JPH0375648B2 - - Google Patents

Info

Publication number
JPH0375648B2
JPH0375648B2 JP57034491A JP3449182A JPH0375648B2 JP H0375648 B2 JPH0375648 B2 JP H0375648B2 JP 57034491 A JP57034491 A JP 57034491A JP 3449182 A JP3449182 A JP 3449182A JP H0375648 B2 JPH0375648 B2 JP H0375648B2
Authority
JP
Japan
Prior art keywords
yarn
untwisted
twisted
twist
twisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57034491A
Other languages
Japanese (ja)
Other versions
JPS58156045A (en
Inventor
Mitsuo Kitajima
Yoshinobu Furukawa
Masakatsu Okumura
Tsutomu Umehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP3449182A priority Critical patent/JPS58156045A/en
Publication of JPS58156045A publication Critical patent/JPS58156045A/en
Publication of JPH0375648B2 publication Critical patent/JPH0375648B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は強撚糸様の繊細なシヤリ感、ドレープ
性、重量感及び弾力性のある風合等の強撚効果と
紡績糸様の斑を布帛表面に与える強撚糸様特殊加
工糸に関するものである。更に詳しくは、糸条の
長手方向にフイラメント相互は融着することなく
集束細化されたメートルオーダーにも及ぶ長さの
未解撚部と、メートルオーダーにも及ぶ長さの過
解撚部とを交互に形成した糸条であつて、未解撚
部と過解撚部との間の撚方向変換部に無撚部が実
質的に存在しない糸条部分1と、未解撚部と過解
撚部との間の撚方向変換部に無撚部が存在する糸
条部2とが不規則な間隔でしかも不規則な長さで
存在しており、かつ糸条部分1の未解撚部及び過
解撚部はいずれも低い初期弾性率を有する強撚糸
様特殊加工糸に関するものである。 従来、仮撚加工において積極的な非定常仮撚操
作を施して未解撚部と過解撚部とを交互に形成せ
しめる技術としては、特公昭49−8414号公報、特
開昭49−108353号公報、特開昭51−49949号公報、
特開昭53−61745号公報等に提案されている。こ
れらの撚糸加工技術は撚の伝播の過渡現象を利用
したものであり、糸速と仮撚施撚の間歇周期に応
じて未解撚部及び過解撚部の長さが1〜2m又は
それ以上にも及び交互撚糸を形成することができ
るが、しかしこれらの従来技術によるものはいず
れも相当の長さの無撚部を有し、しかも未解撚部
及び過解撚部の撚密度が低く、このため高度の強
撚効果が得られないのみならず、意匠効果にも乏
しいものであつた。 一方、定条的な仮撚操作を施して未解撚部と過
解撚部を交互に形成させる技術を数多く紹介され
ている。 例えば、特開昭56−91018号公報には、仮撚熱
固定温度を融着温度付近の高温に設定するか、あ
るいはアクリル系合成繊維や部分未延伸糸など溶
融温度が広範囲なフイラメント糸条を用いて高温
で仮撚することにより、フイラメント間相互を融
着して解撚不良を発生させ、これによつて解撚不
良の撚数(未解撚の撚数)だけ過解撚部として残
存させることにより、S、Z交互撚糸となす方法
