JPH0224934B2 - - Google Patents
Info
- Publication number
- JPH0224934B2 JPH0224934B2 JP56178063A JP17806381A JPH0224934B2 JP H0224934 B2 JPH0224934 B2 JP H0224934B2 JP 56178063 A JP56178063 A JP 56178063A JP 17806381 A JP17806381 A JP 17806381A JP H0224934 B2 JPH0224934 B2 JP H0224934B2
- Authority
- JP
- Japan
- Prior art keywords
- untwisted
- yarn
- twisted
- twisting
- twist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009826 distribution Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 description 41
- 238000000034 method Methods 0.000 description 21
- 239000004744 fabric Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 241001589086 Bellapiscis medius Species 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010016338 Feeling jittery Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は強撚糸様の繊細なシヤリ感、ドレープ
性、重量感及び弾力性のある風合等の強撚効果を
有する特殊加工糸に関するものである。
更に詳しくは、糸条の長さ方向に未解撚部と過
解撚部とが交互に存在し、該両撚部の間の撚方向
変換部である無撚部は実質的に長さをもたず、か
つ、両撚部はいずれも初期弾性率の低い高度な撚
密度を有する強撚調特殊加工糸に関するものであ
る。
従来、仮撚加工によつて未解撚部と過解撚部と
を交互に形成せしめる方法は数多く知られてお
り、その一つは定常仮撚操作によるものであり、
他の一つは非定常仮撚操作によるものである。
このうち定常仮撚操作によるものとしては、例
えば特公昭47−49457号公報、特公昭51−225号公
報、特公昭53−30818号公報、特開昭53−98444号
公報、特開昭53−98448号公報、特開昭52−66748
号公報等に見られるように、供給糸を融着するよ
うな高温下での仮撚加工、低配向糸の高温下での
仮撚加工、高オーバーフイード率下での流体仮撚
加工等特定条件下での定常仮撚操作によつて未解
撚部と過解撚部を交互に有した交互撚糸を製造す
る技術か提案されている。しかしながらこれらの
技術によつて得られる交互撚糸は、いずれも強撚
糸様の風合効果を指向するにも拘わらず、未解撚
部及び過解撚部の長さが10mm適度乃至それ以下で
あり、また撚方向変換部は1m当り100ケ以上の
多いものとなり、この為強撚糸様のシヤリ感とい
うよりはむしろふくらみ感が強く剛直感、ジヤリ
感、ゴワ感といつた粗い感覚の触感しか得られ
ず、優れた強撚効果を得ることはできなかつた。
また、未延伸糸を延伸仮撚加工するに際し、糸送
り作用を有する摩擦仮撚装置を用いることによつ
て、解撚張力を低くし、未解撚を発生させる方法
が特開昭55−103330号公報や特開昭55−69025号
公報に記載されているが、いずれもその長さは数
ミリメーターオーダーから長くても数センチメー
ターオーダーのものしか得られず、このため、撚
方向変換部は、1m当たり10個以上と多くなる。
未解撚部や過解撚部の撚部に引張応力や曲げ応力
が加わると、応力は撚線に沿つた剪断応力とな
り、撚山間のすべりをもたらすため、布帛にドレ
ープ性や重量感をもたらすが、撚方向変換部が多
く存在すると、引張応力や曲げ応力は撚山間がす
べる剪断応力に変換されないため、ドレープ性や
重量感を得ることができないのである。布帛にド
レープ性や重量感を付与するためには、撚変換部
は2個/m以下の頻度でなければならない。
一方、積極的な非定常仮撚操作によるものとし
ては、例えば特公昭45−3900号公報、特公昭47−
50673号公報、特公昭51−34016号公報、特開昭49
−554号公報、特開昭50−121546号公報等に見ら
れるような仮撚装置により発生する撚の伝播を変
動させる技術、また例えば特公昭49−8414号公
報、特開昭49−108353号公報、特開昭51−49949
号公報、特開昭53−61745号公報等に見られるよ
うな仮撚装置により発生する糸条の撚数を変動さ
せる技術、更には例えば特公昭51−222号公報、
特開昭49−92337号公報、特開昭49−92354号公報
等に見られる仮撚装置を通過させる糸条の速度を
変動させる技術等が知られている。これらの非定
常仮撚操作による加工技術は撚の伝播の過渡現象
を利用したもので、上述の定常仮撚操作による交
互撚糸とは異り、未解撚部及び過解撚部の長さは
1〜2mにも及ぶ交互撚糸を形成することは可能
であるが、いづれも相当の長さの無撚部を有し、
しかも未解撚部及び過解撚部の撚密度が低く、こ
のため本発明が指向するような高度な強撚効果は
達成し得ないものであつた。
本発明者等は、かかる従来の交互撚糸の改良を
図るべく非定常仮撚操作における交互撚糸形成の
現象の把握と原理の究明を行い、その結果、従来
の交互撚形手段に特定の加工操作を付加複合させ
ることによつて、相乗的に撚糸効果を高め、従来
得られることのなかつた実質的に撫撚部が存在せ
ず、かつ撚糸構造部の初期弾性率を低減せしめて
ドレープ性を増大させた高度の強撚効果を有する
交互撚糸が得られることを知見し、本発明に到達
したものである。
すなわち、本発明は、糸条長手方向に撚数分布
を有し、フイラメント相互は融着することなく、
平均長さが500mm以上で仮撚加撚方向の撚を有す
る未解撚部と、平均長さが500mm以上で仮撚解撚
方向の撚を有する過解撚部とを交互に形成せしめ
た糸条であつて、撚数分布は、未解撚部が山形の
分布曲線を示すのに対して、過解撚部が台形状の
分布曲線を示し、その平均撚数は8000/√
(T/M)以上であり、撚方向変換部における撚
糸構造の崩れた無撚部が実質的に存在せず、かつ
前記未解撚部及び過解撚部は40g/d以下の初期
弾性率である強撚調特殊加工糸である。
以下、本発明の具体的内容を更に詳細に説明す
る。
先づ前記本発明加工糸は撚方向変換部における
撚糸構造の崩れた無撚部が実質的に存在しないこ
とである。ここに、撚方向変換部における撚糸構
造の崩れた無撚部とは、未解撚部から過解撚部
に、或いは過解撚部から未解撚部に変換する部分
において、未解撚部と過解撚部との撚の相殺によ
つて撚糸構造が崩壊して無撚状態、若しくは低撚
数状態となつた部分を云い、実質的に存在しない
とは前記無撚部が本発明の目的とする高度の強撚
効果を減殺しない程度をいい、具体的には撚数
100T/M以下の部分が2cm未満、大部分が1cm
未満で、該部分が糸条の繰返し長さの、2%未満
の場合を云う。
糸条が高度の撚密度を有し、かつ糸条に無撚部
を実質的に存在させないことが強撚効果のある布
帛を得るための重要な条件であり、無撚部が実質
的に存在すると、シヤリ感がなくなつて嵩高な布
帛に近くなる。従来、非定常仮撚操作による加工
技術において、非定常仮撚操作の周期を定常仮撚
部が出現しない時間内に設定することによつて無
撚部を少くする試みも行われているが、これら加
工技術によつては、撚密度が高く、かつ、無撚部
が実質的に存在しない交互撚糸は得られない。本
発明加工糸は後述する製造方法により、形成され
た未解撚部と過解撚部とが容易に崩壊されず従つ
て無撚部が実質的に存在しないことによつて優れ
た強撚効果を奏するものである。第1図a,b及
び第2図はかかる本発明加工糸の側面写真及び側
面概略説明図であり、第1図aは未解撚部から過
解撚部への撚変換部における無撚部、同図bは過
解撚部から未解撚部への撚変換部における無撚部
を示している。また、第2図は未解撚部Aと、や
や嵩高となつた過解撚部Cとから構成され、未解
撚部Aと過解撚部Cとの撚変換部における無撚部
B及び過解撚部Cと後続する未解撚部Aとの撚変
換部における無撚部Dはいずれも実質的に存在し
ない状態を示している。
次に前記加工糸における未解撚部及び過解撚部
はいずれもその平均長さが500mm以上であり、ま
た、その初期弾性率が40g/d以下である。
編織物布帛のドレープ性は糸条の初期弾性率に
関係し、糸条の初期弾性率が40g/d以下の場合
には、得られる布帛はドレープ性が付与される
が、従来の交互撚糸においては、その初期弾性率
を低減せしめて布帛のドレープ性の向上を図つた
ものはなかつた。本発明加工糸においては、後述
する如く、その初期弾性率を原糸のそれの50%以
下例えばポリエステルフイラメント糸の場合30
