JP2008099713A - Medical tube and medical device set - Google Patents

Medical tube and medical device set Download PDF

Info

Publication number
JP2008099713A
JP2008099713A JP2006282067A JP2006282067A JP2008099713A JP 2008099713 A JP2008099713 A JP 2008099713A JP 2006282067 A JP2006282067 A JP 2006282067A JP 2006282067 A JP2006282067 A JP 2006282067A JP 2008099713 A JP2008099713 A JP 2008099713A
Authority
JP
Japan
Prior art keywords
magnet
tube
magnetic
medical
medical tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282067A
Other languages
Japanese (ja)
Other versions
JP5034020B2 (en
Inventor
Norihiro Hiejima
Kazumi Toyoda
徳寛 比恵島
一実 豊田
Original Assignee
Nipro Corp
Uchihashi Estec Co Ltd
ニプロ株式会社
内橋エステック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp, Uchihashi Estec Co Ltd, ニプロ株式会社, 内橋エステック株式会社 filed Critical Nipro Corp
Priority to JP2006282067A priority Critical patent/JP5034020B2/en
Priority claimed from US11/907,683 external-priority patent/US20080091172A1/en
Publication of JP2008099713A publication Critical patent/JP2008099713A/en
Application granted granted Critical
Publication of JP5034020B2 publication Critical patent/JP5034020B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical tube capable of securing its smooth insertion into a body cavity of a patient even if a magnet of the medical tube having the magnet inserted at its distal end has a sufficient length for highly sensitively and accurately detecting the position of the magnet. <P>SOLUTION: This medical tube is a flexible tube (a) inserted into the body cavity of the patient and having the insertion magnet B electromagnetically detected from the body outside, inside the distal end in the body cavity insertion side; wherein the magnet B consists of a plurality of magnet pieces (b) disposed into non-contact with each other in a vertical line. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、患者の体腔内に挿入され、そのチューブにより例えば栄養液の補給が行われる医療用チューブ及びそのチューブの体腔内挿入側端の位置を検出するのに使用される医療用デバイスセットに関するものである。 The present invention is inserted into a body cavity of a patient, a medical device set that is used to detect the position of the body cavity insertion side end of the medical tube and the tube replenishment is performed, for example, nutrient solution by the tube it is intended.

臨床医療では、患者の体腔内に医療用チューブを挿入して治療を行うことがあり、この場合、チューブ先端が所定の箇所に位置しているか否かを確認することが不可欠である。 In clinical medicine, are subject to treatment by inserting the medical tube within the body cavity of the patient, in this case, it is essential that the tube tip is confirmed whether or not located at a predetermined position.
例えば、栄養管を患者の口または鼻を経て胃に挿入し、この栄養管を通して栄養剤を補給しながら治療を行う場合、栄養管の先端部が食道内でカールアップして胃内に到達していないと、補給栄養剤が患者の肺の中へ吸い出されて死亡事故に発展する危険性があり、栄養管が胃の所定位置に到達していることの確認が不可欠である。 For example, the feeding tube through the mouth or nose of the patient is inserted into the stomach, when performing the replenishment while treating nutrient, the tip of the feeding tube is curled up in the esophagus to reach the stomach through the feeding tube If not, there is a risk of replenishing nutrients develops in death been sucked into the lungs of a patient, the feeding tube is essential to confirm that the has reached a predetermined position of the stomach.
従来、医療用チューブの先端位置の確認は、X線透視により行われていた。 Traditionally, check the tip position of the medical tube has been carried out by X-ray fluoroscopy. しかし、この処理では、患者をX線設備に移動させる必要があり、患者の負担が大である。 However, in this process, it is necessary to move the patient to the X-ray equipment, the burden on the patient is large.

そこで、医療用チューブの先端内部に磁石を装着し、この医療用チューブの患者体腔内挿入中にその磁石の位置を電磁的に検出することが提案されている(特許文献1、特許文献2、特許文献3等)。 Therefore, a magnet mounted to the distal end inside the medical tube, the medical it is proposed that the position of the magnet to the patient body cavity during insertion of the tube for detecting electromagnetically (Patent Documents 1 and 2, such as Patent Document 3).
特許第3566293号公報 Patent No. 3566293 Publication 特許第3630435号公報 Patent No. 3630435 Publication 特開2004−215992号公報 JP 2004-215992 JP

この電磁的検出法では、磁気モーメントMの磁石から、角度φ、距離Rを隔てた位置pでの磁界強度Hが H=M(1+3cos φ) 1/2 /(4πμ This electromagnetic detection methods, the magnets of the magnetic moment M, the angle phi, the distance the magnetic field intensity H at position p, across the R is H = M (1 + 3cos 2 φ) 1/2 / (4πμ 0 R 3)
であって、位置に応じ磁界強度Hが変化することを利用している。 A is, it utilizes the fact that a change in the magnetic field intensity H according to the position.
医療現場においては、地磁気の外、鉄系構造物の残留磁気に基づく外部磁界や周辺機器から発生する電磁波が存在し、前記の磁気的検出に対しノイズとして作用する。 In the medical field, outside of the geomagnetism, there are electromagnetic waves generated from the external magnetic field and peripherals based on the residual magnetism of the iron-based structure, which acts as noise to the magnetic detection of the. 従って、前記磁石の磁気モーメントMを大きくしてS/N比を大きくすることが要求される。 Therefore, it is required to increase the S / N ratio by increasing the magnetic moment M of the magnet.

