JPH02250275A - Method for judging life of lead-acid battery - Google Patents
Method for judging life of lead-acid batteryInfo
- Publication number
- JPH02250275A JPH02250275A JP1073187A JP7318789A JPH02250275A JP H02250275 A JPH02250275 A JP H02250275A JP 1073187 A JP1073187 A JP 1073187A JP 7318789 A JP7318789 A JP 7318789A JP H02250275 A JPH02250275 A JP H02250275A
- Authority
- JP
- Japan
- Prior art keywords
- acid battery
- lifespan
- judgement
- internal resistance
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000002253 acid Substances 0.000 title claims abstract description 21
- 238000007599 discharging Methods 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000009783 overcharge test Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は鉛蓄電池の寿命判定方法に関するもので、さら
に詳しく言えは前記電池の使用期間をカウントすること
と内部抵抗を測定することで寿命判定を行うものである
。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for determining the lifespan of a lead-acid battery, and more specifically, the lifespan is determined by counting the usage period of the battery and measuring the internal resistance. It is something.
従来技術とその問題点
従来、開放形鉛蓄電池においては、寿命末期を知るのに
比M測定1外観の目視観察などの保守作業をすることで
おおよその判断をしていた。Prior art and its problems Conventionally, in open lead-acid batteries, the end of life has been roughly determined by performing maintenance work such as ratio M measurement 1 and visual observation of the battery's appearance.
また密閉形鉛蓄電池ではメンテナンスフリーの利点があ
る反面、従来開放形で用いられていた方法が使えず、寿
命末期を知ることが出来なかった。このため充放電電圧
の変化、内部抵抗の変化等を検出し、寿命を判定しよう
とする装置が種々考案されているが、寿命要因によって
は判定できないものがあり、信斬性の問題から現在鉛蓄
電池の寿命判定装置は実用化されるeこ至っていない。Furthermore, although sealed lead-acid batteries have the advantage of being maintenance-free, the methods conventionally used for open batteries cannot be used, and it is not possible to determine the end of their lifespan. For this reason, various devices have been devised to detect changes in charging/discharging voltage, changes in internal resistance, etc., and to determine the lifespan. Devices for determining the lifespan of storage batteries have not yet been put into practical use.
それ故現在密閉形鉛蓄電池の寿命を知るのに使用年数を
確認すると共に浮動充電電圧を測定し、おおよその判定
を行っている。Therefore, to know the lifespan of a sealed lead-acid battery, the current method is to check the number of years it has been used and measure the floating charging voltage to make a rough judgment.
しかし、この方法でも使用条件等の寿命要因を考慮して
いないため信頼性の間急が解決されていなかった。However, even this method does not take into account lifespan factors such as usage conditions, so reliability issues remain unresolved.
発明の目的
本発明は上記問題を解消するもので、簡単な原理で信頼
性があり、比較的容易さ・寿命判定方法を提供すること
にある。OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems by providing a method for determining life span that is simple in principle, reliable, and relatively easy.
発明の構成
本発明は一定期間の鉛蓄電池の周囲温度と放電回数と放
電毎の放電時最低電圧を検知して、該周囲温度と該放電
回数と該放!l低電圧とにより補正した使用期間を前記
一定期間毎に81算し、前記使用期間が予め設定した使
用期間に至った時を寿命とする判定方法と、前記電池の
内部収抗を測定し、該内部抵抗値が規定値より高くなっ
た時を寿命とする判定方法を併用することを特徴とする
ものである。Structure of the Invention The present invention detects the ambient temperature, the number of discharges, and the lowest voltage during discharge of a lead-acid battery for a certain period of time, and detects the ambient temperature, the number of discharges, and the discharge! 1. A method of determining the service life by calculating the usage period corrected by the low voltage for each fixed period, and determining the service life when the usage period reaches a preset usage period, and measuring the internal condensation of the battery, This is characterized in that a determination method is used in which the life is determined to be reached when the internal resistance value becomes higher than a specified value.
実施例 以下、本発明の一実施例をこりいて説明する。Example Hereinafter, one embodiment of the present invention will be explained in detail.