g/d以下、ナイロンフイラメント糸の場合20
g/d以下とすることができ従つて、編織物布帛
に優れたドレープ性を付与することができる。
第3図は、かかる本発明加工糸の未解撚部及び
過解撚部と供給原糸の初期応力と伸度との関係を
示すグラフである。初期弾性率は、下記式()
で表されるもので、JIS L−1013に記載の初期引
張抵抗度(g/d)に相当するものである。
初期弾性率(g/d)=P/(l′/l)×d……(
)
ただし、
P:試料を引張つた際の伸びl′の時の荷重(g)
d:糸条の繊度(デニール)
l:試料長
l′:試料を引張つた際の伸び量
前記()式は、応力−伸度曲線における初期
傾きの直線を延長し、この直線の伸度100%時の
応力値を繊度で除した値となる。
第3図に示す供給原糸イの初期弾性率は95g/
d[伸度3.16%の時、応力3g/dであり、()
式より3/(3.16/100)=95g/d]であるのに
対して、本発明の加工糸の未解撚部ロの初期弾性
率は27g/d[伸度11.1%の時、応力3g/dで
あり、()式より3/(11.1/100)=27g/
d]、過解撚部ハの初期弾性率は20g/d[伸度
15.0%の時、応力3g/dであり、()式より
3/(15.0/100)=20g/d]であり、未解撚
部、過解撚部共に初期弾性率が低いことが判る。
次に、上記本発明の特殊加工糸の製造方法、原
理について説明する。
先ず、従来の交互撚糸の無撚部の形成に関し
て、流体の間歇施撚による仮撚加工の場合につい
て説明すると、糸条を圧縮流体施撚ノズル(以下
ノズルと言う)を用いた仮撚加工工程に通し、ノ
ズルに流体を間歇的に供給することによつて糸条
の施回、停止を繰返し、糸条に仮撚の過渡現象を
利用した加工を施す。この場合、流体の停止時に
は未解撚部が、供給時には過解撚部が形成され、
そして未解撚部と過解撚部との間に無撚部Bが、
過解撚部と後続する未解撚部との間に無撚部Dが
形成される。
前記無撚部Bの形成について、第5図を用いて
説明する。第5図の1は、ノズルへの流体の供給
が停止され、未解撚部Aが形成されている状態を
示す。次いで、第5図の2に示すようにノズルに
流体の供給が開始されると、解撚ゾーンにある糸
条の未解撚部Aをノズル近傍から順次解撚し始め
るが、未解撚部Aは強撚されて強く固定されてお
り、この解撚作用では過解撚するまでに至らず、
未解撚部Aを解撚するのみに留まり、その結果無
撚部Bとなるためである。第5図の3は、この後
の過解撚部Cの形成を示す図である。
次に、無撚部Dの形成について、第6図を用い
て説明する。第6図の1は、ノズルに流体が供給
され、過解撚部Cが形成されている状態を示す。
次いで、第6図の2に示すようにノズルへの流体
の供給を停止すると、ノズル近傍にある撚変換部
を中心として解撚ゾーンにある糸条は過解撚部
C、加撚ゾーンにある糸条は未解撚部Aとなる
が、これらの互いに方向の異なる撚部のトルクよ
つて互いの撚を相殺するため無撚部Dとなるもの
である。第6図の3は、この後の未解撚部Aの形
成を示す図である。
従つて、交互撚糸において無撚部の形成を防止
するには、まづ無撚部Bについてはノズルへの流
体供給時に解撚ゾーンにある未解撚部Aが一気に
過解撚されるよう容易に解撚されることが必要で
あり、また無撚部Dについては互いに方向の異る
撚部のトルクによつて互いに解撚されないよう強
固に撚固定をすることが必要である。しかし、こ
のことは未解撚部が一方では解撚され易く、他方
では解撚されにくいという矛盾した特性が要求さ
れ、無撚部の防止にはかかる矛盾を解決しなけれ
ばならないという問題があつた。
本発明者等は、上記仮撚加工における仮撚過渡
現象を克明に観察し、種々実験を重ねた結果、従
来の技術に特定の加工操作を施すことにより前記
問題を解決して無撚部の形成を防止し、本発明特
殊加工糸が得られることを知見したものである。
即ち本発明特殊加工糸を製造するには、例えば
ノズルを用いた仮撚加工工程において、供給ロー
ラーとしてノズルへの流体の供給、停止と連動し
て可変速する機能を有するローラーを用い、先づ
所定の高オーバーフイード率で糸条を通し、ノズ
ルへの流体の供給と同時に可変速ローラーの速度
を増大させると、糸条はより高いオーバーフイー
ド率で走行し、このため解撚ゾーンではバルーニ
ングを伴つて撚回する。この状態を第7図を用い
て説明する。第7図の1は、ノズルへの流体の供
給が停止され、未解撚部Aが形成されている状態
を示す。次いで、第7図の2に示すようにノズル
に流体の供給が開始され、糸条がより以上に過供
給されると、解撚ゾーンにおけるバルーニングは
ノズルとデリベリローラーを弦振動のノード部
(節部)として振動するから、解撚ゾーンにある
未解撚部Aは、撚の伝播によつてノズル近傍から
順次デリベリローラー部へと解きほぐされていく
のではなく、弦振動によつてデリベリローラー近
傍の未解撚部Aが解きほぐされ、解撚され易くな
るので、一気に糸条の撚回がデリベリローラーま
で到達し、解撚ゾーンにある未解撚部Aを過解撚
部Cとすることができ、その結果、無撚部Bの形
成が防止される。
この場合、撚回付与装置として機械式の仮撚ス
ピンドルとは異り、高圧流体の噴射によるものを
用いているので可変速ローラーの速度を増大させ
ても安定した仮撚加工が可能であり、またオーバ
ーフイード量の増加によつて糸条の旋回量が増大
するため、流体供給時の加撚中の撚は2重撚また
は準2重撚となり、高密度に施撚することがで
き、高密度の撚数を加工糸に残存させることがで
きる。この加撚中の撚状態が2重撚、または準2
重撚となることは2重撚を形成しない仮撚加工の
場合に比して、撚戻し後の糸条の長さが著しく長
いので、撚回中の糸条のバルーニングを増大させ
るという利点もある。
更にこのようにして得られる加工糸は高密度の
撚数を有するため、伸長時に伸長応力成分が剪断
すべり応力に変化し、初期低応力に対して高伸度
歪を呈し、加工糸の初期弾性率は供給原糸のそれ
の50%以下と大幅に低減せしめることができる。
かくして無撚部Bの形成の防止と共に加工糸の
初期弾性率を40g/d以下とすることができる。
上記の如くしてノズルに流体を供給した後、次
いで流体の供給を停止するが、流体の供給停止と
同時に可変速ローラーの速度を減少させる。この
状態を第8図を用いて説明する。第8図の1は、
ノズルに流体が供給され、過解撚部Cが形成され
ている状態を示す。次いで、第8図の2に示すよ
うにノズルへの流体の供給が停止されると同時
に、糸条の供給速度を低下させることにより高オ
ーバーフイード率で走行していた糸条がたるみ、
ローラーへの捲付等が発生して糸条が走行不能と
なるのを防止すると共に、走行糸条の極端な張力
低下を防止して、所定の張力に保つことにより解
撚ゾーンにある過解撚部Cの撚を撚変換点を超え
て未解撚部Aの際まで近接させることができる。
この場合、所定の張力は糸条撚回が停止している
ため撚回中の糸条張力よりも十分低くする必要が
あり、かくして未解撚部は低張力状態で熱処理さ
れることになり、受熱効果が高く、従つて解撚さ
れにくい強固な撚部とすることができる。第8図
の3は、この後の未解撚部Aの形成を示す図であ
る。
このように未解撚部Aを強固な撚部となし、し
かも解撚ゾーンにある過解撚部Cの撚を未解撚部
Aの際まで近接させることによつて無撚部Dの形
成を防止することができる。
かくして無撚部が実質的に存在せず未解撚部及
び過解撚部の初期弾性率が40g/d以下の本発明
加工糸が得られる。
また本発明特殊加工糸はノズルを用いた仮撚加
工工程において糸条供給装置として糸条の走行張
力によつて回転する消極糸条供給装置(以下フイ
ダーと云う)を用い、ノズルへの流体供給時には
低荷重負荷となり、流体の供給停止時には高荷重
負荷となる如く、流体供給弁の開閉とフイダーの
荷重変化を電気信号によつて連動させることによ
つても製造することができる。即ちこの場合は、
先づ所定の高オーバーフイード率で糸条を走行さ
せ、ノズルへの流体の供給と同時にフイーダーの
荷重を軽荷重として、解撚ゾーンにおける糸条が
バルーニングを伴つて旋回するようにする。この
解撚ゾーンにおけるバルーニングはノズルとデリ
ベリローラーを弦振動のノード部(節部)として
振動するため、デリベリローラー近傍にあつた未
解撚部を解きほぐし、解撚され易くするので、糸
条の撚回が一気にデリベリローラー迄到達し過解
撚部となすことができ無撚部Bの形成を防止する
ことができる。また、この場合、加撚ゾーンにお
ける糸条は通常の撚糸状態と異り、2重撚または
準2重撚を形成しているので、得られる交互撚糸
は高度の撚密度を有しており、その初期弾性率は
供給原糸のそれの50%以下に低減したものとな
る。次いでノズルへの流体の供給停止と同時にフ
イーダーの荷重を高荷重に変更し、糸条撚回の停
止によつて張力が極端に低下し、糸条の走行不能
となるのを防止すると共に所定の張力に保つこと
により解撚ゾーンにある過解撚部の撚を撚変換点
を越えて未解撚部の際まで近接させることができ
る。この場合、所定の張力とは糸条撚回停止のた
め撚回中の糸条張力よりも十分低いものであつ
て、従つて流体供給停止時に未解撚部は低張力下
で熱処理され受熱効果が高められることにより解
撚されにくい強固な撚部とされる。このようにし
て、未解撚部は強固な撚部となり、しかも前方の
過解撚部の撚を未解撚部の際まで近接させること
によつて無撚部Dの形成を防止することができ
る。
かくして、上記の加工操作によつても本発明特
殊加工糸を得ることができる。
上記本発明加工糸の製造において使用されるノ
ズルとしては糸条を高速旋回させて撚回を与える
作用を有するものであればよく円筒形の糸通路の
内周に流体の流れを指向するように位置した1個
又は多数個の流体導管を組合わせたもので、該糸
通路の内周に対して実質的に切線方向に向けるよ
うな位置に設けたものであればいかなるものでも
よい。また糸通路の長手軸に対して流体導管が実
質的に垂直な平面内にあるか若しくはそれ以外の
ものでもよいが、糸条に前進作用を付与するよう
に垂直な平面から傾斜させたものが好ましい。
なお、本発明加工糸の製造は上述した方法に限
定されるものでないことは云う迄もない。
以上の如く特別の加工操作を施して得られる本
発明特殊加工糸は未解撚部及び過解撚部において
特徴のある撚数分布を示すものである。即ち、通
常、未解撚部と過解撚部の最大撚数は両撚部を形
成する時間により異るものであるが、本発明加工
糸においては、流体供給による糸条撚回の時間と
流体の供給停止による撚回停止の時間が等しい場
合でも、第4図に示す如く未解撚部の最大撚数
T1Max(流体供給停止時)の方が過解撚部の最大
撚数T2Max(流体供給時)よりも常に大
(T1Max>T2Max)となるものである。ここに
最大撚数とは糸条長手方向に沿つて交互撚糸1cm
毎に撚数を検撚器又は顕微鏡で測定し1m当りの
撚数に換算した値を云う。
この理由としては、流体供給時間と流体供給停
止時間が等しくても実質的な給糸量は過解撚部形
成時の方が多いため過解撚部の糸長が長いこと、
また流体供給時に解撚ゾーンにある未解撚となる
べき部分を一挙に過解撚部とするため過解撚部が
長くなることから過解撚部の単位長さ当りの平均
撚数は未解撚部のそれに比して、少くなるためで
ある。
また上記撚数分布は第4図に示す如く、その形
状は未解撚部が山形の分布曲線を示すのに対して
過解撚部が台形状の分布曲線を呈する。即ち、未
解撚部は流体供給時に加撚された糸条が、流体の
供給停止時に解撚されることなくノズルを通過
し、一方、過解撚部は流体供給時に形成されて加
撚ゾーンで熱固定され解撚ゾーンにおいて、加撚
ゾーンでの撚を越えて過解撚される。このため理
論的には、未解撚部、過解撚部共指数関係で表わ
される最大値を有する山形の分布曲線を呈する筈
であるが、本発明加工糸の場合は、上述した如く
特殊の加工操作を施すため流体供給時の解撚状況
は前記の場合と異り、過解撚部の撚数分布の形状
が台形状となるものである。
本発明特殊加工糸における未解撚部、過解撚部
の撚密度としては、撚の効果が風合に顕著に作用
するには、その平均撚数が8000/√(T/M)
(D;繊度)以上であることが必要である。また、
強撚効果の点からして両撚部の平均長さは500〜
2000mmが有効であり、未解撚部の長さに対する過
解撚部の長さの比率は1:4〜4:1の範囲が有
効である。なお、ここでいう平均撚数とは各撚部
の分布している撚数を検撚器又は顕微鏡により実
測して平均し、1m当りの撚数に換算したもので
ある。
上記本発明加工糸における熱可塑性合成繊維と
してはポリエステル、ポリアミド等のポリマー及
びこれらのコポリマー、ブレンドポリマー等から
得られる合成繊維等が包含される。
以上述べた如く、本発明特殊加工糸は従来の仮
撚加工に特定の加工操作を施すことによつて上記
構成をなすものであるから以下の如き特有の効果
を奏する。即ち本発明特殊加工糸はメートルオー
ダーの長さにも及ぶ高撚密度の未解撚部と過解撚
部とを有するからシヤリ感を付与することがで
き、しかも両撚部において糸条の単糸間のスベリ
が容易であることと相俟つて繊細な感覚のシヤリ
感を与えることができる。
また、本発明加工糸は実質的に無撚部が存在せ
ず、未解撚部及び過解撚部の高度な撚密度によつ
て細化集速されているため、嵩高性を有する無撚
部が存在する加工糸に比して、得られる布帛の厚
さが薄くなり、重量感が得られる。
更に本発明加工糸は、その未解撚部及び過解撚
部の初期弾性率が40g/d以下と低いものである
から、得られる布帛にドレープ性を付与すること
ができるのみならず、また高度の撚密度を有する
ことと相俟つて良好な可撓性を有し、かつ弾力性
のある布帛を得ることができる。
更にまた本発明加工糸は強撚されているから織
編物中の糸は扁平にならず織編物中の糸の交錯点
における接触面積は小さくなり、このため糸間の
スベリが容易で、ドレープ性を有する布帛が得ら
れる等の特長もあり、本発明加工糸は従来の交互
撚糸では得られることができなかつた新規な加工
糸を提供するものである。
以下、本発明を実施例により説明する。
実施例 1
ポリエステルフイラメント75d/48f(三角断面
形状、ブライト糸)とポリエステルフイラメント
50d/24f(円形断面形状、カーボン混入黒色糸)
を引揃えて(初期弾性率95g/d)ノズルを用い
た仮撚加工工程に供給し、第1表に示す如き加工
条件で加工を行い、第2表に示す如き加工糸を得
た。
The present invention relates to a specially processed yarn having strong twist effects such as a delicate silky feel, drapability, heavy feel, and elastic feel similar to a strong twist yarn. More specifically, untwisted parts and excessively untwisted parts exist alternately in the length direction of the yarn, and the untwisted part, which is the twisting direction changing part between the two twisted parts, has a length that substantially increases. Both the twisted portions are related to highly twisted specially processed yarns that have a low initial elastic modulus and a high twist density. Conventionally, there are many known methods for alternately forming untwisted portions and over-untwisted portions through false twisting, one of which is a steady false twisting operation.
The other one is due to unsteady false twisting operation. Among these, those using steady false-twisting operations include, for example, Japanese Patent Publication No. 47-49457, Japanese Patent Publication No. 51-225, Japanese Patent Publication No. 30818-1982, Japanese Patent Application Laid-open No. 98444-1984, Japanese Patent Publication No. 53-9844, Publication No. 98448, JP 52-66748
As can be seen in the publications, specific methods such as false twisting under high temperature that fuses the supplied yarn, false twisting under high temperature of low oriented yarn, fluid false twisting under high overfeed rate, etc. A technique has been proposed for producing an alternately twisted yarn having alternately untwisted portions and overtwisted portions by performing a steady false twisting operation under certain conditions. However, although the alternately twisted yarns obtained by these techniques all aim to have a texture similar to strongly twisted yarns, the lengths of the untwisted portions and overly twisted portions are moderate to 10 mm or less. In addition, there are more than 100 twisting direction changing parts per meter, and for this reason, rather than a strong twisting yarn-like feeling, the yarn has a strong bulging feeling, and only a rough texture with stiffness, jitteriness, and stiffness is obtained. Therefore, it was not possible to obtain an excellent strong twisting effect.
Furthermore, when undrawn yarn is stretched and false-twisted, a method is disclosed in JP-A-55-103330 in which the untwisting tension is lowered and untwisted yarn is generated by using a frictional false-twisting device having a yarn feeding action. Although it is described in Japanese Patent Application Laid-open No. 55-69025, the length can only be obtained from several millimeters to several centimeters at most, and for this reason, the twist direction conversion part is There are more than 10 pieces per meter.
When tensile stress or bending stress is applied to the untwisted or excessively untwisted parts, the stress becomes shear stress along the strands, causing slippage between the strands, giving the fabric drapability and weight. However, if there are many twist direction converting parts, tensile stress and bending stress are not converted into shear stress that causes the strands to slide, making it impossible to obtain drapability or a sense of weight. In order to impart drapability and a sense of weight to the fabric, the frequency of twist conversion parts must be 2 pieces/m or less. On the other hand, examples of methods using active unsteady false-twisting operations include, for example, Japanese Patent Publication No. 1983-3900;
Publication No. 50673, Japanese Patent Publication No. 1973-34016, Japanese Patent Publication No. 1973
Techniques for varying the propagation of twist generated by a false twisting device, such as those found in Japanese Patent Publication No. 554 and Japanese Unexamined Patent Publication No. 1984-121546, and Japanese Patent Publication No. 49-8414 and Japanese Patent Application Laid-open No. 49-108353. Publication, JP-A-51-49949
The technique of varying the number of twists of the yarn generated by a false twisting device as seen in Japanese Patent Application Publication No. 53-61745, as well as Japanese Patent Publication No. 51-222,
Techniques for varying the speed of yarn passing through a false twisting device are known, as disclosed in Japanese Patent Application Laid-open No. 49-92337 and Japanese Patent Application Laid-Open No. 49-92354. These processing techniques using unsteady false twisting operations utilize the transient phenomenon of twist propagation, and unlike the above-mentioned alternating twisted yarns using steady false twisting operations, the lengths of untwisted and over-untwisted portions are Although it is possible to form alternately twisted yarns of up to 1 to 2 m, they all have non-twisted portions of considerable length,
Moreover, the twist density of the untwisted portion and the overtwisted portion is low, and therefore the high degree of strong twisting effect that the present invention aims at cannot be achieved. In order to improve the conventional alternately twisted yarn, the present inventors have grasped the phenomenon of alternating twisted yarn formation in unsteady false twisting operation and investigated the principle. By adding and compounding, the twisting effect is synergistically enhanced, there is virtually no twisting part, which has not been achieved conventionally, and the initial elastic modulus of the twisted yarn structure is reduced, improving drapability. The present invention was achieved based on the discovery that alternately twisted yarns having an increased high degree of strong twisting effect can be obtained. That is, the present invention has a twist number distribution in the longitudinal direction of the yarn, and the filaments are not fused together.