近来、エレメント長さが2mm以下でも磁界検出分解能が10 −5 Oeの高感度特性を呈する磁気インピーダンス効果センサが開発されている。 Recently, the magnetic field detection resolution element length even 2mm or less magnetic impedance effect sensor exhibiting high sensitivity of 10 -5 Oe have been developed.
前記医療用チューブの内径は通常3mmであり、医療用チューブの先端部内に挿着される磁石の外径は約3mmとなる。 The inner diameter of the medical tube is usually 3 mm, the outer diameter of the magnet to be inserted within the distal end of the medical tube is about 3 mm.
前記磁石の磁気モーメントは、磁極の強さをm、磁石の長さをlとすると、M=mlで与えられ、磁極の強さmは磁石の断面積S、磁化時での残留磁束Brによって左右され、残留磁束Brは磁石材料によって定まる。 The magnetic moment of the magnet, when the strength of the magnetic pole m, the length of the magnet and l, is given by M = ml, the strength m the pole cross-sectional area of ​​the magnet by S, the residual magnetic flux Br at the time of magnetization is dependent, residual magnetic flux Br is determined by the magnetic material.
而るに、本発明者等の鋭意実験結果によれば、医療用チューブ(内径3mm)の先端部内に磁石を挿着し、その磁石位置を磁気インピーダンス効果センサにより効果的に検出するには、表面残留磁束密度330mT、材質NiFeB円柱磁石の場合、外径3mmφ、長さ30mmの寸法が必要である。 The 而Ru, according to the intensive experimental results by the present inventors, the magnet was inserted in the distal end portion of the medical tube (inner diameter 3 mm), to effectively detect the magnet position by the magnetic impedance effect sensor, surface remanence 330MT, if the material NiFeB cylindrical magnet, it is necessary to dimension the outer diameter of 3 mm.phi, length 30 mm.
しかしながら、かかる寸法の磁石を鼻、口、喉等を経て体腔内に挿入することは至難であり、患者に過酷な負担をかけることになる。 However, it is extremely difficult to insert the magnets of such dimensions nose, mouth, through the throat or the like into a body cavity, thus imposing a severe burden on the patient.

本発明の目的は、先端部内に磁石を挿着した医療用チューブの磁石寸法を、磁石位置を高感度、高精度で検出するのに充分な長さとしても、患者の体腔内へのスムーズな挿入を保障できる医療用チューブを提供することにある。 An object of the present invention, the magnet size of the medical tube inserted and attached a magnet in the tip section, high sensitivity magnet position, even long enough to detect with high accuracy, smooth into a body cavity of a patient and to provide a medical tube that can ensure insertion.

請求項1に係る医療用チューブは、患者の体腔内に挿入され、体腔内挿入側端部内の装着磁石が体外から電磁的に検出される可撓性のチューブであり、複数個の磁石片が非接触で磁石の全体形状が柱状となるように互いに縦列配置され、チューブの長さ方向に磁石の磁極の方向が設定されたことを特徴とする。 Medical tube according to claim 1 is inserted into a body cavity of a patient, a flexible tube mounted magnets in insertion end inside part body cavity is electromagnetically detectable from outside the body, a plurality of magnet pieces overall shape of the magnets are tandem arranged together such that the columnar without contact, characterized in that the direction of the magnetic poles of the magnet is set in the length of the tube.
請求項2に係る医療用チューブは、請求項1の医療用チューブにおいて、各個の磁石片の形状が柱状とされていることを特徴とする。 Medical tube according to claim 2 is the medical tube according to claim 1, the shape of each individual magnet pieces is characterized in that it is a columnar.
請求項3に係る医療用チューブは、請求項1または2の医療用チューブにおいて、各個の磁石片の間に緩衝材が介在されていることを特徴とする。 Medical tube according to claim 3 is the medical tube according to claim 1 or 2, cushioning material between each individual magnet pieces is characterized in that it is interposed.
請求項4に係る医療用チューブは、請求項3の医療用チューブにおいて、緩衝材が磁性を有することを特徴とする。 Medical tube according to claim 4 is the medical tube according to claim 3, cushioning material and having a magnetic.
請求項5に係る医療用チューブは、請求項1〜4何れかの医療用チューブにおいて、磁石の全長が20〜50mm、外径が1〜5mmとされていることを特徴とする。 Medical tube according to claim 5, in any of the medical tube according to claim 1 to 4, the total length of the magnet is 20 to 50 mm, an outer diameter, characterized in that there is a 1 to 5 mm.
請求項6に係る医療用デバイスセットは、請求項1〜5何れかの医療用チューブと磁石の位置を検出する磁気インピーダンス効果センサとからなることを特徴とする。 Medical device set according to claim 6, characterized in that it consists of a magneto-impedance effect sensor for detecting the position of claims 1 to 5 or of the medical tube and the magnet.

(1)可撓性チューブの体腔内挿入側端部内に、複数個の磁石片を非接触で互いに縦列配置して磁石の全体形状を柱状とし、チューブの長さ方向に磁石の磁極の方向を向けるように挿着しており、一個の磁石片の長さをl、磁石片箇数をn箇とすれば、磁石全体の磁気モーメントMがnlに比例し、箇数nの選定により所定のS/N比を得ることができ、検出精度を高くできる。 (1) into the body cavity insertion side end portion of the flexible tube, and a columnar the overall shape of the magnet with tandem orientation with one another a plurality of magnet pieces in a non-contact, the direction of the magnetic poles of the magnet in the longitudinal direction of the tube has inserted to direct, if the length of one magnet piece l, the magnet piece number of articles and n 箇, magnetic moment M of the entire magnet is proportional to nl, predetermined by the selection of the number of articles n can be obtained S / N ratio can be increased detection accuracy.
(2)体腔内挿入側端部に曲げモーメントが作用すると、磁石片間のチューブ部分が曲げられる。 (2) When the bending moment in the insertion end cavity acts, the tube portions of the magnet pieces is bent. このチューブ部分の曲げ剛性が低いから、前記曲げモーメントが充分に低く抑えられ、充分な可撓性を保持させ得、鼻、口、喉からの医療用チューブの挿入をスムーズに行うことができる。 Since the bending rigidity of the tube portion is low, the bending moment is suppressed sufficiently low, resulting to retain sufficient flexibility, it is possible to perform the nose, mouth, smooth insertion of the medical tube from the throat. また磁石片間に緩衝材を介在させることにより、磁石片間のチューブ部分の曲げ剛性を調整することもできる。 Further, by interposing the buffer material to the magnet pieces, it is also possible to adjust the bending rigidity of the tube portion of the magnet pieces.
(3)磁石の全長nlを挿入器官内径よりも大きくすることにより、磁石の向きを常に器官の長手方向に一致させ得、2次元での検出を行えばよく、検出操作や構造を簡易化できる。 (3) to be greater than the overall length nl insertion organs inside diameter of the magnet, resulting always coincide in the longitudinal direction of the organs the direction of the magnet, may be performed to detect the two-dimensional, it can be simplified detection operation and structure .
(4)磁石片間の緩衝材に磁性を付与することによって磁石片間から磁束が漏れるのをよく防止でき、その漏れ磁界に起因する検出エラーを排除できる。 (4) by applying a magnetic on cushioning material of the magnet pieces can be prevented better magnetic flux from the magnet pieces leaks, it can be eliminated detection errors caused by the leakage magnetic field.

