JPH0225092Y2 - - Google Patents

Info

Publication number
JPH0225092Y2
JPH0225092Y2 JP1983090506U JP9050683U JPH0225092Y2 JP H0225092 Y2 JPH0225092 Y2 JP H0225092Y2 JP 1983090506 U JP1983090506 U JP 1983090506U JP 9050683 U JP9050683 U JP 9050683U JP H0225092 Y2 JPH0225092 Y2 JP H0225092Y2
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerator
rotation speed
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983090506U
Other languages
Japanese (ja)
Other versions
JPS59195467U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9050683U priority Critical patent/JPS59195467U/en
Publication of JPS59195467U publication Critical patent/JPS59195467U/en
Application granted granted Critical
Publication of JPH0225092Y2 publication Critical patent/JPH0225092Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の技術分野〕 この考案は、冷凍シヨーケースや自動販売機等
に適用される冷凍機に係り、特に冷凍機に組み込
まれる圧縮機の回転数制御を行なう冷凍機の回転
数制御装置に関する。
[Detailed description of the invention] [Technical field of the invention] This invention relates to refrigerators applied to refrigerator cases, vending machines, etc., and particularly relates to refrigerators that control the rotation speed of a compressor incorporated in the refrigerator. This invention relates to a rotation speed control device.

〔考案の技術的背景とその問題点〕 一般に、この種の冷凍機は冷凍シヨーケースや
自動販売機として使用され、内部に貯蔵される食
品を冷却したり、冷凍するようになつている。冷
凍機は圧縮機、凝縮器、減圧機構および蒸発器を
順次接続して閉じた冷凍サイクルを構成し、圧縮
機の回転数を制御することにより冷凍能力が調節
されるようになつている。
[Technical background of the invention and its problems] Generally, this type of refrigerator is used as a freezer case or a vending machine, and is designed to cool or freeze food stored inside. A refrigerator has a compressor, a condenser, a pressure reduction mechanism, and an evaporator connected in sequence to form a closed refrigeration cycle, and the refrigeration capacity is adjusted by controlling the rotational speed of the compressor.

従来の冷凍機は第1図に示すように構成され、
圧縮機1や凝縮器冷却用フアンモータ2は電磁開
閉器3を介して商用電源4に接続され、電磁開閉
器3が閉じることにより圧縮機1やフアンモータ
2に通電され、これらが駆動されるようになつて
いる。具体的には、圧力スイツチ5のON操作に
より、電磁開閉器3が励磁されて閉じ、圧縮機1
やフアンモータ2が起動される。
A conventional refrigerator is configured as shown in Figure 1.
The compressor 1 and the condenser cooling fan motor 2 are connected to a commercial power source 4 via an electromagnetic switch 3, and when the electromagnetic switch 3 closes, the compressor 1 and the fan motor 2 are energized and driven. It's becoming like that. Specifically, when the pressure switch 5 is turned ON, the electromagnetic switch 3 is energized and closed, and the compressor 1 is turned on.
and the fan motor 2 is activated.

しかしながら、商用電源4を電磁開閉器3を介
して冷凍機の圧縮機1に直接入力させる場合に
は、圧縮機1への通電により、圧縮機1は第4図
に破線Cで示すように起動され、急速にモータ回
転数が上昇する。このため、冷媒が圧縮機1内で
寝込んだ(混入した)状態で起動されると、圧縮
機1の機内圧力が急激に低下し、液冷媒が蒸発す
る際に、オイルフオーミング現象が生じる。オイ
ルフオーミング現象が生じると潤滑油の油面が上
昇し、液圧縮による弁破損等の不具合が生じやす
い。
However, when the commercial power source 4 is directly input to the compressor 1 of the refrigerator via the electromagnetic switch 3, the compressor 1 is activated as shown by the broken line C in FIG. 4 by energizing the compressor 1. The motor rotation speed increases rapidly. Therefore, when the compressor 1 is started with the refrigerant trapped (mixed) inside the compressor 1, the internal pressure of the compressor 1 decreases rapidly, and when the liquid refrigerant evaporates, an oil forming phenomenon occurs. When the oil forming phenomenon occurs, the oil level of the lubricating oil rises, and problems such as valve damage due to liquid compression are likely to occur.