使用期間による寿命判定方法は、通常鉛蓄電池の使用期
間中、1日に1カウントずつカウントしていき、前記電
池の設計寿命までカウントする方法であるが、設計寿命
が使用条件により大きく左右されるので、次式で補正し
た1日のカウント数を用いる。The method of determining lifespan based on the period of use is usually to count one count per day during the period of use of a lead-acid battery, and count up to the design life of the battery, but the design life is greatly influenced by the conditions of use. Therefore, use the daily count number corrected by the following formula.
以下余白
(1)式において1日の温度変化が2以上の範囲にわた
る場合は最長時間の温度範囲のみ適用する0
(1)式によるカウント法が適切か否か調査するため設
計寿命5年(浮動充電使用2.237/Q、周囲温度2
5℃、放電なしの場合)の密閉形鉛蓄電池を、周囲湿度
を変えて浮動充電寿命試験を乙供したところ第1表の様
になったO第 1 表
さらに周囲湿度を5段階に変えて、それぞれの温度で放
電試蕨を行い、放電時最低電圧を測定した。その結果を
第3表に示す。In the margin below, in Equation (1), if the daily temperature change spans two or more ranges, only the temperature range for the longest time is applied. Charging usage 2.237/Q, ambient temperature 2
Table 1 shows a sealed lead-acid battery (at 5°C, no discharge) that was subjected to a floating charge life test while changing the ambient humidity. A discharge test was conducted at each temperature, and the lowest voltage during discharge was measured. The results are shown in Table 3.
第 3 表
また周囲温度25℃で2種類のサイクル寿命試験を行っ
た。その結果を第2表に示す。Table 3 Two types of cycle life tests were also conducted at an ambient temperature of 25°C. The results are shown in Table 2.
阜 2及 第2表のCは定格容九値を示す。Fu 2nd C in Table 2 indicates the 9 value of rated capacity.
第1表、第2表、第5表より(1)式の周囲温度及び放
電条件による補正が適切であることが分る。従って浮動
充電使用2.23VA/I/、周囲湿度25℃、放電な
しの場合に換算でき、前記設計寿命と比較し寿命判定で
きる。From Tables 1, 2, and 5, it can be seen that the correction based on the ambient temperature and discharge conditions in equation (1) is appropriate. Therefore, it can be converted to the case where floating charge is used at 2.23 VA/I/, ambient humidity is 25° C., and there is no discharge, and the life can be determined by comparing with the design life.
鉛蓄電池の寿命要因の中で液枯れ、陽極板腐食、内部短
絡による寿命の場合は上記使用期間による寿命判定方法
では判定できないが、内部抵抗による寿命判定方法が可
能なことが種々の寿命試験結果より分っている。例えは
密閉形垢蓄電池を0.025OAの過充電寿命試駆に供
し、初期から寿命に至るまでの内部抵抗を第1図の交流
4端子回路で測定すると第2図の様になった。すなわち
前記電池の内部抵抗は初期で0.5mΩであるが、容l
が定格の80%(寿命)に低下した時は1.4ffiQ
)こなった。また袂数個の前記電池で前記過充電試験を
実施したところ内部抵抗は初期で0.48〜0.52
ntQ S寿命時で1.37〜1.42 #Ωとバラツ
キも非常に小さかった。さらに前記複数個の電池を解体
したところ全て陽極板腐食によるものであった。Among the lifespan factors of lead-acid batteries, lifespan caused by drying up, anode plate corrosion, and internal short circuits cannot be determined by the above-mentioned method of determining lifespan based on usage period, but various lifespan test results have shown that it is possible to determine lifespan based on internal resistance. I know better. For example, when a sealed storage battery was subjected to a 0.025OA overcharge life test, and the internal resistance from the initial stage to the end of its life was measured using the AC four-terminal circuit shown in Figure 1, the result was as shown in Figure 2. That is, the internal resistance of the battery is initially 0.5 mΩ, but the capacity
1.4ffiQ when it drops to 80% of the rating (life)
) It was done. In addition, when the overcharge test was conducted on several of the batteries, the internal resistance was 0.48 to 0.52 at the initial stage.
The variation at the end of ntQS life was 1.37 to 1.42 #Ω, which was very small. Further, when the plurality of batteries were disassembled, all of them were found to be caused by corrosion of the anode plate.