以下、図面を参照しつつ本発明の実施の形態について説明する。 Hereinafter, with reference to the drawings, embodiments of the present invention will be described.
図1の(イ)は本発明に係る医療用チューブの一実施例を示す側面図、図1の(ロ)は図1の(イ)におけるロ−ロ断面図である。 Of (b) Figure 1 is a side view showing one embodiment of a medical tube according to the present invention, in FIG. 1 (b) is b in the (i) 1 - a b cross section.
図1において、aは可撓性チューブであり、透視可能なプラスチックチューブ、例えばポリアミドチューブ、シリコン樹脂チューブ、ポリエチレンチューブ等を使用できる。 In Figure 1, a is a flexible tube, see-through plastic tubing, such as polyamide tubing, silicone resin tube, a polyethylene tube, etc. can be used. eはチューブの基端側に取付けられた他部材との接続部である。 e is the connection portion between the other member mounted to the proximal end side of the tube. Bはチューブの先端部内に挿着された磁石であり、複数個の互いに縦列配置された磁石片bが用いられている。 B is a magnet which is inserted in the distal end portion of the tube, a plurality of magnet pieces b which are tandem arranged mutually used. cはチューブの磁石挿着部の手前に設けられた側孔であり、例えばチューブ内に流入された栄養液の排出口として使用される。 c is a side hole provided in front of the magnet inserting portion of the tube, for example, it is used as the outlet of the inflow nutritional liquid in the tube.
この医療用チューブは、栄養管の外、尿カテーテル、拡張カテーテル、経鼻胃管、気管内チューブ、胃ポンプ管、直腸管、泌尿器用チューブ等として使用することもできる。 The medical tube is outside the feeding tube, urinary catheter, the dilatation catheter can nasogastric, endotracheal tube, stomach pump tube, rectal tube, also be used as a urinary tube or the like.
前記チューブの内径は、通常2〜5mmとされる。 Inner diameter of the tube is usually 2 to 5 mm.

前記医療用チューブにおいては、患者の鼻、口、喉等の挿入開始部位から消化器等の器官に挿入される。 In the medical tube, the patient's nose, mouth, and inserted into a loading start site, such as throat organs digestive like. その挿入中または挿入後に、磁石が器官の所定点に位置しているか否かが後述の磁気インピーダンス効果センサにより検査される。 Its insertion during or after insertion, whether magnet is positioned at a predetermined point of the organ is examined by magnetic impedance effect sensor described later.
医療用チューブの挿入中、医療用チューブの体腔内挿入側端部が鼻、口、喉等の曲がり部位を通過する際、その体腔内挿入側端部に曲げモーメントが作用する。 During insertion of the medical tube, the body cavity insertion side end portion of the medical tube when passing through the nose, mouth, the site bending of such throat, bending moment on the body-cavity insertion side end portion acts. この場合、磁石片b,b間のチューブ部分がその可撓性のために軽く曲げられ、前記曲げモーメントが充分に低く抑えられる。 In this case, the magnet pieces b, the section of tubing between b are slightly bent due to its flexibility, the bending moment is suppressed sufficiently low. 従って、鼻、口、喉等の曲がり部位でも、医療用チューブのスムーズな通過を保障でき、患者に与える苦痛を充分に軽減できる。 Thus, nose, mouth, even at sites bending of such throat, can guarantee the smooth passage of the medical tube can sufficiently reduce the pain to the patient.
このようにして、体腔内挿入側端部を鼻、口、喉等の曲がり部位に通過させると、体腔内挿入側端部がチューブ自体の弾性のために直線状に戻り、その後、所定部位に向けての医療用チューブのスムーズな挿入が進行されていく。 In this way, the body-cavity insertion side end nose, mouth and is passed through a portion bent such throat, body-cavity insertion side end portion is returned to a straight line for the elasticity of the tube itself, then a predetermined portion smooth insertion of the medical tube towards is going to be progress.