ところで、商用電源4を圧縮機1に直接入力す
る代りに、圧縮機1のモータ回転数制御を行なう
ために、第2図に示すように電磁開閉器3と圧縮
機1との間に、周波数制御回路(インバータ)6
を設け、圧縮機1のモータ回転数を制御するよう
にしたものがある。
By the way, instead of directly inputting the commercial power source 4 to the compressor 1, in order to control the motor rotation speed of the compressor 1, a frequency signal is connected between the electromagnetic switch 3 and the compressor 1 as shown in FIG. Control circuit (inverter) 6
There is one in which the motor rotation speed of the compressor 1 is controlled.

この場合、周波数制御回路6には、蒸発器内空
気温度センサ7からの蒸発器温度と蒸発器内空気
設定サーモ8から予め設定された設定温度が信号
化されて入力される。周波数制御回路6は、蒸発
器温度を感知し、設定温度との差によつて周波数
を制御し、圧縮機1のモータ回転数を調節制御す
る一般的な制御方法である。
In this case, the evaporator temperature from the evaporator air temperature sensor 7 and the preset temperature set from the evaporator air setting thermometer 8 are converted into signals and input to the frequency control circuit 6 . The frequency control circuit 6 senses the evaporator temperature, controls the frequency based on the difference from the set temperature, and uses a general control method to adjust and control the motor rotation speed of the compressor 1.

しかしながら、この制御方法による圧縮機3の
モータ回転数の調節制御は、圧縮機1の機内温度
とは無関係に、蒸発器温度を感知して行なわれる
ため、第4図に一点鎖線Bで示すようになり、急
速にモータ回転数が上昇する。したがつて第1図
に示すものと同様、圧縮機の起動時にオイルフオ
ーミング現象が生じ、液圧縮による弁破損等の不
具合が生じやすい。また、上記の問題を解決する
ため、例えば、実公昭52−7845号公報に示すよう
に、圧縮機の底部に貯溜した油の温度を検出し、
この油温度が低い場合、圧縮機を低速回転にさせ
る装置が考えられている。しかし、このような、
圧縮機ケース温度のみを検出して起動時の圧縮機
の回転数を制御させる場合、運転開始前の停止状
態における外気温度状態に応じ、圧縮機内の貯溜
油の温度状態は変化するため、その圧縮機内に液
冷媒が寝込んでいるか否かを適確に検知すること
は難しかつた。また、実開昭56−123979号等に示
されるように、圧縮機の起動時一定時間小容量回
転させるようにすることも考えられているが、圧
縮機内に液冷媒が寝込んでいない場合にも起動時
小容量回転させるため、コントロール運転時にお
ける再起動直後の立上がりが遅くなり所定の冷凍
能力が充分得られないといつた欠点があつた。
However, the adjustment control of the motor rotation speed of the compressor 3 by this control method is performed by sensing the evaporator temperature, regardless of the internal temperature of the compressor 1, so as shown by the dashed line B in FIG. , and the motor rotation speed increases rapidly. Therefore, as in the case shown in FIG. 1, an oil forming phenomenon occurs when the compressor is started, and problems such as valve damage due to liquid compression are likely to occur. In addition, in order to solve the above problem, for example, as shown in Japanese Utility Model Publication No. 52-7845, the temperature of the oil stored at the bottom of the compressor is detected,
A device is being considered that allows the compressor to rotate at a low speed when the oil temperature is low. However, like this,
When controlling the rotation speed of the compressor at startup by detecting only the compressor case temperature, the temperature of the oil stored in the compressor changes depending on the outside air temperature in the stopped state before starting operation, so the compression It was difficult to accurately detect whether liquid refrigerant was trapped inside the aircraft. In addition, as shown in Utility Model Application Publication No. 56-123979, it has been considered to rotate the compressor at a small capacity for a certain period of time when starting up the compressor, but this also applies when there is no liquid refrigerant in the compressor. Due to the small capacity rotation at startup, there was a drawback that the start-up immediately after restart during controlled operation was delayed, making it impossible to obtain a sufficient predetermined refrigerating capacity.