A yarn in which untwisted portions with an average length of 500 mm or more are twisted in the false-twisting direction and over-untwisted portions with an average length of 500 mm or more and twisted in the false-untwisted direction are alternately formed. The untwisted part shows a chevron-shaped distribution curve, while the over-twisted part shows a trapezoidal distribution curve, and the average number of twists is 8000/√
(T/M) or more, there is substantially no untwisted part where the twisted yarn structure has collapsed in the twist direction conversion part, and the untwisted part and the overly untwisted part have an initial elastic modulus of 40 g/d or less. This is a specially processed yarn with a strong twist. Hereinafter, the specific contents of the present invention will be explained in more detail. First, the processed yarn of the present invention is substantially free of untwisted portions in which the twist structure is disrupted in the twist direction changing portions. Here, the untwisted part in which the twist structure has collapsed in the twisting direction conversion part refers to the untwisted part in the part where the untwisted part changes to the over-untwisted part or from the over-untwisted part to the ununtwisted part. This refers to a portion where the twisted yarn structure collapses due to the cancellation of the twists between the untwisted portion and the over-untwisted portion, resulting in a non-twisted state or a low twist number state, and “substantially absent” refers to a portion where the untwisted portion is in the present invention. It refers to the degree of twisting that does not reduce the desired high degree of strong twist effect, specifically the number of twists.
The part below 100T/M is less than 2cm, the majority is 1cm
This refers to cases where the portion is less than 2% of the repeat length of the yarn. It is an important condition for obtaining a fabric with a strong twist effect that the yarn has a high twist density and substantially no untwisted portion is present in the yarn; Then, the silky feel disappears and it becomes more like bulky fabric. Conventionally, in processing techniques using unsteady false-twisting operations, attempts have been made to reduce the number of untwisted parts by setting the period of unsteady false-twisting operations within a time period in which steady false-twisting parts do not appear. With these processing techniques, it is not possible to obtain an alternately twisted yarn with a high twist density and substantially no untwisted portions. The processed yarn of the present invention is produced by the manufacturing method described below, and has an excellent strong twisting effect because the formed untwisted portions and excessively untwisted portions are not easily collapsed, and therefore there is substantially no untwisted portion. It is something that plays. Figures 1a, b and 2 are side photographs and schematic side views of the processed yarn of the present invention, and Figure 1a is a non-twisted part in the twist conversion part from the untwisted part to the over-twisted part. , FIG. 1B shows a non-twisted portion in a twist conversion portion from an over-twisted portion to an untwisted portion. In addition, FIG. 2 is composed of an untwisted part A and a slightly bulky over-twisted part C, and a non-twisted part B and The untwisted portion D in the twist transition portion between the over-untwisted portion C and the subsequent untwisted portion A is shown to be substantially non-existent. Next, the average length of both the untwisted part and the overly untwisted part in the processed yarn is 500 mm or more, and the initial elastic modulus is 40 g/d or less. The drapability of a knitted fabric is related to the initial elastic modulus of the yarn, and when the initial elastic modulus of the yarn is 40 g/d or less, the resulting fabric has drapability, but in conventional alternately twisted yarn, None of them has attempted to improve the drapability of a fabric by reducing its initial elastic modulus. As described later, the processed yarn of the present invention has an initial elastic modulus of 50% or less of that of the raw yarn, for example, 30% in the case of polyester filament yarn.
g/d or less, 20 for nylon filament yarn
g/d or less, and therefore, excellent drape properties can be imparted to the knitted fabric. FIG. 3 is a graph showing the relationship between the untwisted portion and over-twisted portion of the processed yarn of the present invention and the initial stress and elongation of the supplied raw yarn. The initial elastic modulus is the following formula ()
It corresponds to the initial tensile resistance (g/d) described in JIS L-1013. Initial elastic modulus (g/d) = P/(l'/l) x d...(
) However, P: Load (g) when the sample is stretched at elongation l' d: Thread fineness (denier) l: Sample length l': Amount of elongation when the sample is stretched The above formula () is , the stress value obtained by extending the straight line of the initial slope of the stress-elongation curve and dividing the stress value when the elongation of this straight line is 100% by the fineness. The initial elastic modulus of the supplied yarn I shown in Figure 3 is 95g/
d [When the elongation is 3.16%, the stress is 3 g/d, ()
According to the formula, 3/(3.16/100) = 95 g/d], whereas the initial elastic modulus of the untwisted part B of the processed yarn of the present invention is 27 g/d [when the elongation is 11.1%, the stress is 3 g /d, and from formula (), 3/(11.1/100)=27g/
d], the initial elastic modulus of the over-twisted part C is 20 g/d [elongation
At 15.0%, the stress is 3 g/d, and from formula (), 3/(15.0/100) = 20 g/d], and it can be seen that the initial elastic modulus is low in both the untwisted part and the over-untwisted part. Next, the method and principle for manufacturing the specially processed yarn of the present invention will be explained. First, regarding the formation of the non-twisted part of conventional alternately twisted yarn, we will explain the case of false twisting by intermittent fluid twisting. By passing fluid through the nozzle intermittently, the yarn is repeatedly wound and stopped, and the yarn is processed using the transient phenomenon of false twisting. In this case, an untwisted part is formed when the fluid stops, and an overtwisted part is formed when the fluid is supplied.
And between the untwisted part and the over-twisted part, there is a non-twisted part B.
A non-twisted portion D is formed between the over-untwisted portion and the following untwisted portion. The formation of the non-twisted portion B will be explained using FIG. 5. 1 in FIG. 5 shows a state in which the supply of fluid to the nozzle is stopped and an untwisted portion A is formed. Next, as shown in 2 in FIG. 5, when the supply of fluid to the nozzle is started, the untwisted portion A of the yarn in the untwisting zone starts to be untwisted sequentially from the vicinity of the nozzle, but the untwisted portion A is strongly twisted and firmly fixed, and this untwisting action does not lead to over-untwisting.
This is because the untwisted portion A is only untwisted, resulting in a non-twisted portion B. 3 in FIG. 5 is a diagram showing the formation of the over-twisted portion C after this. Next, the formation of the non-twisted portion D will be explained using FIG. 6. 1 in FIG. 6 shows a state in which fluid is supplied to the nozzle and an over-twisted portion C is formed.
Next, as shown in 2 in Fig. 6, when the supply of fluid to the nozzle is stopped, the yarn in the untwisting zone centering on the twisting part near the nozzle is in the over-twisting part C and in the twisting zone. The yarn becomes an untwisted part A, but becomes an untwisted part D because the torque of these twisted parts having different directions cancels each other's twists. 3 in FIG. 6 is a diagram showing the subsequent formation of the untwisted portion A. Therefore, in order to prevent the formation of untwisted parts in alternately twisted yarn, first, regarding the untwisted part B, the untwisted part A in the untwisted zone in the untwisted zone is easily over-untwisted at once when fluid is supplied to the nozzle. It is necessary that the untwisted portions D be firmly untwisted so that they will not be untwisted by the torques of the twisted portions in different directions. However, this requires contradictory characteristics in that the untwisted part is easy to untwist on the one hand and difficult to untwist on the other hand, and there is a problem that such a contradiction must be resolved in order to prevent the untwisted part. Ta. The present inventors have carefully observed the false-twisting transient phenomenon in the above-mentioned false-twisting process, and as a result of conducting various experiments, the inventors have solved the above-mentioned problem by applying a specific processing operation to the conventional technology, and the non-twisted part is It has been found that the specially processed yarn of the present invention can be obtained by preventing the formation of the yarn. That is, in order to produce the specially processed yarn of the present invention, for example, in the false twisting process using a nozzle, a roller having a variable speed function in conjunction with supplying and stopping fluid to the nozzle is used as a supply roller, and By threading the yarn at a predetermined high overfeed rate and increasing the speed of the variable speed roller simultaneously with the supply of fluid to the nozzle, the yarn runs at a higher overfeed rate and thus prevents ballooning in the untwisting zone. Twist along with it. This state will be explained using FIG. 7. 1 in FIG. 7 shows a state in which the supply of fluid to the nozzle is stopped and an untwisted portion A is formed. Next, as shown at 2 in FIG. 7, fluid supply to the nozzle is started, and when the yarn is over-supplied, ballooning in the untwisting zone causes the nozzle and delivery roller to move to the node part of the string vibration ( Since the untwisted part A in the untwisting zone vibrates as a node), the untwisted part A in the untwisting zone is not unraveled sequentially from the vicinity of the nozzle to the delivery roller part by the propagation of twist, but by the string vibration. The untwisted part A near the delivery roller is loosened and becomes easier to untwist, so the twist of the yarn reaches the delivery roller all at once, and the untwisted part A in the untwisting zone is over-untwisted. As a result, the formation of the non-twisted portion B is prevented. In this case, unlike a mechanical false-twisting spindle, the twisting device uses a high-pressure fluid jet, so stable false-twisting is possible even when the speed of the variable speed roller is increased. In addition, as the amount of overfeed increases, the amount of twisting of the yarn increases, so the twist during twisting when fluid is supplied becomes double twist or semi-double twist, which enables high density twisting and high The number of twists of the density can be left in the processed yarn. The twist state during this twisting is double twist or semi-twist.
Heavy twisting has the advantage that the length of the yarn after untwisting is significantly longer than in the case of false twisting, which does not form a double twist, so it increases the ballooning of the yarn during twisting. be. Furthermore, since the textured yarn obtained in this way has a high number of twists, the elongation stress component changes to shear slip stress during elongation, exhibiting a high elongation strain with respect to the initial low stress, and the initial elasticity of the textured yarn changes. The rate can be significantly reduced to less than 50% of that of the supplied yarn. In this way, the formation of non-twisted portions B can be prevented and the initial elastic modulus of the processed yarn can be set to 40 g/d or less. After the fluid is supplied to the nozzle as described above, the fluid supply is then stopped, and at the same time the fluid supply is stopped, the speed of the variable speed roller is reduced. This state will be explained using FIG. 8. 1 in Figure 8 is
A state in which fluid is supplied to the nozzle and an over-twisted portion C is formed is shown. Next, as shown in 2 in FIG. 8, the supply of fluid to the nozzle is stopped, and at the same time, the yarn supply speed is reduced, so that the yarn running at a high overfeed rate becomes slack.
In addition to preventing the thread from becoming unable to run due to winding around the rollers, it also prevents excessive tension in the running thread from decreasing and keeping it at a predetermined tension. The twist of the twisted portion C can be brought close to the untwisted portion A beyond the twist change point.
In this case, since the yarn twisting has stopped, the predetermined tension must be sufficiently lower than the yarn tension during twisting, and thus the untwisted portion will be heat treated in a low tension state. A strong twisted portion that has a high heat receiving effect and is difficult to untwist can be formed. 3 in FIG. 8 is a diagram showing the subsequent formation of the untwisted portion A. In this way, the untwisted part A is made into a strong twisted part, and the untwisted part D is formed by bringing the twist of the overly untwisted part C in the untwisted zone close to the untwisted part A. can be prevented. In this way, a processed yarn of the present invention is obtained in which there is substantially no untwisted part and the initial elastic modulus of the untwisted part and the overly untwisted part is 40 g/d or less. In addition, in the false twisting process using a nozzle, the specially processed yarn of the present invention uses a passive yarn feeding device (hereinafter referred to as feeder) that rotates by the running tension of the yarn as a yarn feeding device to supply fluid to the nozzle. It can also be manufactured by linking the opening and closing of the fluid supply valve and changes in the load on the feeder using electrical signals, such that the load is sometimes low and the load is high when the fluid supply is stopped. That is, in this case,
First, the yarn is run at a predetermined high overfeed rate, and at the same time as fluid is supplied to the nozzle, the load on the feeder is made light so that the yarn in the untwisting zone turns with ballooning. Ballooning in this untwisting zone causes the nozzle and delivery roller to vibrate as nodes of string vibration, which loosens the untwisted parts near the delivery roller and makes it easier to untwist the yarn. The twisting reaches the delivery roller all at once, forming an over-untwisted portion, and the formation of a non-twisted portion B can be prevented. In addition, in this case, unlike the normal twisted state, the yarn in the twisting zone forms a double twist or a quasi-double twist, so the obtained alternately twisted yarn has a high twist density. Its initial elastic modulus is reduced to 50% or less of that of the supplied yarn. Next, at the same time as the supply of fluid to the nozzle is stopped, the load on the feeder is changed to a high load to prevent the yarn from being unable to run due to the extremely low tension due to the stop of yarn twisting, and to prevent the yarn from being able to travel. By maintaining the tension, the twist in the over-untwisted portion in the untwisting zone can be brought close to the untwisted portion beyond the twist change point. In this case, the predetermined tension is sufficiently lower than the yarn tension during twisting in order to stop the yarn twisting, and therefore, when the fluid supply is stopped, the untwisted part is heat-treated under low tension and the heat receiving effect is The increased twisting results in a strong twisted part that is difficult to untwist. In this way, the untwisted part becomes a strong twisted part, and the formation of the untwisted part D can be prevented by bringing the twist of the front excessively untwisted part close to the untwisted part. can. Thus, the specially processed yarn of the present invention can also be obtained by the above processing operations. The nozzle used in the production of the above-mentioned processed yarn of the present invention may be any nozzle as long as it has the function of turning the yarn at high speed and giving it twist. Any combination of fluid conduits or fluid conduits positioned substantially in the tangential direction relative to the inner periphery of the thread passageway may be used. Alternatively, the fluid conduit may lie in a plane substantially perpendicular to the longitudinal axis of the thread passageway, or may be otherwise inclined from the perpendicular plane so as to impart an advancing action to the thread. preferable. It goes without saying that the method for producing the processed yarn of the present invention is not limited to the method described above. The specially processed yarn of the present invention obtained by performing the special processing operations as described above exhibits a characteristic twist number distribution in the untwisted portion and the overtwisted portion. That is, normally, the maximum number of twists in the untwisted part and the overtwisted part differs depending on the time to form both the twisted parts, but in the processed yarn of the present invention, the maximum number of twists in the untwisted part and the overtwisted part differs depending on the time for twisting the yarn by fluid supply. Even if the twisting stop time due to fluid supply stoppage is the same, the maximum number of twists in the untwisted part is the same as shown in Figure 4.