前記磁石片は、円柱状の他、断面が三角形、正方形あるいは六角形等の多角柱などの柱状とすることもできる。 The magnet pieces, other cylindrical, can also be cross section a columnar like polygonal triangular, square or hexagonal shape.
また、磁石片は必ずしも柱状に限られず、例えば、複数個の粒状磁石片を用いてもよく、複数個の磁石片から構成される磁石の全体形状が柱状であればよい。 Further, the magnet piece is not necessarily limited to columnar, for example, may be used a plurality of granular magnet pieces, the overall shape of the magnet consists of a plurality of magnet pieces may be a columnar shape.
前記磁石片の材質には、Feを主成分とし、Ni、Co、Cu、Al、B等を添加したものが使用され、その磁極の強さは飽和磁界のもとでの残留磁束密度B により与えられ、断面積をS、磁石片の箇数をn、磁石片の長さをlとすると、磁気モーメントMは M=SnlB で与えられ、磁石片の箇数nに応じて磁気モーメントMを大きくでき、前記磁石の位置を充分に高いS/N比のもとで検出できる。 Wherein the material of the magnet piece, mainly composed of Fe, Ni, Co, Cu, Al, a material obtained by adding B or the like is used, the strength of the pole remanence B r under saturation magnetic field provided by, the cross-sectional area S, when the number of articles of the magnet pieces n, the length of the magnet piece and l, the magnetic moment M is given by M = SnlB r, the magnetic moments in response to the number of articles n of the magnet piece M can greatly, it is possible to detect the position of the magnet under a sufficiently high S / N ratio.
ここで磁石の全長は20〜50mm、外径は1〜5mmであることが好ましい。 Here it is preferred overall length of the magnet 20 to 50 mm, an outer diameter of 1 to 5 mm. このような全長を有する磁石は患者の挿入器官内径よりも大きいために、磁石の向きを常に器官の長手方向に一致させることができ、二次元での検査を行えばよいために、検出操作や構造を簡易化できる。 For magnet having such overall length greater than the insertion organs inside diameter of the patient, the orientation of the magnet can always be made to coincide with the longitudinal direction of the organ, for it is sufficient to test in two dimensions, detecting operation Ya structure can be simplified.
前記磁石片間に緩衝材を介在させて体腔内挿入側端部の曲げ剛性を調整することもできる。 Can also be said magnet pieces is interposed buffer material to adjust the bending rigidity of the body-cavity insertion side end portion. この緩衝材には、バネ、ゴム、発泡体(発泡プラスチック、発泡ゴム)等を使用できる。 This is the buffer material, a spring, rubber, foam (foamed plastic, foamed rubber), and the like can be used.
この緩衝材には、磁性を付与することができる。 The cushioning material, it is possible to impart magnetism. 例えば、磁性を有する金属バネ、磁性粉末を添加したゴム、発泡プラスチック、発泡ゴム等を使用できる。 For example, a metal spring having a magnetic rubber with the addition of magnetic powder, foam plastic, foam rubber or the like can be used.
このように、磁石片間の緩衝材を磁性体にすれば、磁石片間からの磁束漏れを防止でき、磁気インピーダンス効果素子がその漏れ磁束を感磁することによる検出エラーを排除できる。 Thus, if the cushioning material of the magnet pieces to the magnetic prevents leakage of magnetic flux from the magnet pieces, magneto-impedance effect element can be eliminated detection errors caused by magnetically sensing the leakage flux.

図2−1は本発明において使用される磁気インピーダンス効果センサの一例の回路図を示している。 Figure 2-1 shows a circuit diagram of an example of a magneto-impedance effect sensor used in the present invention.
図2−1において、1a,1bは一対の磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用される。 In Figure 2-1, 1a, 1b are a pair of magnetic impedance effect element, the direction of spontaneous magnetization with an outer shell portion of the configuration domain of the opposite directions with respect to the wire circumferentially separated by domain walls alternately, zero magnetostriction or amorphous alloy wire of the negative magnetostriction are used. かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の易磁化性の外殻部が円周方向に磁化されることに起因して発生する。 Inductance voltage component in the wire between both ends output voltage generated when a current of high-frequency exciting current to the amorphous magnetic wire of such zero magnetostrictive or negative magnetostriction, said of the easy magnetization by the circumferential magnetic flux generated in the cross section of the wire outer shell gender caused to be magnetized in the circumferential direction. 従って、周方向透磁率μ θは同外殻部の円周方向の磁化に依存する。 Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. 而るに、この通電中のアモルファスワイヤの軸方向に信号磁界を作用させると、上記通電による円周方向磁束と信号磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μ θが変化し、上記インダクタンス電圧分が変動することになる。 The 而Ru, is allowed to act in the axial direction on a signal magnetic field amorphous wire in the energization, the combination of the circumferential magnetic flux and the signal magnetic field flux by the current, the outer shell having an easily magnetizable in the circumferential direction direction of magnetic flux acting deviates from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary to. この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が信号磁界(信号波)で変調される現象ということができる。 This oscillating phenomenon is referred to as a magnetic inductance effect, which can be referred to a phenomenon in which the high-frequency excitation current (carrier) is modulated by the signal magnetic field (signal wave). 更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμ θ1/2 (μ θは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμ θにより変化し、このμ θが前記した通り、信号磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も信号磁界で変動するようになる。 Furthermore, the frequency of the energizing current MHz O - When Da, appearing high frequency skin effect is large, the skin depth δ = (2ρ / wμ θ) 1/2 (μ θ passes circumferential permeability described above, [rho electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, so changed by the mu as theta is the signal magnetic field, the resistance voltage of the in wire ends between the output voltage variation at the signal magnetic field It becomes the way. この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が信号磁界(信号波)で変調される現象ということができる。 This oscillating phenomenon is referred to as a magneto-impedance effect, which can be referred to a phenomenon in which the high-frequency excitation current (carrier) is modulated by the signal magnetic field (signal wave).

図2−1において、2は磁気インピーダンス効果素子1a,1bに高周波励磁電流を加えるための高周波電流源回路、3a,3bは磁気インピーダンス効果素子1a,1bの軸方向に作用する信号磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する検波回路、4は両検波出力を差動増幅して検出出力を得るための演算差動増幅器である。 In Figure 2-1, 2 signal magnetic field (signal wave acting magnetic impedance effect element 1a, a high frequency current source circuit for applying a high-frequency exciting current to 1b, 3a, 3b magnetic impedance effect element 1a, the axial direction of the 1b ) in the high frequency excitation current (detection circuit for demodulating a modulated wave obtained by modulating a carrier wave), 4 is the operational differential amplifier for obtaining a detection output of both detection outputs differential amplification. 60は差動増幅器4の出力を各負帰還用巻線6a,6bに対し負帰還させるための負帰還回路である。 60 is a negative feedback circuit for negatively feeding back the output of the differential amplifier 4 the negative feedback winding 6a, to 6b. 5は検出出力端である。 5 is a detection output. 7a,7bはバイアス磁界用巻線である。 7a, 7b is a winding bias magnetic field.