が記載されている。 また、特開昭52−70143号公報には、アクリル
ニトリル系合成繊維の溶融温度が不明確であるこ
とを利用して、高温で仮撚することによりフイラ
メント間相互の融着による解撚不良を発生させて
未解撚部と過解撚部を形成させ、S、Z交互撚糸
となす方法が開示されている。 これらの方法は、いずれも定条仮撚時にフイラ
メント相互の融接着などによる解撚不良によつて
S、Z交互撚を形成させるため、得られる交互撚
糸に残存する撚数は、仮撚加撚数がそのままフイ
ラメントの融接着により残存し、仮撚数と同等の
高い撚数であるが、糸条は一方向に連続して撚回
するため、撚回点の下流では、加撚された撚部は
逆方向に撚回して必然的に未解撚部は分断され、
したがつて、センチメーターオーダー以上の長さ
の撚部は決して得られず、この技術をいかに発展
させても撚部を長くするのは原理的に不可能であ
り、メーターオーダーの未解撚部や過解撚部を得
ることはできなかつた。 また、これらの加工糸には、短かい未解撚部と
短かい過解撚部の間に無撚嵩高部が無作為に存在
しているため、無撚嵩高部の出現頻度が高く、こ
の加工糸を布帛にすると、全面に一様な柄が形成
され、本発明が求めるスラブ糸様の柄効果は得ら
れず、また、強撚糸様の風合効果も得られない。 本発明者等はかかる従来の交互撚糸の欠点を解
消すべく積極的な非定常仮撚操作における交互撚
糸の形成の現象の把握と原理の究明を行い、その
結果従来の交互撚形成手段に特殊な加工操作を付
加複合することによつて、相乗的に撚糸効果を高
め、従来得られることのなかつた強撚糸様のシヤ
リ感、ドレープ性、重量感及び弾力性のある風合
等の強撚効果と紡績糸様の斑を布帛表面に与える
ことのできる交互撚糸を得ることに成功し、本発
明に到達したものであつて、本発明の目的とする
ところは、強撚効果と紡績糸様の斑を布帛表面に
与えることのできる強撚糸様特殊加工糸を提供す
るにある。 すなわち、本発明は、仮撚加撚方向の撚を有し
たメートルオーダーを含む長さの未解撚部と、仮
撚解撚方向の撚を有したメートルオーダーを含む
長さの過解撚部とを交互に形成せしめたフイラメ
ント糸条であつて、これらの撚部のフイラメント
相互は融着することなく長手方向に撚数分布を有
し、その平均撚数は8000/√(T/M)以上で
あり、未解撚部から過解撚部への撚方向変換部及
び過解撚部から未解撚部への撚方向変換部には無
撚部が実質的に存在しない糸条部分1と、未解撚
部から過解撚部への撚方向変換部及び過解撚部か
ら未解撚部への撚方向変換部にそれぞれ無撚部が
存在する糸条部分2とが不規則な間隔でしかも不
規則な長さで存在しており、かつ前記糸条部分1
の未解撚部及び過解撚部は40g/d如何な初期弾
性率であることを特徴とする強撚糸様特殊加工糸
を要旨とするものである。 如何、本発明を詳細に説明する。 先ず、本発明加工糸は後述する方法によつて製
造することができるが、後述する方法にいおいて
糸条の撚回停止状態で未解撚部が形成され、糸条
の撚解状態で過解撚部が形成される。本発明加工
糸は糸条の撚回停止状態から糸条の撚回状態への
変化時に形成される撚方向変換部、即ち未解撚部
から過解撚部への撚方向変換部、及び糸条の撚回
状態から糸条の撚回停止状態への変化時に形成さ
れる撚方向変換部、即ち過解撚部から未解撚部へ
の撚方向変換部には無撚部が実質的に存在しない
糸条部分1と、未解撚部から過解撚部への撚方向
変換部及び過解撚部から未解撚部への撚方向変換
部にはそれぞれ無撚部が存在する糸条部分2を有
し、かつ糸条部分1と糸条部分2とが糸条の長手
方向に不規則な間隔でしかも不規則な長さで存在
するものである。 ここに無撚部が実質的に存在しないとは、撚方
向変換部において無撚状態もしくは低撚状態にな
つた無撚部が、本発明の目的とする高度の強撚効
果を減殺することなくかつ他の無撚部の紡績糸様
斑効果を効果的に発揮させるように目立たない状
態になつていることを指し、具体的には撚数
100T/M以下の部分が1cm未満の場合をいう。 高度の強撚効果と紡績糸様の自然な斑を布帛表