T 1 Max (when fluid supply is stopped) is always larger (T 1 Max>T 2 Max) than the maximum number of twists T 2 Max (when fluid is supplied) in the over-twisted portion. Here, the maximum number of twists is 1 cm of yarn alternately twisted along the longitudinal direction of the yarn.
The number of twists per meter is measured using a twister or microscope, and is converted into the number of twists per meter. The reason for this is that even if the fluid supply time and the fluid supply stop time are equal, the actual amount of yarn fed is greater when the over-untwisted section is formed, so the yarn length at the over-untwisted section is longer;
In addition, when fluid is supplied, the untwisted part in the untwisting zone is made into an over-untwisted part all at once, so the over-untwisted part becomes longer, so the average number of twists per unit length of the over-untwisted part becomes untwisted. This is because the amount is smaller than that in the untwisted part. Further, as shown in FIG. 4, the twist number distribution is shaped like a chevron-shaped distribution curve in the untwisted portion, while a trapezoidal distribution curve in the over-twisted portion. That is, in the untwisted part, the yarn twisted when fluid is supplied passes through the nozzle without being untwisted when the fluid supply is stopped, while in the overly twisted part, the thread is formed when fluid is supplied and is in the twisting zone. In the untwisting zone, the twisted material is over-untwisted in excess of the twisting in the twisting zone. Therefore, theoretically, both the untwisted part and the overtwisted part should exhibit a mountain-shaped distribution curve with the maximum value expressed by the exponential relationship, but in the case of the processed yarn of the present invention, as mentioned above, the special The untwisting situation when fluid is supplied for processing operations is different from the above case, and the shape of the twist number distribution in the over-untwisted portion is trapezoidal. The twist density of the untwisted part and overtwisted part of the specially processed yarn of the present invention must be 8000/√(T/M) for the twisting effect to have a significant effect on the texture.
(D; Fineness) or more is required. Also,
From the point of view of strong twist effect, the average length of both twisted parts is 500 ~
2000 mm is effective, and the ratio of the length of the over-twisted portion to the length of the untwisted portion is effective to be in the range of 1:4 to 4:1. Note that the average number of twists herein refers to the number of twists distributed in each twisted portion, measured using a twister or a microscope, averaged, and converted into the number of twists per 1 m. The thermoplastic synthetic fibers in the processed yarn of the present invention include synthetic fibers obtained from polymers such as polyester and polyamide, and copolymers and blend polymers thereof. As described above, the specially textured yarn of the present invention has the above-mentioned structure by applying a specific processing operation to the conventional false twisting process, and therefore has the following unique effects. In other words, the specially processed yarn of the present invention has an untwisted part and an overly untwisted part with a high twist density that are on the order of a meter in length, so it can give a silky feel, and moreover, the yarn is thinner in both the twisted parts. Combined with the ease of sliding between the threads, it is possible to give a delicate and silky feel. In addition, the processed yarn of the present invention has substantially no untwisted portions, and is thinned and concentrated due to the high twist density of the untwisted portions and overtwisted portions, so that it has bulky untwisted yarn. The thickness of the resulting fabric is thinner than that of processed yarn in which there is a part, giving it a feeling of weight. Furthermore, since the processed yarn of the present invention has a low initial elastic modulus of 40 g/d or less in the untwisted part and the overtwisted part, it is possible to not only impart drapability to the fabric obtained, but also In addition to having a high twist density, it is possible to obtain a fabric that has good flexibility and elasticity. Furthermore, since the processed yarn of the present invention is highly twisted, the yarns in the woven or knitted fabric do not become flat, and the contact area at the intersecting points of the yarns in the woven or knitted fabric becomes small, which makes it easy for the threads to slip and improve drapability. The processed yarn of the present invention provides a novel processed yarn that could not be obtained with conventional alternately twisted yarn. The present invention will be explained below using examples. Example 1 Polyester filament 75d/48f (triangular cross-sectional shape, bright yarn) and polyester filament
50d/24f (circular cross-sectional shape, black thread mixed with carbon)
The yarns were aligned (initial elastic modulus: 95 g/d) and fed to a false twisting process using a nozzle, and processed under the processing conditions shown in Table 1 to obtain processed yarns shown in Table 2.
【表】【table】
【表】
得られた加工糸は、第1図の写真に示す如く、
撚方向変換点があるだけで、無撚部は実質的な長
さはみられなかつた。この加工糸を経糸密度93
本/吋、緯糸密度60本/吋で経緯2本交互に用い
て製織し、この織物を通常のポリエステルアルカ
リ減量加工(17%減量)を行い、染色(臙脂色)
仕上加工を行つたところ、黒色と、染色による臙
脂色の撚線が撚方向を交互にすることによつて特
有の縞模様を呈し、強撚糸様の繊細な感覚のシヤ
リ感、ドレープ性、重量感及び弾力性のある優れ
た風合の織物が得られた。
実施例 2
ポリエステルフイラメント75d/24f(円形断面
形状、セミダル糸、初期弾性率90g/d)を給糸
装置として電磁的に荷重を可変し得るフイーダ
ー、ノズル、第1デリベリローラー、弛緩熱処理
を施す第2ヒーター、第2デリベリローラー及び
捲取装置から構成される加工工程に供給し、第3
表に示す如き加工条件で加工を行い、第4表に示
す如き加工糸を得た。[Table] The obtained processed yarn is as shown in the photograph in Figure 1.
There was only a twisting direction change point, and no substantial length was observed in the non-twisted portion. This processed yarn has a warp density of 93
The fabric is woven using two wefts alternately at a weft density of 60 threads/inch and a weft density of 60 threads/inch.This fabric is subjected to a normal polyester alkali weight loss process (17% weight loss) and dyed (brown color).
When finished, the black and dark brown strands created by alternating the directions of twisting created a unique striped pattern, resulting in a delicate silkiness, drapability, and weight similar to that of highly twisted yarn. A woven fabric with an excellent feel and elasticity was obtained. Example 2 Polyester filament 75d/24f (circular cross-sectional shape, semi-dull yarn, initial elastic modulus 90 g/d) was used as a yarn feeding device, and a feeder capable of electromagnetically varying the load, a nozzle, a first delivery roller, and a relaxation heat treatment were applied. It is supplied to a processing process consisting of a second heater, a second delivery roller and a winding device, and a third
Processing was carried out under the processing conditions shown in the table to obtain processed yarns as shown in Table 4.
【表】【table】
【表】
得られた加工糸は撚数100T/M以下に相当す
る長さは未解撚部から過解撚部への撚方向変換部
における長さが0.9cm、過解撚部から未解撚部へ
の撚方向変換部における長さが0.6cmであり、こ
れら両者の加工糸の周期長さ当りの割合は0.7%
であつた。
この加工糸を36ゲージシンググルニツトで天竺
組織に編成し、染色、仕上加工を行なつたとこ
ろ、繊細な感覚のシヤリ感、ドレープ性、重量感
及び弾力性のある優れた強撚効果を有する風合の
編物が得られた。[Table] The length corresponding to the number of twists of the obtained processed yarn is 100T/M or less is 0.9 cm at the part where the twist direction changes from the untwisted part to the overtwisted part, and the length corresponding to the twist number of 100T/M or less is 0.9cm at the part where the twist direction changes from the untwisted part to the overtwisted part. The length at the part where the twisting direction changes to the twisting part is 0.6cm, and the ratio of these two processed yarns per cycle length is 0.7%.
