JPH08247598A - Operation controller for refrigerator - Google Patents

Operation controller for refrigerator

Info

Publication number
JPH08247598A
JPH08247598A JP7054340A JP5434095A JPH08247598A JP H08247598 A JPH08247598 A JP H08247598A JP 7054340 A JP7054340 A JP 7054340A JP 5434095 A JP5434095 A JP 5434095A JP H08247598 A JPH08247598 A JP H08247598A
Authority
JP
Japan
Prior art keywords
compressor
temperature
blower
discharge pipe
revolutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7054340A
Other languages
Japanese (ja)
Inventor
Kiyonori Yamamoto
清則 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP7054340A priority Critical patent/JPH08247598A/en
Publication of JPH08247598A publication Critical patent/JPH08247598A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE: To enable keeping of a discharge-side pressure-peak of a compressor lower by operating the compressor below the maximum number of revolutions simultaneously with the closing of a power source and at the initial number of revolutions until a discharge pipe sensor temperature falls below a specified value when the sensor temperature is at the specified value or higher after the setting up of a timer. CONSTITUTION: When a power source is closed, a compressor 20 is operated, for example, at the number of revolutions 90% of the maximum number of revolutions, while a blower 22 is energized electrically to start the cooling of the inside of a storage. Under such a condition, standing-by is made for a specified time and after a specified time passes, the detected temperature (t) of a temperature sensor mounted on a discharge pipe of the compressor 22 is compared with a set temperature t1 and when t>t1, standing-by is also made under such a condition. On the other hand, when t<t1, the number of revolutions of the compressor 22 is raised to 100% and thereafter, the operation enters the normal control routine. This enables lowering of a pressure peak at the start without stopping the blower while eliminating the stoppage of the blower thereby restricting changes in the discharge side pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫、ショーケース
等の冷蔵貯蔵室の運転制御装置に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigerating storage room such as a refrigerator and a showcase.

【0002】[0002]

【従来の技術】従来、冷蔵庫等の冷却装置に使用される
冷蔵庫の運転制御として、たとえば特開平5−2405
56号公報に示される例がそれであり、以下図4〜図7
に従い説明する。
2. Description of the Related Art Conventionally, as operation control of a refrigerator used for a cooling device such as a refrigerator, for example, Japanese Patent Laid-Open No. 5-2405 has been proposed.
That is the example shown in Japanese Patent Publication No. 56-56, and FIGS.
Follow the explanation below.

【0003】図4は冷蔵庫の縦断面構造を示すもので、
1は冷蔵庫本体で、外箱2、内箱3、外箱2と内箱3間
に充填された発泡断熱材4で構成されている。5は冷凍
室、6は冷蔵室であり、冷凍室5の奥壁7の奥には冷却
器8、送風機9等を備えている。10は冷凍室5の温度
を検知する冷凍室センサーであり、11は圧縮機であ
る。
FIG. 4 shows a vertical sectional structure of a refrigerator.
Reference numeral 1 denotes a refrigerator main body, which includes an outer box 2, an inner box 3, and a foamed heat insulating material 4 filled between the outer box 2 and the inner box 3. Reference numeral 5 is a freezing room, 6 is a refrigerating room, and a cooler 8, a blower 9 and the like are provided at the back of a back wall 7 of the freezing room 5. Reference numeral 10 is a freezer compartment sensor that detects the temperature of the freezer compartment 5, and 11 is a compressor.

【0004】図5は冷蔵庫の電気制御装置を部分的に示
すもので、12は制御回路で、例えばマイクロコンピュ
ータを含んで構成されたもので、商用交流電源に接続さ
れるプラグ13から直流電源回路14を介して給電され
る構成となっている。
FIG. 5 partially shows an electric control device for a refrigerator. Reference numeral 12 is a control circuit, which is constituted by including a microcomputer, for example, from a plug 13 connected to a commercial AC power supply to a DC power supply circuit. Power is supplied via 14.

【0005】この制御回路12は、冷凍室センサー10
等からの情報をもとに予め記憶した制御用プログラムに
基づき前記圧縮機11、送風機9の通断電をリレー1
5、16を介して実行するように構成されている。
This control circuit 12 includes a freezer compartment sensor 10.
Based on the control program stored in advance on the basis of information from the relay 1 and the like, the relay 1 is used to connect and disconnect the compressor 11 and the blower 9.
5, 16 are configured to be executed.