磁気インピーダンス効果素子においては、前記した通り励磁電流に基づく円周方向磁束と信号磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずらされるために、周方向透磁率μ θが変化し、インダクタンスが変動され、この円周方向透磁率μ θの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。 In the magneto-impedance effect element, by combining the circumferential magnetic flux and the axial magnetic flux by the signal magnetic field based on the street excitation current mentioned above, the direction of the magnetic flux circle that acts on the outer shell portion having an easily magnetizable in a circumferential direction to be offset from the circumferential direction, the circumferential direction permeability mu theta changes, be varied inductance, impedance is varied by a change in the skin depth of the radio frequency skin effect of the circumferential permeability mu theta. 従って、信号磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμ θの減少度は信号磁界の方向の正負によっては変化されない。 Therefore, it is also circumferentially displaced by the synthesized magnetic field by ± signal magnetic field phi becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is the direction of the signal magnetic field not be changed by positive and negative. 従って、信号磁界−出力特性は、図2−2の(イ)のように信号磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。 Thus, the signal magnetic field - output characteristic of Figure 2-2 the signal magnetic field as shown in (b) in the x-axis, taking the output on the y-axis, is substantially symmetrical with respect to the y-axis. この信号磁界−出力特性は非線形である。 The signal magnetic field - output characteristic is non-linear. 非線形特性では、不安定であり、高感度の測定も困難である。 The nonlinear characteristic is unstable, it is difficult measurement with high sensitivity. そこで、負帰還用巻線で負帰還をかけて図2−2の(ロ)に示すように出力特性を直線化している。 Therefore, and linearizing the output characteristics as shown in (b) of FIG. 2-2 negative feedback in a negative feedback winding. しかし、この出力特性では、信号磁界の極性判別を行ない得ないので、バイアス用巻線7でバイアス磁界をかけ、図2−2の(ハ)に示すように極性判別可能としている。 However, this output characteristics, since not subjected to polarity determination signal magnetic field, applying a bias magnetic field in the bias winding 7, and the polarity can be discriminated as shown in (c) in Figure 2-2. すなわち、図2−2の(ロ)の特性を、図2−2の(ハ)に示すようにバイアス磁界−Hbによりx軸のマイナス方向に移動させ、信号磁界の最大検出範囲を単斜め線領域の範囲内−Hmax〜+Hmaxに納めている。 That is, the characteristics of (b) of Figure 2-2, is moved in the negative direction of the x-axis by a bias magnetic field -Hb as shown in (c) in Figure 2-2, the single slanting line up detection range of the signal magnetic field It is housed in range -Hmax~ + Hmax region.

図2−3は一対の磁気インピーダンス効果素子1a,1bを短冊状の基板1000上に搭載したセンサヘッドを示し、両磁気インピーダンス効果素子1a,1bの向きは両素子1a,1bを結ぶ直線の方向に対し直角方向とされている。 Figure 2-3 shows a sensor head mounted pair of magnetic impedance effect element 1a, and 1b on a strip-shaped substrate 1000, both magneto-impedance effect element 1a, 1b is facing both elements 1a, the direction of a straight line connecting 1b there is a direction perpendicular to. 両磁気インピーダンス効果素子1a,1bの向きの角度が同じであれば、両素子の向きは前記直角とは異なる角度としてもよい。 If both magnetic impedance effect element 1a, the orientation angle of 1b same, the orientation of the two elements may be different angle than the right angle.

上記磁気インピーダンス効果素子1としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co 70.515 Si 10 Fe 4.5 、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。 As the magneto-impedance effect element 1, those non-metallic 10-30 atomic percent composition of an alloy of transition metals and non-metallic, non-metallic volume accounted for 10 to 30 atomic%, especially an alloy of a transition metal and nonmetal , transition metal can or transition metal non-metallic with Fe and Co is B and Si is used having composition nonmetallic is B and Si in Fe, for example, the composition Co 70.5 B 15 Si 10 Fe 4.5, length 2000Myuemu~6000myuemu, those outside diameter 30μm~50μmφ be used. 磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。 The magneto-impedance effect element 1, zero magnetostriction or outside the amorphous wire of the negative magnetostriction, amorphous ribbon, an amorphous sputtered film, or the like can be used.

上記において、高周波励磁電流には、例えば連続正弦波、パルス波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、CMOS−ICを発振部として使用した三角波発生器等を使用できる。 In the above, the high frequency excitation current, for example, a continuous sine wave, pulse wave, can use the normal frequency of the triangular wave, etc., as the high-frequency exciting current source, for example, Hartley oscillator, a Colpitts oscillator circuit, the collector tuning oscillator, based tuning outside normal oscillation circuit such as an oscillation circuit, a square wave output of the crystal oscillator is integrated by the integrating circuit via a DC component cut capacitor triangular wave generator for amplifying the triangle wave from the integrator output by the amplifier circuit, oscillates a CMOS-IC the triangular wave generator or the like used as a part can be used.

上記の検波回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。 Examples of the detection circuit, for example, the modulated wave calculated in the amplifier circuit to a half-wave rectification process the half-wave rectified wave in a parallel RC circuit or RC low-pass filter to obtain the envelope output of the half-wave rectified wave configuration, the the configuration and the like by a modulated wave half-wave rectified by diode processes the half-wave rectified wave in a parallel RC circuit or RC low-pass filter to obtain an envelope output of the half-wave rectification wave can be used.
また、被変調波(周波数fs)に同調させた周波数fsの方形波を被変調波に乗算して信号波をサンプリングする同調検波を使用することができる。 It is also possible to use a tuning detection for sampling the signal wave by multiplying a square wave of frequency fs tuned to the modulated wave to the modulated wave (frequency fs).
上記の実施例では、被変調波の復調によって被検出磁界を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する信号磁界(信号波)で変調された高周波励磁電流波(搬送波)から信号磁界を検波し得るものであれば、適宜の検波手段を使用できる。 In the embodiment described above, is taken out to be detected magnetic field by the demodulation of the modulated wave is not limited to this, the modulated high-frequency excitation current wave signal magnetic field acting on the magneto-impedance effect element (signal wave) (carrier ) as long as it can detects the signal magnetic field from an appropriate detection means may be used.