〔考案の目的〕[Purpose of invention]

この考案は上述した点を考慮し、圧縮機起動時
のオイルフオーミングによる液圧縮を有効的かつ
確実に防止し、弁の破損や折損を有効的に防ぎ、
圧縮機をスムーズにかつ効率的に起動させ得るよ
うにした冷凍機の回転数制御装置を提供すること
を目的とする。
This invention takes the above points into consideration, effectively and reliably prevents liquid compression due to oil forming when starting the compressor, effectively prevents valve damage and breakage,
It is an object of the present invention to provide a rotation speed control device for a refrigerator that can smoothly and efficiently start up a compressor.

〔考案の概要〕 上述した目的を達成するために、この考案によ
る冷凍機の回転数制御装置は、冷媒圧縮用圧縮機
のモータ回転数を周波数制御回路により調節制御
するものにおいて、圧縮機のケース温度を検出す
る第1温度センサと冷凍機の周囲温度を検出する
第2温度センサとを前記周波数制御回路に接続
し、上記周波数制御回路は両温度センサからの検
出温度差に応じて圧縮機の起動時のモータ回転数
制御を行なうようにしたものである。
[Summary of the invention] In order to achieve the above-mentioned object, the revolution speed control device for a refrigerator according to this invention adjusts and controls the motor revolution speed of a compressor for refrigerant compression using a frequency control circuit. A first temperature sensor that detects temperature and a second temperature sensor that detects ambient temperature of the refrigerator are connected to the frequency control circuit, and the frequency control circuit controls the temperature of the compressor according to the difference in temperature detected by both temperature sensors. The motor rotation speed is controlled at startup.

〔考案の実施例〕[Example of idea]

以下、この考案の好ましい実施例について添付
図面を参照して説明する。
Hereinafter, preferred embodiments of this invention will be described with reference to the accompanying drawings.

この考案において、冷凍機は冷凍シヨーケース
や食品自動販売機のように、食品を冷蔵または冷
凍貯蔵する設備に用いられ、圧縮機10、凝縮
器、減圧機構、蒸発器を順次接続して閉じた冷凍
サイクルが構成される。冷凍機は、第3図に示す
ように50Hzあるいは60Hz用商用電源11により運
転される。
In this invention, the refrigerator is used in equipment that refrigerates or freezes food storage, such as a freezer case or a food vending machine, and a compressor 10, a condenser, a pressure reduction mechanism, and an evaporator are connected in sequence to create a closed refrigerator. A cycle is constructed. The refrigerator is operated by a 50Hz or 60Hz commercial power source 11, as shown in FIG.

商用電源11は電磁開閉器12を介して凝縮器
冷却フアン用フアンモータ13等に電気的に接続
され、この電磁開閉器12を閉じることにより、
各フアンモータ13に通電されるようになつてい
る。電磁開閉器12は圧力スイツチ14のスイツ
チ操作により励磁され、開閉されるようになつて
いる。
The commercial power source 11 is electrically connected to a condenser cooling fan fan motor 13 etc. via an electromagnetic switch 12, and by closing this electromagnetic switch 12,
Each fan motor 13 is energized. The electromagnetic switch 12 is excited and opened/closed by operating a pressure switch 14.

一方、電磁開閉器12は圧縮機10に周波数制
御回路(インバータ)16を介して電気的に接続
される。周波数制御回路16は圧縮機10のモー
タ回転数を調節制御するものである。この周波数
制御回路16には蒸発器内空気温度センサ17か
らの蒸発器温度および蒸発器内空気設定サーモ1
8からの設定温度が信号化されて入力される一
方、圧縮機ケース10aに取付けられた圧縮機ケ
ース温度センサ20および冷凍機周囲温度センサ
21から検出温度信号が入力される。このうち、
冷凍機周囲温度センサ21は凝縮器や蒸発器の放
熱吸熱作用の影響を受けない箇所に設置される。
On the other hand, the electromagnetic switch 12 is electrically connected to the compressor 10 via a frequency control circuit (inverter) 16. The frequency control circuit 16 adjusts and controls the motor rotation speed of the compressor 10. This frequency control circuit 16 receives the evaporator temperature from the evaporator air temperature sensor 17 and the evaporator air setting thermometer 1.
The set temperature from 8 is converted into a signal and input, while detected temperature signals are input from a compressor case temperature sensor 20 and a refrigerator ambient temperature sensor 21 attached to the compressor case 10a. this house,
The refrigerator ambient temperature sensor 21 is installed at a location that is not affected by the heat dissipation and heat absorption effects of the condenser and evaporator.

また、周波数制御回路16には、圧縮機ケース
温度センサ20および冷凍機周囲温度センサ21
からの入力温度信号を比較し、演算する比較演算
回路を有し、その温度差信号に基いて圧縮機10
起動時のモータ回転数を調節制御している。さら
に、周波数制御回路16内には図示しないタイマ
ー回路が設けられており、上記温度差信号に基い
て圧縮機10のモータ回転数を運転制御する際、
タイマ回路のタイマ作動により第4図に実線Aで
示すように一定時間(a域)低回転で運転させ、
その後b域で示すように正常のモータ回転数まで
上昇させるようにしたものである。
The frequency control circuit 16 also includes a compressor case temperature sensor 20 and a refrigerator ambient temperature sensor 21.
The compressor 10 has a comparison calculation circuit that compares and calculates input temperature signals from the compressor 10 based on the temperature difference signal.
Adjusts and controls the motor rotation speed at startup. Furthermore, a timer circuit (not shown) is provided in the frequency control circuit 16, and when controlling the motor rotation speed of the compressor 10 based on the temperature difference signal,
By the timer operation of the timer circuit, the engine is operated at low rotation speed for a certain period of time (area a) as shown by the solid line A in Figure 4.
Thereafter, the motor rotation speed is increased to the normal speed as shown in region b.

次に、この考案の作用効果について説明する。
圧力スイツチ14のON操作により、電磁開閉器
12を励磁させて閉じ、冷凍機に通電されるよう
になつており、冷凍機の運転が開始される。
Next, the effects of this invention will be explained.
When the pressure switch 14 is turned on, the electromagnetic switch 12 is energized and closed, the refrigerator is energized, and the refrigerator starts operating.

まず、冬期等冷凍機周囲温度が低い状態におけ
る運転開始時点では、圧縮機および凝縮器等も冷
凍機周囲温度と同等の低温状態にあり、圧縮機内
には、長期間の停止により徐々に液冷媒が寝込ん
だ状態となつている。この運転開始時点のよう
な、圧縮機ケース温度と冷凍機周囲温度との温度
差が低い場合には、圧縮機10は、第4図に実線
Aで示されるようにモータ回転数が周波数制御回
路16により調節制御される。この調節制御によ
り、圧縮機10のモータは所定時間低速回転で運
転され、その間に圧縮機内に寝込んだ冷媒がスム
ーズにガス化され、オイルフオーミング現象が防
止される。一定時間経過後、周波数制御回路16
内に組み込まれたタイマ回路により、圧縮機のモ
ータ回転数は正常回転まで上昇せしめられる。
First, at the time of start of operation when the ambient temperature of the refrigerator is low, such as in winter, the compressor, condenser, etc. are also in a low temperature state equivalent to the ambient temperature of the refrigerator, and liquid refrigerant gradually builds up inside the compressor due to the long period of stoppage. is in a sleepy state. When the temperature difference between the compressor case temperature and the refrigerator ambient temperature is low, such as at the time of starting operation, the compressor 10 is controlled by the frequency control circuit such that the motor rotation speed is increased as shown by the solid line A in FIG. 16. With this adjustment control, the motor of the compressor 10 is operated at low speed for a predetermined period of time, during which time the refrigerant trapped in the compressor is smoothly gasified, and oil forming phenomenon is prevented. After a certain period of time, the frequency control circuit 16
A timer circuit built into the compressor allows the compressor motor rotation speed to increase to normal rotation.

圧縮機10のモータ回転数が正常回転に達する
と、その回転域で冷凍機の運転が蒸発器内温度セ
ンサ17やその空気設定サーモ18からの信号に
より、調節制御され、冷凍機の庫内は次第に冷却
され、所定の温度に達する。庫内が所定の温度に
達した後は、冷凍機の庫内を所定温度に維持させ
るため、圧縮機10はON−OFFされ、コントロ
ール運転に入る。圧縮機10のコントロール運転
時において、圧縮機10を再起動させる場合に
は、冷凍機周囲温度が低い状態においても、圧縮
機に熱容量が有るため温度低下せず、冷凍機周囲
温度に比べ圧縮機ケース温度が充分に高く、ま
た、圧縮機10内の冷媒はガス化され、潤滑油か
ら分離されており、いわゆる冷媒の寝込みが生じ
ない。
When the motor rotation speed of the compressor 10 reaches normal rotation, the operation of the refrigerator is adjusted and controlled in that rotation range by signals from the evaporator internal temperature sensor 17 and its air setting thermometer 18, and the inside of the refrigerator is controlled. It is gradually cooled down and reaches a predetermined temperature. After the temperature inside the refrigerator reaches a predetermined temperature, the compressor 10 is turned on and off to enter a controlled operation in order to maintain the temperature inside the refrigerator at a predetermined temperature. When restarting the compressor 10 during controlled operation of the compressor 10, even when the ambient temperature of the refrigerator is low, the compressor has a heat capacity, so the temperature does not drop, and the temperature of the compressor remains low compared to the ambient temperature of the refrigerator. The case temperature is sufficiently high, and the refrigerant in the compressor 10 is gasified and separated from the lubricating oil, so that so-called refrigerant stagnation does not occur.

このような圧縮機ケース温度が高く、冷凍機周
辺温度との温度差が一定以上のときは、圧縮機1
0は起動後、直ちにb域の運転に入るように周波
数制御回路16により運転制御される。
When the compressor case temperature is high and the temperature difference between the compressor case temperature and the surrounding temperature of the refrigerator is above a certain level, the compressor 1
0 is controlled by the frequency control circuit 16 so that it immediately enters operation in range b after startup.

この場合、周波数制御回路16に組み込まれる
タイマ回路は作動されず、第2図に示される冷凍
機の運転制御の場合と同じように、圧縮機10の
モータ回転数が第4図と一点鎖線Bで示されるよ
うに調整される。したがつて、圧縮機10は再起
動後、短時間で所定の冷凍能力が得られる。この
ように、圧縮機は圧縮機ケース温度センサ20と
冷凍機周囲温度センサ21の検出温度差に応じ
て、その起動時にモータ回転数の立ち上がりが選
択される。
In this case, the timer circuit incorporated in the frequency control circuit 16 is not activated, and as in the case of the operation control of the refrigerator shown in FIG. Adjusted as shown in . Therefore, after the compressor 10 is restarted, a predetermined refrigerating capacity can be obtained in a short time. In this manner, the rise of the motor rotation speed is selected when the compressor is started, depending on the temperature difference detected by the compressor case temperature sensor 20 and the refrigerator ambient temperature sensor 21.

すなわち、圧縮器ケース温度と冷凍機周囲温度
との温度差を検出することで、この温度差が低い
状態のときは、圧縮機に液冷媒が寝込んでいる運
転開始状態と判定し、その温度差が大きいとき
は、圧縮機に液冷媒が寝込んでいないコントロー
ル運転中における再起動時と判断させることで、
圧縮機の起動時における回転数制御を行なうもの
である。
In other words, by detecting the temperature difference between the compressor case temperature and the refrigerator ambient temperature, when this temperature difference is low, it is determined that the compressor is in a starting state where liquid refrigerant is stagnant, and the temperature difference is detected. When the refrigerant is large, it is determined that it is time to restart during controlled operation when the liquid refrigerant is not stagnant in the compressor.
This controls the rotation speed when starting the compressor.

これにより、圧縮器ケース温度のみを検出して
起動時の圧縮機の回転数を制御させるものに比
べ、再起動時における圧縮機10のモータ回転数
の調整が、適確に行えるものである。
As a result, the motor rotation speed of the compressor 10 can be adjusted more accurately when restarting, compared to a system in which only the compressor case temperature is detected to control the rotation speed of the compressor at startup.