面に表現するために重要なことは糸条の大部分は
高度の撚密度を有し、しかも自然な斑を表現する
ための無撚部の存在はランダムな間隔、ランダム
な長さで存在することであり、無撚部または低撚
密度の撚糸部が多過ぎると高度の強撚効果が得ら
れず、布帛にシヤリ感がなく嵩高な布帛に近ず
く。また逆に撚方向変換部の全てに無撚部が存在
しない場合は紡績糸様の自然な斑を表現すること
はできない。 しかるに、本発明加工糸は未解撚部から過解撚
部への撚方向変換部と過解撚部から未解撚部への
撚方向変換部には無撚部は実質的に存在しない糸
条部分1と、これらの撚方向変換部の無撚部がい
ずれも存在する糸条部分2が交互にまたは連続し
ているものである。 本発明加工糸は未解撚部及び過解撚部のいずれ
にも高度な撚密度を有しているため、無撚部と未
解撚部及び過解撚部、即ち強撚糸部との境界は明
瞭であり、従つて高度の強撚効果と紡績糸様の自
然な斑を布帛表面に表現することができる。ま
た、強撚効果を充分に達成するためには糸条部分
1が糸条中大部分を占めるように設計し、あるい
は表面効果をより多く表現する場合には適宜糸条
部分2を増やすことができる。しかしながら、本
発明の目的である強撚調効果をより効果的に発揮
させるためには前記糸条部分1が糸条中に50%以
上存在することが好ましい。 第1図はかかる本発明加工糸の概略側面図であ
り、仮撚加撚方向の撚を有する未解撚部A1と仮
撚解撚方向の撚を有する過解撚部C1によつて構
成され、かつ、未解撚部A1と過解撚部C1の間の
無撚部B1と過解撚部C1と続く未解撚部A2の間の
無撚部D1は実質的に存在しない糸条部分1と、
仮撚加撚方向の撚を有する未解撚部A2と仮撚解
撚方向の撚を有する過解撚部C2によつて構成さ
れ、かつ未解撚部A2と過解撚部C2の間に嵩高な
無撚部B2と過解撚部C2と続く未解撚部A1の間の
嵩高な無撚部D2が存在する糸条部分2とがラン
ダムな長さで交互に存在している。 第1図には糸条部分1と糸条部分2が交互に存
在する部分を示したが、糸条部分1と糸条部分2
が交互に存在したり、連続して存在するように任
意に形成することができる。糸条部分1が連続す
る場合には過解撚部C1に続く未解撚部はA1とな
り、また糸条部分2が連続する場合には過解撚部
C2に続く未解撚部はA2となり、続く糸条部分が
糸条部分1であるか糸条部分2であるかによつ
て、無撚部に続く未解撚部がA1またはA2となる
ものである。 次に、前記加工糸における糸条部分1の未解撚
部A1及び過解撚部C1はいずれも初期弾性率が40
g/d以下である。 繊維物布帛のドレープ性は使用する糸条の初期
弾性率に関係し、布帛のドレープ性を向上させる
には低い初期弾性率を糸条であることが必要であ
り、糸条の初期弾性率が約40g/d以下の場合に
布帛にドレープ性を付与することができる。 従来の交互撚糸ではその初期弾性率を低減せし
めて布帛ドレープ性の向上を図つたものはなかつ
たが、本発明加工糸の強撚糸部である未解撚部
A1と過解撚部C1はその初期弾性率が40g/d以
下である。この初期弾性率は供給原糸の50%以
下、例えばポリエステルフイラメント糸の場合は
30g/d以下、ナイロンフイラメント糸の場合は
20g/d以下とすることが可能である。かくして
該強撚糸部が糸条中好ましくは50%以下存在する
本発明加工糸によると、繊維物布帛により優れた
ドレープ性を付与することができる。 第2図はかかる本発明加工糸の未解撚部A1
び過解撚部C1と供給原糸の初期応力と伸度との
関係を示すグラフである。初期弾性率は、下記式
()で表されるもので、JIS L−1013に記載の
初期引張抵抗度(g/d)に相当するものであ
る。 初期弾性率(g/d) =P/(l′/l)×d ……() ただし、P:試料を引張つた際の伸びl′の時の
荷重(g) d:糸条の繊度(デニール) l:試料長 l′:試料を引張つた際の伸び量 前記()式は、応力一伸度曲線における初期
傾きの直線を延長し、この直線の伸度100%時の
応力値を繊度で除した値となる。 第2図に示す供給原糸イの初期弾性率は95g/
d[伸度3.16%の時、応力3g/dであり、()
式より3/(3.16/100)=95g/d]であるのに
対して本発明の加工糸の未解撚部ロの初期弾性率
は20g/d[伸度14.9%の時、応力3g/dであ
り、()式より3/(14.9/100)=20g/d]、
過解撚部ハの初期弾性率は19g/d[伸度15.0%
の時、応力2.85g/dであり、()式より
2.85/(15.0/100)=19g/d]であり、未解撚
部、過解撚部共に初期弾性率が低いことが判る。 次に、上記本発明の特殊加工糸の製造方法、原
理について説明する。 先ず、従来の交互撚糸の無撚部の形成に関し
て、流体の間歇施撚による仮撚加工の場合につい
て説明すると、糸条を圧縮流体施撚ノズル(以下
ノズルと言う)を用いた仮撚加工工程に通し、ノ
ズルに流体を間歇的に供給することによつて糸条
の施回、停止を繰返し、糸条に仮撚の過渡現象を
利用した加工を施す。この場合、流体の停止時に
は未解撚部A2が、供給時に過解撚部C2が形成さ
れ、そして未解撚部A2と過解撚部C2との間に無
撚部B2が、過解撚部C2と後続する未解撚部A2
の間に無撚部D2が形成される。 前記無撚部B2の形成について、第3図を用い
て説明する。第3図の1は、ノズルへの流体の供
給が停止され、未解撚部A2が形成されている状
態を示す。次いで、第3図の2に示すようにノズ
ルに流体の供給が開始されると、解撚ゾーンにあ
る糸条の未解撚部A2をノズル近傍から順次解撚
し始めるが、未解撚部A2は強撚されて強く固定
されており、この解撚作用では過解撚するまでに
至らず、未解撚部A2を解撚するのみに留まり、
その結果無撚部B2となるためである。第3図の
3は、この後の過解撚部C2の形成を示す図であ
る。 次に、無撚部D2の形成について、第4図を用
いて説明する。第4図の1は、ノズルに流体が供
給され、過解撚部C2が形成されている状態を示
す。次いで、第4図の2に示すようにノズルへの
流体の供給を停止すると、ノズル近傍にある撚変
換部を中心として解撚ゾーンにある糸条は過解撚
部C2、加撚ゾーンにある糸条は未解撚部A2とな
るが、これらの互いに方向の異なる撚部のトルク
によつて互いの撚を相殺するため無撚部D2とな
るものである。第4図の3は、この後の未解撚部
A2の形成を示す図である。 このように、形成される無撚部B2、無撚部D2
が糸条の長手方向に沿つて未解撚部A2と過解撚
部C2の間に、また、過解撚部C2と未解撚部A2
の間に必ず存在することになり、これらの糸条を
繊維布帛にした場合無撚部の出現頻度が高く、し
かも付与される交互撚も強撚と称するにはほど遠
い集束効果をもたらすのみの軽度のもので、衣料
布帛として好ましくなく、従来の交互撚糸が伸び
なかつたゆえんである。 かかる交互撚糸に強撚効果と紡績糸様の自然な
斑を兼ね備えさせるには、強撚効果と不必要な柄
模様を呈する無撚部の形成を防止し、紡績糸様の
斑を表現するのに必要な無撚部のみを強撚効果を
減殺しない範囲で積極的に存在させるという従来
の交互撚糸の常識を越えた技術が要求されるもの
であつた。 本発明者等は上記仮撚加工における仮撚過渡現
象を克明に観察し、種々実験を重ねた結果、従来
の技術に特定の加工操作を施すことにより、無撚
部の形成を防止した糸条部分1と無撚部を積極的
に存在させた斑部分を表現する糸条部分2とが混
在した本発明特殊加工糸の得られることを知見し
たものである。 即ち、本発明加工糸の糸条部分1の形成は、例
えばノズルを用いた仮撚加工工程において、供給
ローラーとしてノズルへの流体の供給及び停止と
連動して可変速する機能を有するローラーを用
い、先ず所定の高オーバーフイード率で糸条を通
し、ノズルへの流体の供給と同時に可変束ローラ
の速度を増大させると、糸条はより高いオーバー
フイード率で走行し、このため解撚ゾーンではバ
ルーニングを伴つて撚回する。この場合解撚ゾー