【0006】図6は制御回路12による制御内容の一部
を説明したフローチャートである。以上の構造で以下そ
の動作を説明する。電源投入されたとき、つまりプラグ
13が商用交流電源に接続されたときには、圧縮機11
及び送風機9に電通される。冷却器8により造られた冷
気は送風機9により冷凍室5、冷蔵室6に導かれ庫内を
冷却していく(ステップS1)。この状態で所定時間Δ
T1が経過するまで待機する(ステップS2)。時間Δ
T1が経過したときには、送風機9を断電してその運転
を停止させ庫内の冷却を一時中断させる(ステップS
3)。
FIG. 6 is a flow chart for explaining a part of the control contents by the control circuit 12. The operation of the above structure will be described below. When the power is turned on, that is, when the plug 13 is connected to the commercial AC power source, the compressor 11
And the fan 9 is electrically connected. The cool air produced by the cooler 8 is guided to the freezer compartment 5 and the refrigerating compartment 6 by the blower 9 to cool the interior (step S1). In this state, the predetermined time Δ
It waits until T1 passes (step S2). Time Δ
When T1 elapses, the blower 9 is cut off to stop its operation and suspend the cooling of the inside of the warehouse (step S
3).

【0007】この状態で一定時間ΔT2が経過するまで
待機する(ステップS4)。時間ΔT2が経過したとき
には送風機9の通電を再開させ(ステップS5)、この
後に通常制御ルーチンS6へ移行する。
In this state, the process stands by until a predetermined time ΔT2 elapses (step S4). When the time ΔT2 has elapsed, the blower 9 is energized again (step S5), and thereafter, the process proceeds to the normal control routine S6.

【0008】ここで電源投入後のステップS1から通常
制御ルーチンS6に至る過程での圧縮機吐出側圧力に注
目してみる。まず、電源投入後のステップS1では冷却
器8と庫内空気との熱交換量が大きく蒸発温度は高い。
従って圧縮機の吐出側圧力は急激に上昇していく。
Attention will be paid to the pressure on the discharge side of the compressor in the process from step S1 after the power is turned on to the normal control routine S6. First, in step S1 after the power is turned on, the amount of heat exchange between the cooler 8 and the inside air is large, and the evaporation temperature is high.
Therefore, the discharge side pressure of the compressor rises rapidly.

【0009】次にステップS3で送風機9が停止すると
冷却器8での熱交換も停止、よって蒸発温度は急激に低
下する。つまり冷却器8での蒸発力が低い状態に推移さ
れることになり、その間は圧縮機の吐出側圧力の蒸発温
度の上昇が制御された状態になる。
Next, when the blower 9 is stopped in step S3, the heat exchange in the cooler 8 is also stopped, so that the evaporation temperature sharply drops. That is, the evaporating power in the cooler 8 is changed to a low state, and during that time, the rise of the evaporating temperature of the discharge side pressure of the compressor is controlled.

【0010】ステップS5で送風機9の運転が再開され
ると蒸発温度の上昇に伴い吐出側圧力も上昇していく
が、送風機9の運転が再開された直後では冷却器8の温
度が充分に低下しているから、圧縮機の吐出側圧縮は相
対的に低い値を呈し一旦上昇して最大値を示した後に冷
却器8の温度に応じた値に落ち着くようになる。
When the operation of the blower 9 is restarted in step S5, the discharge side pressure is also increased with the increase of the evaporation temperature, but immediately after the operation of the blower 9 is restarted, the temperature of the cooler 8 is sufficiently lowered. Therefore, the discharge side compression of the compressor exhibits a relatively low value, rises once and then reaches the maximum value, and then settles to a value corresponding to the temperature of the cooler 8.

【0011】これら一連の圧縮機の吐出側圧力推移を図
示したものが図7である。図7から明らかなように、送
風機9の運転停止により圧縮機の吐出側圧力ピークがΔ
P低く抑えられ、その分圧縮機の負荷トルクを引き下げ
られ圧縮機の小型化が図れる(破線は送風機9の運転停
止がなかった場合の圧力推移)。
FIG. 7 illustrates the discharge side pressure transition of these series of compressors. As is apparent from FIG. 7, when the blower 9 is stopped, the discharge side pressure peak of the compressor is Δ.
P is suppressed to a low level, and the load torque of the compressor can be reduced accordingly and the size of the compressor can be reduced (dotted line indicates pressure transition when the blower 9 is not stopped).

【0012】[0012]

【発明が解決しようとする課題】しなしながら上記のよ
うな構成では、起動時の高負荷を乗り切るがために送風
機の運転を停止させるためこの間、庫内の冷却が停止し
てしまい冷却速度が鈍ることになる。
However, in the above-mentioned configuration, the blower operation is stopped in order to survive the high load at the time of start-up, during which the cooling of the inside of the refrigerator is stopped and the cooling rate is increased. It will become dull.

【0013】さらに、送風機停止時と運転時とでは圧縮
機の負荷量に大差が生じ、負荷変動に対する圧縮機の信
頼性に対しても大きな課題を有していた。
Further, there is a large difference in the load amount of the compressor between when the blower is stopped and when the blower is in operation, and there is a great problem in the reliability of the compressor against load fluctuations.

【0014】本発明は上記課題に鑑み、冷却速度の低下
を極力防止し、さらに圧縮機の信頼性向上を図ったもの
である。
In view of the above problems, the present invention is intended to prevent a decrease in cooling rate as much as possible and further improve the reliability of the compressor.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷蔵庫は、圧縮機と、前記圧縮機の回転数を
制御する回転数制御手段と、前記圧縮機の吐出管の温度
を検知する吐出管センサーと、所定時間積算するタイマ
ーとから成り、電源投入と同時に前記圧縮機を最高回転
数以下で運転させるとともに前記タイマーを始動させ、
前記タイマーセットアップ後は前記吐出管センサー温度
が所定温度以下の時は前記圧縮機を最高回転数で運転さ
せ、また前記吐出管センサー温度が所定温度以上の時は
前記吐出管センサー温度が所定温度以下になるまで当初
の回転数で圧縮機を運転させる構成とする。
In order to solve the above problems, a refrigerator according to the present invention controls a compressor, a rotation speed control means for controlling the rotation speed of the compressor, and a temperature of a discharge pipe of the compressor. It consists of a discharge pipe sensor for detecting and a timer that integrates for a predetermined time, and at the same time as turning on the power, the compressor is operated at a maximum rotation speed or less and the timer is started.
After the timer setup, when the discharge pipe sensor temperature is below a predetermined temperature, the compressor is operated at the maximum rotation speed, and when the discharge pipe sensor temperature is above a predetermined temperature, the discharge pipe sensor temperature is below a predetermined temperature. The compressor will be operated at the initial speed until it becomes.

【0016】[0016]

【作用】本発明は上記した構成によって、電源投入と同
時に圧縮機を最高回転数以下で運転させるため、送風機
を停止させることなく圧縮機の吐出側圧力ピークを低く
抑えることが可能となる。また、送風機を停止させるこ
とがないので圧縮機の吐出側圧力の極端な変動もなくな
ることになる。
According to the present invention, with the above-described structure, the compressor is operated at the maximum rotation speed or less when the power is turned on. Therefore, the discharge side pressure peak of the compressor can be suppressed to a low level without stopping the blower. Further, since the blower is not stopped, the extreme fluctuation of the discharge side pressure of the compressor is eliminated.

【0017】[0017]

【実施例】以下本発明の一実施例の冷蔵庫について図面
を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerator according to an embodiment of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の実施例における冷蔵庫の概
略電気制御装置を示す図で、17は例えばマイクロコン
ピュータを含んだ制御回路であり、商用交流電源に接続
されるプラグ18から直流電源回路19を介して給電さ
れる構成となっている。
FIG. 1 is a diagram showing a schematic electric control device for a refrigerator according to an embodiment of the present invention. Reference numeral 17 denotes a control circuit including a microcomputer, for example, a plug 18 connected to a commercial AC power source to a DC power source circuit 19. The power is supplied via the.