[考案の効果] 以上に述べたようにこの考案に係る冷凍機の回
転数制御装置は、圧縮機のケース温度を検出する
第1温度センサと冷凍機の周囲温度を検出する第
2温度センサとを周波数制御回路に接続してな
り、この周波数制御回路は両温度センサからの検
出温度差に応じて圧縮機起動時のモータ回転数制
御を行なうようにしたから、圧縮機内の冷媒寝込
み時に起動させた場合には、圧縮機のモータを低
速で回転させることにより、圧縮機内のオイルフ
オーミング現象を未然にかつ有効的に防止し、オ
イルフオーミングによる液圧縮運転を防ぐことが
でき、弁の折損や破損を生じさせることなく、圧
縮機をスムーズに起動させることができる。
[Effects of the invention] As described above, the refrigerator rotation speed control device according to the invention includes a first temperature sensor that detects the case temperature of the compressor and a second temperature sensor that detects the ambient temperature of the refrigerator. is connected to a frequency control circuit, and this frequency control circuit controls the motor rotation speed when starting the compressor according to the temperature difference detected by both temperature sensors. In such cases, by rotating the compressor motor at low speed, oil forming phenomenon inside the compressor can be effectively prevented, preventing liquid compression operation due to oil forming, and preventing valve breakage. The compressor can be started smoothly without causing damage or damage.

また、冷凍機のコントロール運転時には、両温
度センサからの検出温度差が大きく、この大きな
温度差に応じた圧縮機の再起動が可能となる。こ
の場合には、圧縮機のモータ回転数を急速に上昇
させるように運転制御できるので、圧縮機再起動
直後に所定の冷凍能力が得られ、冷凍機を高効率
的に運転させることができ、冷凍機を高効率運転
させても圧縮機に液圧縮等による過負荷が加わる
ことがなく、しかも、圧縮機ケース温度のみを検
出して起動時の圧縮機の回転数を制御させるもの
に比べ、再起動時における圧縮機のモータ回転数
の調整が、適確に行える等の効果を奏する。
Furthermore, during controlled operation of the refrigerator, the difference in temperature detected by both temperature sensors is large, and the compressor can be restarted in accordance with this large temperature difference. In this case, since the operation can be controlled to rapidly increase the motor rotation speed of the compressor, the predetermined refrigerating capacity can be obtained immediately after restarting the compressor, and the refrigerator can be operated with high efficiency. Even when the refrigerator is operated at high efficiency, there is no overload on the compressor due to liquid compression, etc., and compared to systems that only detect the compressor case temperature and control the compressor rotation speed at startup, This provides effects such as being able to accurately adjust the rotation speed of the compressor motor at the time of restart.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍機を駆動させる従来の電気的配線
を示す配線図、第2図は周波数制御回路を有する
冷凍機の回転数制御装置を示す配線図、第3図は
この考案に係る冷凍機の回転数制御装置の一実施
例を示す配線図、第4図は圧縮機の起動時におけ
るモータ回転数の時間変位を示すグラフである。 10……圧縮機、10a……圧縮機ケース、1
1……電源、12……電磁開閉器、13……フア
ンモータ、14……圧力スイツチ、16……周波
数制御回路、17……蒸発器内空気温度センサ、
20……圧縮機ケース温度センサ(第1温度セン
サ)、21……冷凍機周囲温度センサ(第2温度
センサ)。
Figure 1 is a wiring diagram showing conventional electrical wiring for driving a refrigerator, Figure 2 is a wiring diagram showing a rotation speed control device for a refrigerator having a frequency control circuit, and Figure 3 is a diagram of a refrigerator according to this invention. FIG. 4 is a wiring diagram showing an embodiment of the rotation speed control device of FIG. 10...Compressor, 10a...Compressor case, 1
1... Power source, 12... Electromagnetic switch, 13... Fan motor, 14... Pressure switch, 16... Frequency control circuit, 17... Evaporator internal air temperature sensor,
20... Compressor case temperature sensor (first temperature sensor), 21... Refrigerator ambient temperature sensor (second temperature sensor).