ンにおけるバルーニングはノズルとデリベリロー
ラーを弦振動のノード部(節部)として振動する
から、解撚ゾーンにある未解撚部は撚の伝播によ
つてノズル近傍から順次デリベリローラー部へと
解きほぐされていくのではなく、弦振動によつて
デリベリローラー近傍の未解撚部が解きほぐされ
て解撚され易くなるので一気に糸条の撚回がデリ
ベリローラーまで到達し、解撚ゾーンにある未解
撚部を過解撚部とすることができ、従つて未解撚
部と後続する過解撚部との間の無撚部の形成が防
止される。 この状態を第5図を用いて説明する。第5図の
1は、ノズルへの流体の供給が停止され、未解撚
部4が形成されている状態を示す。次いで、第5
図の2に示すようにノズルに流体の供給が開始さ
れ、糸条がより以上に過供給されると、撚回付与
装置として機械式の仮撚スピンドルとは異なり、
高圧流体の噴射によるノズルを用いているため、
可変束ローラー速度を増大させても安定した仮撚
加工が可能であり、しかもオーバーフイード率の
増加によつて糸条の撚回量が増大するため、流体
供給時の加撚中の撚は2重撚または準2重撚とな
り、高密度に施撚することができ、高密度の撚数
を糸条に残存させることができる。 この加撚中の撚状態が2重撚または準2重撚と
なることは通常の仮撚の場合に比して、撚戻し後
の糸条の長さが著しく長いので、撚回中の糸条の
バルーニングを増大させるという利点もある。 更にこのようにして得られる加工糸は高密度の
撚数を有するため、伸長時に伸長応力成分が剪断
すべり応力に変化し、初期低応力に対して高伸度
歪を呈し、加工糸の初期弾性率は供給原糸のそれ
の50%以下と大幅に低減せしめることができる。 かくして糸条に高密度の撚数を残留せしめるこ
とができ、未解撚部A1から過解撚部C1への撚方
向変換部における無撚部B1の実質的な形成を排
除すると共に該両撚部の初期弾性率を40g/d以
下に低減することができる。 上記の如くしてノズルに流体を供給した後、次
いで流体の供給を停止するが、流体の供給停止と
同時に可変束ローラーの速度を減少させる。この
状態を第6図を用いて説明する。第6図の1は、
ノズルに流体が供給され、過解撚部C1が形成さ
れている状態を示す。次いで、第6図の2に示す
ようにノズルへの流体の供給が停止されると同時
に、糸条の供給速度を低下させることにより高オ
ーバーフイード率で走行していた糸条がたるみ、
ローラーへの捲付等のために走行不能となるのを
防止すると共に走行糸条の極端な張力低下を防止
して、所定の張力に保つことにより解撚ゾーンに
ある過解撚部の撚を撚変換点を越えて未解撚部の
際まで近接させることができる。この場合、所定
の張力は糸条の撚回が停止しているため、撚回中
の糸条張力よりも十分低くする必要があり、かく
して未解撚部は低張力状態で熱処理されることに
なり、受撚効果が高く従つて解撚されにくい強固
な撚部とすることができる。第6図の3は、この
後の未解撚部A1の形成を示す図である。また、
このためにも熱固定温度は通常の仮撚加工の場合
に設定される温度より高温に設定するのがよい。
このように未解撚部を強固な撚部となし、しかも
解撚ゾーンにある過解撚部の撚を未解撚部の際ま
で近接させることによつて、過解撚部と後続する
未解撚部との間の無撚部D1の形成を防止するこ
とができる。 このようにして無撚部が実質的に存在せず、し
かも高密度の撚を有することから、未解撚部A1
及び過解撚部C1の初期弾性率が40g/d以下の
糸条部分1が得られる。 次いで、糸条部分2の形成について述べると、
所定の高オーバーフイード率で糸条の走行中にノ
ズルへの流体の供給と同時に可変速ローラーの速
度を減少させると、糸条はより低いオーバーフイ
ード率で走行し、このため解撚ゾーンでは糸条は
バルーニングすることなく緊張気味となり、解撚
ゾーンにある未解撚部A2は撚の伝播によつてノ
ズル近傍から順次デリベリローラー部へと解きほ
ぐされるため、解撚ゾーンにある未解撚部A2
一気に過解撚することはできず、このため未解撚
を過解撚トルクによつて撚を相殺するに留まり、