前記負帰還用巻線及びバイアス磁界用巻線は磁気インピーダンス効果素子に巻き付けることができる。 The negative feedback winding and the bias magnetic field winding can be wound on a magnetic impedance effect element. また、図2−4に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用巻線及びバイアス磁界用巻線を巻き付けることもできる。 It is also possible to wind the negative feedback winding and the bias magnetic field winding to an iron core constituting a magnetic impedance effect element and the loop magnetic circuit as shown in Figure 2-4.
図2−4の(イ)は鉄芯巻線付き磁気インピーダンス効果ユニットの一例を示す側面図、図2−4の(ロ)は同じく底面図、図2−4の(ハ)は図2−4の(ロ)におけるハ−ハ断面図である。 Side view showing an example of (i) a magnetic impedance effect unit with Tetsushinmaki line in Figure 2-4, (b) is also a bottom view of FIG. 2-4, (c) in Figure 2-4 Figure 2- 4 in (b) c - a c sectional view.
図2−4において、100は基板チップであり、例えばセラミックス板を使用できる。 In Figure 2-4, 100 is a substrate chip, for example, a ceramic plate can be used. 101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。 101 is an electrode provided on one surface of the substrate piece, and a magneto-impedance effect element connection projection 102. この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。 The electrode can be provided by printing and baking of conductive paste such as silver paste. 1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。 1x is a magnetic impedance effect elements connected by soldering or welding between protrusion electrodes 101 and 101 102 and 102, the above-described as zero magnetostriction or negative magnetostriction amorphous wire, amorphous ribbon, a sputtered film or the like can be used. 103は鉄やフェライト等からなるC型鉄芯、6xはC型鉄芯に巻装した負帰還用巻線、7xは同じくバイアス磁界用巻線であり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。 103 C Katatetsushin consisting of iron, ferrite, or the like, 6x negative feedback winding wound around the C-type iron core, 7x is also bias field winding, a magnetic impedance effect element 1x and C Katatetsushin 103 so as to form a loop magnetic circuit, are the two ends of the C Katatetsushin 103 and fixed with adhesive or the like on the other surface of the substrate piece 100. 鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。 The iron core material may be a small magnetic residual flux density, e.g., permalloy, ferrite, iron, other amorphous magnetic alloys, and magnetic powder mixed plastics.

図3−1において、Mを前記磁石Bの磁気モーメントとし、磁気インピーダンス効果素子の中心が磁気モーメントに対して距離R、角度φの位置oに存在するとすると、磁気モーメントMによる位置oでの磁界強度Hは、 In Figure 3-1, the M and the magnetic moment of the magnet B, and the center of the magneto-impedance effect element distance R, at the position o of the angle φ with respect to the magnetic moment, the magnetic field at the location o due to the magnetic moment M strength H is,
H=M(1+3cos φ) 1/2 /(4πμ H = M (1 + 3cos 2 φ) 1/2 / (4πμ 0 R 3)
で与えられる。 It is given by.
図3−1から明らかな通り、この磁界Hの磁気インピーダンス効果素子の軸方向成分H は、 As it is clear from Figure 3-1, the axial component H m of the magneto-impedance effect element of the magnetic field H,
Hm=Hcos(φ+θ)=H(cosφcosθ−sinφsinθ) Hm = Hcos (φ + θ) = H (cosφcosθ-sinφsinθ)
で与えられ Given by
sinθ=sinφ/(1+3cos φ) 1/2 sinθ = sinφ / (1 + 3cos 2 φ) 1/2
cosθ=2cosφ/(1+3cos φ) 1/2 cosθ = 2cosφ / (1 + 3cos 2 φ) 1/2
の関係があるから From the relationship
[式1] Hm=M(cos φ+1)/(4πμ [Formula 1] Hm = M (cos 2 φ + 1) / (4πμ 0 R 3)
で与えられる。 It is given by.

図3−2において、一の磁気インピーダンス効果素子、例えば磁気インピーダンス効果素子1aの位置がx=0に在るとし、その点を中心にその磁気インピーダンス効果素子が左右に動くと、その磁気インピーダンス効果素子1aの前記式1に基づく感磁界Hmaは曲線aで与えられ、その変化は(cos φ+1)の乗算効果のために相当にシャープである。 In Figure 3-2 one of the magneto-impedance effect element, for example, the position of the magneto-impedance effect element 1a is to be in the x = 0, when the magneto-impedance effect element around its point moves to the left and right, the magneto-impedance effect sensitive magnetic field Hma based on the equation 1 of the element 1a is given by the curve a, the change is fairly sharp due to the multiplication effect of (cos 2 φ + 1). 他方の磁気インピーダンス効果素子1bの前記式1に基づく感磁界Hmbは曲線bで与えられる。 Sensitive magnetic field Hmb based on the equation 1 of the other of the magneto-impedance effect element 1b is given by curve b. 従って、両磁気インピーダンス効果素子1a,1bの差出力は曲線Hmabで与えられ、磁化片が両磁気インピーダンス効果素子1a,1b間の中央に位置するとき、前記差出力は0である。 Thus, both magnetic impedance effect element 1a, the difference between the output of 1b is given by curve hMAb, when the magnetization piece is positioned at the center between the two magneto-impedance effect element 1a, 1b, the difference output is zero.