Claims (1)

【実用新案登録請求の範囲】 1 冷媒圧縮用圧縮機のモータ回転数を周波数制
御回路により調節制御する冷凍機の回転数制御
装置において、圧縮機のケース温度を検出する
第1温度センサと冷凍機の周囲温度を検出する
第2温度センサとを前記周波数制御回路に接続
し、上記周波数制御回路は両温度センサからの
検出温度差に応じて圧縮機起動時のモータ回転
数制御を行なうようにしたことを特徴とする冷
凍機の回転数制御装置。 2 周波数制御回路は第1および第2温度センサ
からの検出信号を比較演算する比較演算回路を
有し、両温度センサからの温度差が所定値以下
のとき、圧縮機を一定時間低速回転させるよう
にした実用新案登録請求の範囲第1項に記載の
冷凍機の回転数制御装置。 3 第2温度センサは冷凍機の凝縮器および蒸発
器の放熱作用や吸熱作用を受けない箇所に設置
された実用新案登録請求の範囲第1項に記載の
冷凍機の回転数制御装置。
[Claims for Utility Model Registration] 1. In a refrigerator rotation speed control device that adjusts and controls the motor rotation speed of a refrigerant compressor using a frequency control circuit, a first temperature sensor that detects the case temperature of the compressor and the refrigerator A second temperature sensor that detects the ambient temperature of the compressor is connected to the frequency control circuit, and the frequency control circuit controls the motor rotation speed at the time of starting the compressor in accordance with the temperature difference detected from both temperature sensors. A rotation speed control device for a refrigerator, characterized by the following. 2 The frequency control circuit has a comparison calculation circuit that compares and calculates the detection signals from the first and second temperature sensors, and when the temperature difference from both temperature sensors is less than a predetermined value, the frequency control circuit causes the compressor to rotate at a low speed for a certain period of time. A rotation speed control device for a refrigerator according to claim 1 of the utility model registration claim. 3. The rotational speed control device for a refrigerator according to claim 1, wherein the second temperature sensor is installed at a location that is not subjected to the heat radiation action or heat absorption action of the condenser and evaporator of the refrigerator.
JP9050683U 1983-06-15 1983-06-15 Refrigerator rotation speed control device Granted JPS59195467U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9050683U JPS59195467U (en) 1983-06-15 1983-06-15 Refrigerator rotation speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9050683U JPS59195467U (en) 1983-06-15 1983-06-15 Refrigerator rotation speed control device

Publications (2)

Publication Number Publication Date
JPS59195467U JPS59195467U (en) 1984-12-26
JPH0225092Y2 true JPH0225092Y2 (en) 1990-07-10

Family

ID=30220434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9050683U Granted JPS59195467U (en) 1983-06-15 1983-06-15 Refrigerator rotation speed control device

Country Status (1)

Country Link
JP (1) JPS59195467U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445004Y2 (en) * 1986-10-29 1992-10-22
JPH0718600B2 (en) * 1987-08-08 1995-03-06 三洋電機株式会社 Refrigerator capacity control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527845U (en) * 1975-07-02 1977-01-20

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856529Y2 (en) * 1979-05-14 1983-12-27 ダイキン工業株式会社 Refrigeration equipment
JPS56123979U (en) * 1980-02-22 1981-09-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527845U (en) * 1975-07-02 1977-01-20

Also Published As

Publication number Publication date
JPS59195467U (en) 1984-12-26

Similar Documents

Publication Publication Date Title
JP3238916B2 (en) Inverter refrigerator operating speed variable apparatus and method
KR890004526B1 (en) Refrigerator and method for defrosting of refrigerator
JPH0225092Y2 (en)
JPH08261571A (en) Method for actuating compression type freezer
JPH09196535A (en) Refrigerator
KR100190122B1 (en) Temperature control method and device of a refrigerator
JPH09318165A (en) Electric refrigerator
JP3220377B2 (en) Cold storage
KR100207087B1 (en) Refrigerator operating control method
JP3048497B2 (en) refrigerator
JP2000111231A (en) Freezer-refrigerator
KR19990004645A (en) Driving control method of refrigerator
KR100196943B1 (en) Fan rotative speed control method and its control apparatus of a refrigerator
JP3903237B2 (en) Cold storage
JPH06159891A (en) Control device for refrigerator
JPH094959A (en) Controller for refrigerator
JPH07260313A (en) Refrigerator
KR19990041830A (en) Fault diagnosis device of the refrigerator and its control method
KR100234121B1 (en) Refrigerator and control method
JPH07305904A (en) Freezer
JP2002221381A (en) Refrigerating machine
JPS5950037B2 (en) Defrost control system for refrigeration equipment
JPH1038440A (en) Controller for refrigerator
JP3192730B2 (en) refrigerator
JPH08247598A (en) Operation controller for refrigerator