未解撚部A2と後続する過解撚部C2の間の無撚部
B2が形成される。尚、可変速ローラーの速度を
減少させる程度は、形成される過解撚部C2の強
撚効果があまり減殺されない程度にとどめるべき
で、変化量は数パーセントの範囲内とする。 上記の如くノズル流体を供給した後、次いで流
体の供給を停止するが、流体の供給停止と同時に
可変速ローラーの速度を増加して元の所定のオー
バーフイード率に復帰させる。この時糸条は撚回
停止しているためオーバーフイード率増加にかか
わらず張力は低下するのであるが、さらに糸条張
力を低下させることによつて解撚ゾーンにある過
解撚部の撚が撚変換点を越えて未解撚部の際まで
到達して無撚部D2が実質的になくならないよう
にする。 尚、オーバーフイード率の増加は所定のオーバ
ーフイード率に復帰するものであつて、その変化
量は数パーセントであり、ローラーに捲付く等の
糸条走行不能となるものではない。このように形
成される糸条部分1および糸条部分2はノズルへ
の流体を供給する時間(ON時間という)、ノズ
ルへの流体の供給を停止する時間(OFF時間と
いう)に対して可変速ローラー速度を増加、ある
いは減少させることによつて決まり、その長さは
ON時間、OFF時間に対応するものであるが、糸
条部分2の無撚部B2,D2は加工条件、即ちON時
間、OFF時間、周期(ON時間とOFF時間の和)
ON時間のOFF時間に対する比率、糸速、加撚ゾ
ーンの長さ、解撚ゾーンの長さ等によつて決ま
り、仮撚の定常状態が出現しない範囲内でON時
間のOFF時間に対する比率が小さくなる程、ま
た周期が短かくなる程、または糸速が大きくなる
程無撚部B2,D2の長さは長くなる。無撚部B2
D2の長さと上記加工条件との関係についてはま
だ不明な点も多いが、無撚部B2については解撚
ゾーンの未解撚部を一気に過解撚しないで撚伝播
速度に従つて解撚するため充分解撚できず、解撚
するにとどまるためその無撚部B2の長きは解撚
ゾーン、糸速、熱固定温度に関係し、無撚部D2
については加撚中の撚糸状態がON時間、OFF時
間、周期、ON時間のOFF時間に対する比率によ
つて変化するため、過解撚部の解撚トルクの大き
さと、未解撚部の撚密度等解撚され易さが変化
し、このため過解撚部と未解撚部の相殺される距
離が変化するものと考えられる。上記の如く糸条
部分2の長さ及び無撚部B2,D2の長さは加工条
件と関係するから、例えばランダムパルス発信装
置を用い流体の供給及び停止を流体供給弁により
操作することによつて適宜間隔で、かつ適宜長さ
の糸条部分2及び無撚部B2,D2を形成させるこ
とができる。かくして無撚部の実質的に存在しな
い強撚効果の高い糸条部分1が糸条中の大部分を
占めかつ紡績糸様の斑効果を有する無撚部の存在
する糸条部分2が糸条中に散在する糸条を製造す
ることができる。 なお、上記本発明加工糸の製造に使用されるノ
ズルとしては、糸条を高速旋回させて撚回を与え
る作用を有するものであればよく、円筒形の糸通
路の円周に流体の流れを指向するように位置した
1個又は多数個の流体導管とを組合せたもので、
該糸通路の内周に対してい実質的に切線方向に向
けるような位置に設けたものであればいかなるも
のでもよい。また、糸通路の長手軸に対して流体
導管が実質的に垂直な平面内にあるかもしくはそ
れ以外のものでもよいが、糸条に前進作用を与え
るように垂直な平面内から傾斜させたものが好ま
しい。 また、本発明加工糸はノズルを用いた仮撚加工
工程において、糸条供給装置として糸条の走行張
力によつて回転する消極糸条供給装置(以下フイ
ーダーという)を用い、無撚部を実質的に有しな
い糸条部分1は、ノズルへの流体の供給と同時に
フイーダーの荷重を軽荷重とし、ノズルへの流体
の供給停止と同時にフイーダーの荷重を高荷重に
変更することによつて形成され、また無撚部B2
D2を有する糸条部分2は糸条部分1の形成時と
は逆にノズルへの流体の供給時には高荷重、また
は流体停止時には低荷重とすることによつて形成