図4の(イ)及び(ロ)〔図4の(イ)の右側面図〕は患者の体腔内に挿入した医療用チューブの先端の磁化片の位置を本発明に係る医療用デバイスで検出する状態を示している。 Figure [right side view of the FIG. 4 (b)] of 4 (i) and (ii) is detected by a medical device according to the present invention the position of the magnetization piece of the tip of a medical tube inserted into a body cavity of a patient shows a state in which.
図4において、aは患者の口または鼻から胃にかけて挿入したプラスチック製の医療用チューブ、Bは医療用チューブの先端に取り付けられた磁石である。 In FIG. 4, a plastic-made medical tube inserted over the stomach from the patient's mouth or nose, and B is a magnet attached to the tip of the medical tube.
Tは基板に前記磁気インピーダンス効果素子1a,1bを搭載したセンサヘッドであり、該センサヘッドを患者の身体表面に平行な向きで、かつヘッドの長手方向をヘッドの移動方向に対し直角に向ける。 T is a sensor head equipped with the magneto-impedance effect element 1a, 1b in the substrate, the sensor head in a direction parallel to the body surface of the patient, and directing the longitudinal direction of the head at right angles to the moving direction of the head.
磁石の全長が器官の径以上である場合、磁石の方向はその器官の長手方向に限定される事象により、医療用チューブは上記各用途に応じて体腔内挿入中のチューブ先端部の方向範囲が指定される。 If the total length of the magnet is larger than a diameter of the organ, the direction of the magnet by events which are restricted to a longitudinal direction of the organ, medical tubing is the direction range of the tube tip in the body cavity insertion depending on each application It is specified. 従ってその向きから磁化片の磁化方向を特定することが可能で、その向きに対して体腔内挿入具の先端位置検出装置の両磁気インピーダンス効果素子1a,1bの感磁方向を平行方向に配置すると、磁化片が両磁気インピーダンス効果素子1a,1b間の中央に位置するとき、差出力が0を検出する。 Thus it is possible to specify the direction of magnetization of the magnetization piece from its orientation, both magneto-impedance effect element 1a of the tip position detecting device body cavity insertion instrument relative to its orientation, placing the magnetic sensitivity direction of 1b in parallel , when the magnetization piece is positioned at the center between the two magneto-impedance effect element 1a, 1b, the difference output detects 0.

磁化片の磁化方向が予め特定できている場合、その方向に対して両磁気インピーダンス効果素子1a,1bの感磁方向を平行方向に配置すると、磁化片が両磁気インピーダンス効果素子1a,1b間の中央に位置するとき、差出力が0となり、その0検出の高感度性と磁気インピーダンス効果素子自体の高感度性のために、磁気インピーダンス効果素子1a,1b間の間隔を10〜30cmとすることにより、前記差出力の0点近傍での急峻変化を有効に達成できる。 If the magnetization direction of the magnetization piece is able to identify in advance, both magneto-impedance effect element 1a relative to that direction, placing magnetically sensitive direction of 1b in parallel, magnetized piece both magneto-impedance effect element 1a, between 1b when positioned in the center, next to the difference output is 0, because the high sensitivity of the high sensitivity and the magnetic impedance effect element itself of the zero detection, to magnetic impedance effect element 1a, the spacing between 1b and 10~30cm allows effectively achieve abrupt change at 0 point near the differential output.

上記において、前記センサヘッドと+Vcc電源、検波回路、差動増幅回路、バイアス回路、負帰還回路、励磁電流源回路等を基板に搭載した駆動部とを分離し、両者の間を可撓性リードで連結している。 In the above, the sensor head and the + Vcc power source, the detection circuit, a differential amplifier circuit, the bias circuit, the negative feedback circuit, the excitation current source circuit or the like to separate the drive unit mounted on the substrate, between the two flexible leads in has been linked. 磁気インピーダンス効果素子1a,1b、1a',1b'と+Vcc電源、検波回路、差動増幅回路、バイアス回路、負帰還回路、励磁電流源回路等とを共通の基板に搭載することもできる。 Magneto-impedance effect element 1a, 1b, 1a ', 1b' and + Vcc power source, the detection circuit, a differential amplifier circuit, the bias circuit, the negative feedback circuit, it is also possible to mount the excitation current source circuit or the like on a common substrate.

本発明に係る医療用チューブの一実施例を示す図面である。 Is a view showing an embodiment of a medical tube according to the present invention. 本発明に係る医療用チューブの先端位置を電磁的に検出する磁気インピーダンス効果センサの一例を示す回路図である。 The position of the tip of the medical tube according to the present invention is a circuit diagram showing an example of a magneto-impedance effect sensors for detecting electromagnetically. 磁気インピーダンス効果素子の出力特性を示す図面である。 Is a graph showing the output characteristics of the magneto-impedance effect element. 図2−1の磁気インピーダンス効果センサにおけるセンサヘッドを示す図面である。 It illustrates a sensor head in a magnetic impedance effect sensor of FIG. 2-1. 前記磁気インピーダンス効果センサにおいて使用される鉄芯巻線付き磁気インピーダンス効果ユニットを示す図面である。 It illustrates a magneto-impedance effect unit with iron core windings used in the magneto-impedance effect sensors. 磁化片の磁気モーメントにより磁気インピーダンス効果素子に作用する磁界を示す図面である。 The magnetic moment of the magnetic piece is a diagram showing the magnetic field acting on the magneto-impedance effect element. 磁石の磁気モーメントにより磁気インピーダンス効果素子に作用する磁界と両磁気インピーダンス効果素子の差出力を示す図面である。 It illustrates a differential output of the magnetic field and two magnetic impedance effect element acts on the magneto-impedance effect element by the magnetic moment of the magnet. 本発明に係る医療用デバイスの使用状態を示す図面である。 It is a view illustrating a use state of the medical device according to the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

1 磁気インピーダンス効果素子1a,1b,1x 磁気インピーダンス効果素子2 高周波電流源回路3a,3b 検波回路4 演算差動増幅器5 検出出力端6a,6b,6x 負帰還用巻線7a,7b,7x 1 magneto-impedance effect element 1a, 1b, 1x magnetic impedance effect element 2 high frequency current source circuit 3a, 3b detection circuit 4 operational differential amplifier 5 detects the output terminal 6a, 6b, 6x negative feedback windings 7a, 7b, 7x
バイアス磁界用巻線60 負帰還回路100 基板チップ101 電極102 磁気インピーダンス効果素子接続用突部103 C型鉄心1000 基板a 医療用チューブB 磁石b 磁石片c 側孔e 接続部T センサヘッド Bias field winding 60 negative feedback circuit 100 board chip 101 electrode 102 the magneto-impedance effect element connection projection 103 C-type iron core 1000 substrate a medical tube B magnets b magnet pieces c side hole e connecting portion T sensor head

Claims (6)

  1. 患者の体腔内に挿入され、体腔内挿入側端部内の挿着磁石が体外から電磁的に検出される可撓性のチューブであり、複数個の磁石片が非接触で磁石の全体形状が柱状となるように互いに縦列配置され、チューブの長さ方向に磁石の磁極の方向が設定されたことを特徴とする医療用チューブ。 Is inserted into a body cavity of a patient, a flexible tube inserted magnets in the insertion end inside part body cavity is electromagnetically detectable from outside the body, the overall shape of the magnet plurality of magnet pieces are in a non-contact pillar become so in cascade each other, medical tube, wherein the direction of the magnetic poles of the magnet is set in the length of the tube.
  2. 各個の磁石片の形状が柱状であることを特徴とする請求項1記載の医療用チューブ。 Medical tubing of claim 1, wherein the shape of each individual magnet pieces is characterized in that it is a columnar.
  3. 各個の磁石の間に緩衝材が介在されていることを特徴とする請求項1または2記載の医療用チューブ。 Claim 1 or 2 medical tube according cushioning material between each individual magnet is characterized in that it is interposed.
  4. 緩衝材が磁性を有することを特徴とする請求項3記載の医療用チューブ。 The medical tube according to claim 3, wherein the buffer material and having a magnetic.
  5. 磁石の全長が20〜50mm、外径が1〜5mmとされていることを特徴とする請求項1〜4何れか記載の医療用チューブ。 Medical tubing of claims 1 to 4, wherein any one of the overall length of the magnet is 20 to 50 mm, an outer diameter, characterized in that there is a 1 to 5 mm.
  6. 請求項1〜5何れか記載の医療用チューブと磁石の位置を検出する磁気インピーダンス効果センサとからなることを特徴とする医療用デバイスセット。 Medical device set, characterized by comprising a magnetic impedance effect sensor for detecting the position of the medical tube and the magnet as set forth in any one of claims 1 to 5.
JP2006282067A 2006-10-17 2006-10-17 Medical tubing and medical device set Active JP5034020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282067A JP5034020B2 (en) 2006-10-17 2006-10-17 Medical tubing and medical device set

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006282067A JP5034020B2 (en) 2006-10-17 2006-10-17 Medical tubing and medical device set
US11/907,683 US20080091172A1 (en) 2006-10-17 2007-10-16 Medical tube inserted in body cavity of patient and medical device set using the same
EP07020328A EP1913865A1 (en) 2006-10-17 2007-10-17 Medical tube inserted in body cavity of patient and medical device set using the same

Publications (2)

Publication Number Publication Date
JP2008099713A true JP2008099713A (en) 2008-05-01
JP5034020B2 JP5034020B2 (en) 2012-09-26

Family

ID=39434526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282067A Active JP5034020B2 (en) 2006-10-17 2006-10-17 Medical tubing and medical device set

Country Status (1)

Country Link
JP (1) JP5034020B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55175436U (en) * 1979-05-18 1980-12-16
JPH02251107A (en) * 1989-03-24 1990-10-08 Murata Mfg Co Ltd Choke coil
JP2000175865A (en) * 1998-12-18 2000-06-27 Kenichi Arai Active endoscope using magnetic torque
US20020072662A1 (en) * 1998-09-11 2002-06-13 Hall Andrew F. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
JP2004215992A (en) * 2003-01-16 2004-08-05 Takeshi Ikeuchi Detecting device for position and posture of medical insertion instrument into body cavity and detecting method thereof
US6902528B1 (en) * 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55175436U (en) * 1979-05-18 1980-12-16
JPH02251107A (en) * 1989-03-24 1990-10-08 Murata Mfg Co Ltd Choke coil
US20020072662A1 (en) * 1998-09-11 2002-06-13 Hall Andrew F. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
JP2000175865A (en) * 1998-12-18 2000-06-27 Kenichi Arai Active endoscope using magnetic torque
US6902528B1 (en) * 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
JP2004215992A (en) * 2003-01-16 2004-08-05 Takeshi Ikeuchi Detecting device for position and posture of medical insertion instrument into body cavity and detecting method thereof

Also Published As

Publication number Publication date
JP5034020B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
CA2616010C (en) Medication compliance system and associated methods
US6280385B1 (en) Stent and MR imaging process for the imaging and the determination of the position of a stent
US7834621B2 (en) Electromagnetic tracking employing scalar-magnetometer
US5882338A (en) Syringes and syringe pumps
US7289839B2 (en) Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US6019745A (en) Syringes and syringe pumps
US5935077A (en) Noninvasive blood flow sensor using magnetic field parallel to skin
AU2004203487B2 (en) Encapsulated sensor with external antenna
CA2283006C (en) Miniaturized position sensor having photolithographic coils for tracking a medical probe
JP3246727B2 (en) Induction type electronic caliper
EP1615557B1 (en) Method and apparatus for improved determination of spatial non-agglomerated magnetic particle distribution in an area of examination
US20040250819A1 (en) Apparatus and method for detecting objects using tags and wideband detection device
ES2670812T3 (en) magnetic medical device and magnetizing device
US6564084B2 (en) Magnetic field shielding and detecting device and method thereof
US6015387A (en) Implantation devices for monitoring and regulating blood flow
EP1131001B1 (en) Volumetric physiological measuring system
JP3197414B2 (en) Magneto-impedance effect element
JP4754222B2 (en) Transponder including a coil antenna overlaid on the common core
US7784468B2 (en) Surgical implement detection system
JP6249206B2 (en) Current converter for measuring the current
Hauser et al. Giant magnetoimpedance sensors
JP3126642B2 (en) The magnetic field sensor
US5944023A (en) Systems and methods for determining the location of an implanted device including a magnet
US7418289B2 (en) Markers for interventional devices in magnetic resonant image (MRI) systems
JP2001524012A (en) System and method for determining the location and orientation of an indwelling medical devices

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250