【0019】20は圧縮機、21は圧縮機20の制御を
司る回転数制御手段、22は送風機、23は送風機22
の通断電リレー、24は庫内温度検知手段である。25
は電源投入と同時に動作を開始し、一定時間経過後出力
を送出するタイマーである。26は圧縮機20の吐出管
の温度を検知する吐出管センサーである。
Reference numeral 20 is a compressor, 21 is a rotation speed control means for controlling the compressor 20, 22 is a blower, and 23 is a blower 22.
An on / off relay of No. 24, and 24 is an inside temperature detecting means. 25
Is a timer that starts its operation at the same time when the power is turned on and outputs an output after a lapse of a certain time. A discharge pipe sensor 26 detects the temperature of the discharge pipe of the compressor 20.

【0020】図2は制御回路17による制御内容の一部
を説明したフローチャートである。かかる構成において
以下その動作を説明する。電源投入されたとき、つまり
プラグ18が商用交流電源に接続されたときには、圧縮
機20は例えば最高回転数の90%の回転数で運転、送
風機22にも通電を開始し庫内の冷却を開始する(ステ
ップS7)。
FIG. 2 is a flow chart for explaining a part of control contents by the control circuit 17. The operation of this configuration will be described below. When the power is turned on, that is, when the plug 18 is connected to the commercial AC power source, the compressor 20 is operated at a rotation speed of 90% of the maximum rotation speed, and the blower 22 is also energized to start cooling the inside of the refrigerator. Yes (step S7).

【0021】この状態で所定時間ΔT3が経過するまで
待機する(ステップS8)。時間ΔT3が経過した後、
圧縮機22の吐出管に取り付けた吐出管センサー温度t
1が予め設定しておいた温度t1と比較しその大小を判
定する。もしt>t1であればこの状態で待機する(ス
テップS9)。
In this state, the process stands by until a predetermined time ΔT3 has passed (step S8). After the time ΔT3 has passed,
Discharge pipe sensor temperature t attached to the discharge pipe of the compressor 22
1 is compared with a preset temperature t1 to determine its magnitude. If t> t1, it stands by in this state (step S9).

【0022】吐出管センサー温度がt≦t1なれば圧縮
機22はその回転数を100%まで上昇(ステップS1
0)、以後は通常制御ルーチンへと入っていく。通常制
御については特に説明を省略するが、冷凍室センサー信
号から圧縮機のON/OFF制御を行い、また冷蔵室セ
ンサー信号からダンパーの開閉制御を行い庫内を所定の
温度に維持する制御を意味する。
When the discharge pipe sensor temperature becomes t≤t1, the compressor 22 increases its rotation speed to 100% (step S1).
0), and then the normal control routine is entered. Although description of normal control is omitted in particular, it means control to control ON / OFF of the compressor from the freezer room sensor signal and to control opening / closing of the damper from the refrigerating room sensor signal to maintain the inside of the refrigerator at a predetermined temperature. To do.

【0023】ここで電源投入後のステップS7から通常
制御ルーチンS11に至る過程での圧縮機吐出側圧力推
移を示したものが図3である。まず、電源投入後のステ
ップS7では圧縮機20、送風機22に通電。吐出側圧
力は上昇していく。
FIG. 3 shows the transition of pressure on the discharge side of the compressor in the process from step S7 after the power is turned on to the normal control routine S11. First, in step S7 after the power is turned on, the compressor 20 and the blower 22 are energized. The discharge side pressure rises.

【0024】ところが圧縮機22は最高回転数の90%
の回転数で運転させるため、その分冷媒循環量もほぼ9
0%となり吐出側の圧力が実線のように推移していく。
圧力P1は90%回転時の圧力ピークである。なお破線
は回転数100%運転時の圧力推移であり、P2はその
圧力ピークである。
However, the compressor 22 is 90% of the maximum rotation speed.
Since it is operated at the number of revolutions, the refrigerant circulation amount is about 9
It becomes 0% and the pressure on the discharge side changes as shown by the solid line.
The pressure P1 is a pressure peak at 90% rotation. The broken line shows the pressure change at 100% rotation speed, and P2 is the pressure peak.

【0025】次に、ステップS9で所定時間ΔT3の経
過を確認後吐出管センサー温度(吐出管内圧力)をチェ
ックして、以後の圧縮機の回転数を決定させるがこれは
吐出側圧力が高い時点で圧縮機の回転数を引き上げる
と、回転数切替え後に生じる圧力ピークP3がP1を上
回る場合があり、起動時の高負荷を乗り切れず圧縮機の
保護装置(図示せず)が動作する場合があるからであ
る。
Next, in step S9, after confirming the elapse of a predetermined time ΔT3, the discharge pipe sensor temperature (pressure in the discharge pipe) is checked to determine the number of revolutions of the compressor thereafter. This is when the discharge side pressure is high. When the number of revolutions of the compressor is increased by, the pressure peak P3 generated after the number of revolutions switching may exceed P1, and a high load at the time of starting cannot be overcome and a compressor protection device (not shown) may operate. Because.

【0026】かくして起動時の圧力ピークを送風機の停
止を図ることなく、P2からP1へとΔP引き下げるこ
とができる。また送風機の停止を伴わないので吐出側圧
力の極端な変動もなくなる。
Thus, the pressure peak at the time of starting can be lowered from P2 to P1 by ΔP without stopping the blower. Further, since the blower is not stopped, the discharge side pressure does not change extremely.

【0027】[0027]

【発明の効果】以上のように本発明は、圧縮機と、前記
圧縮機の回転熱を制御する回転数制御手段と、前記圧縮
機の吐出管の温度を検知する吐出管センサーと、所定時
間積算するタイマーとから成り、電源投入と同時に前記
圧縮機を最高回転数以下で運転させるとともに前記タイ
マーを始動させ、前記タイマーセットアップ後は前記吐
出管センサー温度が所定温度以下の時は前記圧縮機を最
高回転数で運転させ、また前記吐出管センサー温度が所
定温度以上の時は前記吐出管センサー温度が所定温度以
下になるまで当初の回転数で圧縮機を運転させたもので
あるので、送風機を停止させることなく圧縮機の吐出側
圧力ピークをΔP低く保つことができる。従って、圧縮
機の負荷トルクが引き下げられるので圧縮機の小型化が
図れるのはもちろんのこと、電源投入後送風機を停止さ
せる必要がないので冷却速度が極端に鈍ることはなくな
る。
As described above, according to the present invention, the compressor, the rotation speed control means for controlling the rotation heat of the compressor, the discharge pipe sensor for detecting the temperature of the discharge pipe of the compressor, and the predetermined time period are provided. It consists of a timer that integrates, and at the same time when the power is turned on, the compressor is operated at the maximum rotation speed or less and the timer is started, and after the timer setup, the compressor is operated when the discharge pipe sensor temperature is below a predetermined temperature. When the discharge pipe sensor temperature is equal to or higher than a predetermined temperature, the compressor is operated at the initial rotation speed until the discharge pipe sensor temperature becomes equal to or lower than a predetermined temperature. The discharge side pressure peak of the compressor can be kept low by ΔP without stopping. Therefore, since the load torque of the compressor is reduced, the size of the compressor can be reduced, and since it is not necessary to stop the blower after the power is turned on, the cooling speed does not become extremely slow.

【0028】また、送風機の停止を伴わないので吐出側
圧力の極端な変動もなくなり、圧縮機の信頼性を著しく
向上することができる。
Further, since the blower is not stopped, the discharge side pressure is not extremely changed, and the reliability of the compressor can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷蔵庫の概略電気制
御装置を示すブロック図
FIG. 1 is a block diagram showing a schematic electric control device of a refrigerator according to an embodiment of the present invention.

【図2】本発明の一実施例における冷蔵庫の制御フロー
チャート
FIG. 2 is a control flowchart of the refrigerator in the embodiment of the present invention.

【図3】本発明の一実施例における圧縮機の吐出側圧力
推移を示した特性図
FIG. 3 is a characteristic diagram showing a transition of pressure on a discharge side of a compressor according to an embodiment of the present invention.

【図4】従来の冷蔵庫の縦断面図FIG. 4 is a vertical sectional view of a conventional refrigerator.

【図5】従来の冷蔵庫の概略電気制御装置を示したブロ
ック図
FIG. 5 is a block diagram showing a schematic electric control device of a conventional refrigerator.

【図6】従来の冷蔵庫の制御フローチャートFIG. 6 is a control flowchart of a conventional refrigerator.