第3図は前記補正した使用期間による寿命判定方法と前
記内部抵抗による寿命判定方法を併用した寿命判定方法
の流れ図であり、前記密閉形鉛蓄電池に適用したもので
ある。FIG. 3 is a flowchart of a lifespan determination method using both the lifespan determination method based on the corrected usage period and the lifespan determination method based on internal resistance, and is applied to the sealed lead-acid battery.
第5図においてまず、被測定電池が浮動充電中に内部抵
抗を測定し、1.37mΩ以上であれは。In FIG. 5, first, the internal resistance of the battery under test is measured during floating charging, and if it is 1.37 mΩ or more.
その時点で寿命と判定する。1.37 FF+Ω未満で
あれは使用期間による寿命判定に移る。すなわち、(1
)式の方法でカウントしているカウンターを確認し、設
計寿命5年である1825カウン)(365×5カウン
ト)以上であれは寿命と判定する。At that point, the lifespan is determined to have come to an end. If it is less than 1.37 FF + Ω, the lifespan will be judged based on the period of use. That is, (1
) Check the counter that is counting using the formula method, and if it is 1825 counts) (365 x 5 counts) or more, which is the design life of 5 years, it is determined that the life is over.
1825力ウント未満であれは使用可能電池と判定し、
寿命までの期間を予想できる。If the battery is less than 1825 watts, it is determined that the battery is usable.
You can predict how long it will last.
尚1上記実施内容を開放形鉛″*[池で試験したところ
密閉形鉛蓄電池と同様な結果が得られた。また、本実施
例では内部抵抗の測定を交流4端子法で行ったが、内部
抵抗の測定方法は限定しない。Note 1: When the above implementation was tested in an open type lead-acid battery, results similar to those of a sealed lead-acid battery were obtained.Also, in this example, internal resistance was measured using the AC 4-terminal method. The method for measuring internal resistance is not limited.
発明の効果
実施例において詳述した様に本発明は密閉形鉛蓄電池1
開放形鉛蓄電池に関わらす使用期間による寿命判定と内
部抵抗値による寿命判定が可能で、両者を併用すること
及び使用期間を鉛蓄電池の周囲温度と放電回数と放電時
の最低電圧とで補正することにより信頼性の高い寿命判
定ができる。Effects of the Invention As detailed in the embodiments, the present invention provides a sealed lead-acid battery 1.
It is possible to determine the lifespan of an open lead-acid battery based on the usage period and the internal resistance value, and by using both together, the usage period can be corrected based on the lead-acid battery's ambient temperature, number of discharges, and minimum voltage during discharge. This allows highly reliable life judgment.
第1図は本発明の一実施例である密閉形鉛蓄電池の内部
抵抗を測定する交流4端子回路の結線図、第2図は過充
電状態の密閉形鉛蓄電池の内部抵抗と容量との関係を示
す特性図、第3図は本発明の一実施例の手順を示す流れ
図である。
1・・・被測定電池 2・・・定電流源3・・・
電圧計Figure 1 is a wiring diagram of an AC four-terminal circuit for measuring the internal resistance of a sealed lead-acid battery, which is an embodiment of the present invention, and Figure 2 is the relationship between internal resistance and capacity of a sealed lead-acid battery in an overcharged state. FIG. 3 is a flowchart showing the procedure of an embodiment of the present invention. 1... Battery under test 2... Constant current source 3...