It was hot. When this processed yarn is knitted into a cotton jersey texture with 36 gauge single knot, dyed and finished, it has an excellent strong twist effect with a delicate silky feel, drapability, weight and elasticity. A knitted fabric with a nice texture was obtained.
第1図a,bは本発明加工糸の側面写真(倍率
6倍)第2図は本発明加工糸の側面概略説明図、
第3図は本発明加工糸の未解撚部、過解撚部及び
供給原糸の初期応力と伸度との関係を示すグラ
フ、第4図は本発明加工糸の撚数分布を示す説明
図である。また、第5図及び第6図は、糸条の供
給速度を可変速しない場合の無撚部B及びDの形
成の説明図、第7図及び第8図は、糸条の供給速
度を可変速して本発明の加工糸を製造するための
説明図である。
A……未解撚部、B……未解撚部から過解撚部
への撚方向変換部における無撚部、C……過解撚
部、D……過解撚部から未解撚部への撚方向変換
部における無撚部、T1Max……未解撚部最大撚
数、T2Max……過解撚部最大撚数。
Figures 1a and b are side photographs of the processed yarn of the present invention (6x magnification); Figure 2 is a schematic side view of the processed yarn of the present invention;
Fig. 3 is a graph showing the relationship between the initial stress and elongation of the untwisted part, the over-twisted part, and the supplied raw yarn of the processed yarn of the present invention, and Fig. 4 is an explanation showing the twist number distribution of the processed yarn of the present invention. It is a diagram. Furthermore, FIGS. 5 and 6 are explanatory diagrams of the formation of non-twisted parts B and D when the yarn supply speed is not variable, and FIGS. 7 and 8 are illustrations of the formation of the non-twisted portions B and D when the yarn supply speed is not variable. It is an explanatory view for manufacturing processed yarn of the present invention by changing speed. A... Untwisted part, B... Untwisted part in the part where the twisting direction changes from the untwisted part to the over-twisted part, C... Over-twisted part, D... Untwisted from the over-twisted part T 1 Max...Maximum number of twists in the untwisted part, T 2 Max...Maximum number of twists in the overtwisted part.
Claims (1)
ト相互は融着することなく、平均長さが500mm以
上で仮撚加撚方向の撚を有する未解撚部と、平均
長さが500mm以上で仮撚解撚方向の撚を有する過
解撚部とを交互に形成せしめた糸条であつて、撚
数分布は、未解撚部が山形の分布曲線を示すのに
対して、過解撚部が台形状の分布曲線を示し、そ
の平均撚数は8000/√(T/M)以上であり、
撚方向変換部における撚糸構造の崩れた無撚部が
実質的に存在せず、かつ前記未解撚部及び過解撚
部は40g/d以下の初期弾性率であることを特徴
とする強撚調特殊加工糸。1 The number of twists is distributed in the longitudinal direction of the yarn, the filaments are not fused to each other, and the untwisted part has an average length of 500 mm or more and is twisted in the false twisting direction, and the untwisted part has an average length of 500 mm or more. This is a yarn in which over-twisted parts with twists in the false-twisting and untwisting directions are formed alternately, and the twist number distribution shows a mountain-shaped distribution curve, whereas The twisted portion shows a trapezoidal distribution curve, and the average number of twists is 8000/√(T/M) or more,
A strong twist characterized in that there is substantially no untwisted part in which the twist structure is collapsed in the twisting direction conversion part, and the untwisted part and the excessively untwisted part have an initial elastic modulus of 40 g/d or less. Specially processed yarn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17806381A JPS5881639A (en) | 1981-11-05 | 1981-11-05 | Hard twisted-like special processed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17806381A JPS5881639A (en) | 1981-11-05 | 1981-11-05 | Hard twisted-like special processed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5881639A JPS5881639A (en) | 1983-05-17 |
JPH0224934B2 true JPH0224934B2 (en) | 1990-05-31 |
Family
ID=16041955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17806381A Granted JPS5881639A (en) | 1981-11-05 | 1981-11-05 | Hard twisted-like special processed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5881639A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58156045A (en) * | 1982-03-03 | 1983-09-16 | ユニチカ株式会社 | Hard twisted yarn-like special processed yarn |
JPS58156046A (en) * | 1982-03-03 | 1983-09-16 | ユニチカ株式会社 | Hard twisted yarn-like special processed yarn |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5266748A (en) * | 1975-11-28 | 1977-06-02 | Tore Textile | Fused alternately twisted thread and method of producing same |
JPS5567025A (en) * | 1978-11-09 | 1980-05-20 | Toray Industries | Special false twisting finished yarn |
JPS55103330A (en) * | 1979-02-02 | 1980-08-07 | Toray Industries | Special false twisted yarn |
JPS56148929A (en) * | 1980-04-15 | 1981-11-18 | Mitsubishi Rayon Co | Untwisted - non-untwisted yarn and method |
-
1981
- 1981-11-05 JP JP17806381A patent/JPS5881639A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5266748A (en) * | 1975-11-28 | 1977-06-02 | Tore Textile | Fused alternately twisted thread and method of producing same |
JPS5567025A (en) * | 1978-11-09 | 1980-05-20 | Toray Industries | Special false twisting finished yarn |
JPS55103330A (en) * | 1979-02-02 | 1980-08-07 | Toray Industries | Special false twisted yarn |
JPS56148929A (en) * | 1980-04-15 | 1981-11-18 | Mitsubishi Rayon Co | Untwisted - non-untwisted yarn and method |
Also Published As
Publication number | Publication date |
---|---|
JPS5881639A (en) | 1983-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6119733B2 (en) | ||
JPH0224934B2 (en) | ||
JPH0317934B2 (en) | ||
JPS599651B2 (en) | Special false twisted yarn | |
JPS5917209B2 (en) | Special alternating twisted yarn | |
JPS6342012B2 (en) | ||
JPH0375648B2 (en) | ||
JPH0333806B2 (en) | ||
JPS6319610B2 (en) | ||
JPH0299626A (en) | Production method for crimped yarn with a multilayer structure | |
JPS6140771B2 (en) | ||
JPH0224935B2 (en) | ||
JPS6119736B2 (en) | ||
JPH043455B2 (en) | ||
JP3871400B2 (en) | Method for producing polyester-based low crimp composite entangled yarn | |
JPS6142014B2 (en) | ||
JP3232662B2 (en) | Method for producing composite false twisted yarn having spanned thickness unevenness | |
JPH034655B2 (en) | ||
JPS62170541A (en) | Production of spun like composite processed yarn | |
JPH11172543A (en) | Slub yarn and its production | |
JPS58149344A (en) | Production of bulky spun like yarn | |
JPS5858451B2 (en) | False twisted interlaced yarn and its manufacturing method | |
JPS6235493B2 (en) | ||
JPS5831136A (en) | Spun composite yarn and production thereof | |
JPS6360139B2 (en) |