【図7】従来の冷蔵庫における圧縮機の吐出側圧力推移
を示した特性図
FIG. 7 is a characteristic diagram showing a transition of pressure on a discharge side of a compressor in a conventional refrigerator.

【符号の説明】[Explanation of symbols]

17 制御回路 19 直流電源回路 20 圧縮機 21 回転数制御手段 25 タイマー 26 吐出管センサー 17 Control Circuit 19 DC Power Supply Circuit 20 Compressor 21 Rotation Speed Control Means 25 Timer 26 Discharge Pipe Sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、前記圧縮機の回転数を制御す
る回転数制御手段と、前記圧縮機の吐出管の温度を検知
する吐出管センサーと、所定時間積算するタイマーとか
ら成り、電源投入と同時に前記圧縮機を最高回転数以下
で運転させるとともに前記タイマーを始動させ、前記タ
イマーセットアップ後は前記吐出管センサー温度が所定
温度以下の時は前記圧縮機を最高回転数で運転させ、ま
た前記吐出管センサー温度が所定温度以上の時は前記吐
出管センサー温度が所定温度以下になるまで当初の回転
数で圧縮機を運転させたことを特徴とした冷蔵庫の運転
制御装置。
1. A power supply comprising a compressor, a rotation speed control means for controlling a rotation speed of the compressor, a discharge pipe sensor for detecting a temperature of a discharge pipe of the compressor, and a timer for integrating for a predetermined time. At the same time as turning on, the compressor is operated at a maximum rotation speed or less and the timer is started.After the timer setup, when the discharge pipe sensor temperature is a predetermined temperature or less, the compressor is operated at the maximum rotation speed, and An operation control device for a refrigerator characterized in that, when the discharge pipe sensor temperature is equal to or higher than a predetermined temperature, the compressor is operated at an initial rotation speed until the discharge pipe sensor temperature becomes equal to or lower than a predetermined temperature.
JP7054340A 1995-03-14 1995-03-14 Operation controller for refrigerator Pending JPH08247598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7054340A JPH08247598A (en) 1995-03-14 1995-03-14 Operation controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7054340A JPH08247598A (en) 1995-03-14 1995-03-14 Operation controller for refrigerator

Publications (1)

Publication Number Publication Date
JPH08247598A true JPH08247598A (en) 1996-09-27

Family

ID=12967885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7054340A Pending JPH08247598A (en) 1995-03-14 1995-03-14 Operation controller for refrigerator

Country Status (1)

Country Link
JP (1) JPH08247598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159934A (en) * 2009-01-09 2010-07-22 Panasonic Corp Air conditioner
JPWO2016135812A1 (en) * 2015-02-23 2017-09-28 三菱電機株式会社 refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159934A (en) * 2009-01-09 2010-07-22 Panasonic Corp Air conditioner
JPWO2016135812A1 (en) * 2015-02-23 2017-09-28 三菱電機株式会社 refrigerator

Similar Documents

Publication Publication Date Title
US5630323A (en) Refrigerating apparatus
US6216478B1 (en) Operation speed change system and method for refrigerator
JP4327936B2 (en) Heat pump refrigeration system
JPH08261571A (en) Method for actuating compression type freezer
JPH01179882A (en) Controller for freezer and refrigerator
JPH08247598A (en) Operation controller for refrigerator
KR100190122B1 (en) Temperature control method and device of a refrigerator
JP3220377B2 (en) Cold storage
KR100207087B1 (en) Refrigerator operating control method
KR100222956B1 (en) Refrigerator and its control method
JPH05240547A (en) Device for controlling temperature in cold-storage chamber in refrigerator
KR100389399B1 (en) Damper Defreezing Apparatus and Method for Refrigerator used for Kimchi
JPH0225092Y2 (en)
JPH07146051A (en) Refrigerator
JP3192729B2 (en) refrigerator
JPH05240554A (en) Refrigerator
KR100190124B1 (en) Control method of a refrigerator
JP2912848B2 (en) refrigerator
JPH09287861A (en) Operation control device of refrigerator
JPS6029570A (en) Refrigerator
KR20010103437A (en) Temperature control method for refrigerator
JPS6317375A (en) Controller for refrigerator
JP3192730B2 (en) refrigerator
JP2002022339A (en) Low-temperature refrigerator
JP2851194B2 (en) Refrigerator operation device