voltmeter
Claims (1)
低電圧を測定して、該周囲温度と該放電回数と該最低電
圧とにより補正した使用期間を用いる寿命判定方法と、 前記電池の内部抵抗を測定し、該内部抵抗値が規定値よ
り高くなった時を寿命とする寿命判定方法とを併用する
ことを特徴とする、 鉛蓄電池の寿命判定方法。[Claims] A lifespan determination method that measures the ambient temperature, number of discharges, and minimum voltage during discharge of a lead-acid battery over a certain period of time, and uses the usage period corrected based on the ambient temperature, number of discharges, and minimum voltage. A method for determining the lifespan of a lead-acid battery, characterized in that: and a method for determining the lifespan in which the internal resistance of the battery is measured and the lifespan is defined as the time when the internal resistance value becomes higher than a specified value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1073187A JPH07120535B2 (en) | 1989-03-23 | 1989-03-23 | Lead storage battery life judgment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1073187A JPH07120535B2 (en) | 1989-03-23 | 1989-03-23 | Lead storage battery life judgment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02250275A true JPH02250275A (en) | 1990-10-08 |
JPH07120535B2 JPH07120535B2 (en) | 1995-12-20 |
Family
ID=13510887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1073187A Expired - Fee Related JPH07120535B2 (en) | 1989-03-23 | 1989-03-23 | Lead storage battery life judgment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07120535B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0977047A3 (en) * | 1998-07-28 | 2000-04-26 | NTT Power and Building Facilities Inc. | Apparatus for managing a battery unit having storage batteries |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53109132A (en) * | 1977-03-04 | 1978-09-22 | Masao Kinemura | Device for measuring and recording charge and discharge of storage battery automatically |
JPS53125825U (en) * | 1977-03-15 | 1978-10-06 | ||
JPS61109264A (en) * | 1984-10-31 | 1986-05-27 | Mitsubishi Electric Corp | Storage cell monitoring device |
JPS6435874A (en) * | 1987-07-31 | 1989-02-06 | Shin Kobe Electric Machinery | Life warning method for sealed battery |
-
1989
- 1989-03-23 JP JP1073187A patent/JPH07120535B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53109132A (en) * | 1977-03-04 | 1978-09-22 | Masao Kinemura | Device for measuring and recording charge and discharge of storage battery automatically |
JPS53125825U (en) * | 1977-03-15 | 1978-10-06 | ||
JPS61109264A (en) * | 1984-10-31 | 1986-05-27 | Mitsubishi Electric Corp | Storage cell monitoring device |
JPS6435874A (en) * | 1987-07-31 | 1989-02-06 | Shin Kobe Electric Machinery | Life warning method for sealed battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0977047A3 (en) * | 1998-07-28 | 2000-04-26 | NTT Power and Building Facilities Inc. | Apparatus for managing a battery unit having storage batteries |
Also Published As
Publication number | Publication date |
---|---|
JPH07120535B2 (en) | 1995-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6920404B2 (en) | Method of detecting residual capacity of secondary battery | |
JPH05135806A (en) | Method for determining remaining capacitance of storage battery | |
CN109856548B (en) | Power battery capacity estimation method | |
CN105548906A (en) | Method for dynamically estimating battery state of charge | |
CN105866701A (en) | Method for detecting uniformity of sodium-sulfur batteries | |
WO2016106501A1 (en) | Equivalent circuit model of battery | |
CN111965557A (en) | Backup power reliability assessment method and device | |
WO2023184880A1 (en) | Battery capacity determination method and apparatus, and storage medium | |
CN116783498A (en) | Battery self-discharge detection method, circuit and equipment | |
JP5768914B2 (en) | Assembled battery charge state diagnosis method | |
CN111216595B (en) | SOC calibration method of severe hybrid electric vehicle based on lithium battery equivalent circuit model | |
CN109669138B (en) | Method for accurately measuring residual capacity of power lead storage battery pack | |
CN1879251B (en) | Battery float management | |
KR20080073382A (en) | Method of determining internal resistance of battery | |
CN106249165A (en) | The method of testing that a kind of monomer lead acid storage battery quality judges | |
CN112114260A (en) | Method for testing and evaluating overcharge stability of lithium ion battery monomer | |
CN109991550B (en) | Storage battery performance detection method, device, system and computer readable storage medium | |
JPH02250275A (en) | Method for judging life of lead-acid battery | |
CN112964994B (en) | Method and device for measuring maximum current of battery | |
JP2999405B2 (en) | Battery deterioration judgment method | |
JPH02304876A (en) | Life determination method for lead-acid battery | |
JPH01253177A (en) | Method for detecting degradated conditions in sealed battery | |
CN106785115A (en) | A kind of sodium sulphur energy storage device capacity attenuation determination methods | |
KR100891896B1 (en) | Method of determining repair time for rechargeable battery using ups | |
CN113030743B (en) | Valve-controlled lead-acid battery state evaluation method based on battery discharge behavior |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |