |
JPH0245905A (en) | Converter transformer | |
JPS59230190A (en) | Magnetic field generating coil | |
JPH08264325A (en) | Chip-type inductor | |
JPH0231307A (en) | Magnetic head | |
JPH02177102A (en) | Modulation magnetic field generating device | |
JPS59129375U (en) | Multipolar magnetizer | |
JPS59139614A (en) | Structure of magnetic core | |
JPS5619A (en) | Magnetic head | |
Yoshizawa et al. | Amorphous Wound Coil(Core) | |
JPS6120207A (en) | Magnetic recording head |