される。 本発明加工糸における未解撚部及び過解撚部の
撚密度としては、撚の効果が風合に顕著に作用す
るためにはその平均数が8000/√(D:糸条の
繊度)以上であることが必要である。糸条部分1
の糸条に占める比率は糸条部分2の無撚部B2
D2の長さにもよるが、50%以上が好ましく、特
に好ましくは70〜80%である。なお、ここにいう
平均撚数とは各撚部の分布している撚数を検撚器
または顕微鏡により実測して平均し、1m当りの
撚数に換算したものである。 上記本発明加工糸における熱可塑性合成繊維と
してはポリエステル、ポリアミド等のポリマー及
びこれらのコポリマー、ブレンドポリマー等から
得られる合成繊維等が包含される。 以上、述べた如く本発明加工糸は上記構成をな
すものであるから、以下の如き特有の効果を奏す
る。 即ち、本発明加工糸は上記のような構成を採用
したので、メートルオーダーにも及び高撚密度の
未解撚部と過解撚部とを有した糸条部分1と数cm
〜十数cmの無撚部を有する糸条部分2が存在し、
その無撚部は不規則な間隔でかつ不規則な長さで
存在するため、織編物にすると紡績糸様の斑を有
した表面効果が得られ、強撚による高度のシヤリ
感と優れた意匠効果を発揮することができる。 本発明の加工糸は、未解撚部及び過解撚部の長
さがいずれもメートルオーダーを含む長い撚部で
あることを必須の要件とする。 すなわち、未解撚部や過解撚部に引張応力や曲
げ応力が加わると、この応力は撚線に沿つた剪断
応力となつて撚山間の滑りをもたらし、この結
果、布帛にドレープ性や重量感が付与される。し
かしながら、未解撚部および過解撚部の長さが数
ミリメーターオーダーから長くても数センチメー
ターオーダーでは、撚方向変換部が1m当り10個
以上と多くなり、このように撚方向変換部が多く
存在すると、引張応力や曲げ応力は撚山間が滑る
剪断応力に変換されないため、布帛にドレープ性
や重量感を付与することができない。布帛にドレ
ープ性や重量感を付与するためには、これらの撚
部をメートルオーダーにも及ぶ長さにしなければ
ならない。 本発明の加工糸は、前述したように従来の技術
とは全く異なる製造技術を採用して得られるもの
であり、本発明の加工糸を得るための加工原理
は、仮撚の加撚−解撚の撚相殺時に起きる過渡現
象を応用するものである。間歇的仮撚操作に同調
して加撚領域に供給される糸条の速度を可変速す
るため、未解撚部及び過解撚部が特異な撚数分布
をもち、強撚糸調風合を得るのに十分な8000/√
D(T/M)以上の高度な撚数を糸条に残存さ
せ、かつ未解撚部および過解撚部の初期弾性率を
40g/d以下となすことができるものである。ま
た、本発明加工糸は糸条部分2の無撚部以外の撚
方向変換部には実質的に無撚部が存在せず、未解
撚部及び過解撚部の高度な撚密度によつて細化集
束されているため、見掛け布帛の厚さが薄くなり
重量感が得られる。 更に本発明加工糸の糸条部分1はその未解撚部
及び過解撚部の初期弾性率が40g/d以下と低い
ものであるから、得られる織編物布帛にドレープ
性を付与することができる。また、この初期弾性
率が低いことは撚部が8000/√(T/M)以上
の高撚密度を有することと相俟つて良好な可撓性
を有し、かつ弾力性のある布帛を得ることができ
る。 更にまた、強撚により織編物中の糸条は偏平に
ならず、織偏物中の糸の交錯点における接触面積
は小さくなり、このため交錯点での糸間のスベリ
が容易で、ドレープ性を有する布帛が得られる等
の特長もあり、本発明加工糸を使用することによ
り従来の交互撚糸では得られなかつた強撚糸様の
強撚効果と紡績糸様の布帛表面の斑効果を有する
織編物布帛を得ることができる。 以下、本発明を実施例により具体的に説明す
る。 実施例 1 ポリエステルフイラメント150d/72f(円形断面
形状、セミダル糸、初期弾性率96g/d)を可変
速供給ローラー、ヒーター、ノズル、デリベリロ
ーラーによつて構成される加工工程に供給し、上
記の如き加工条件にて加工を行い、第1表の如き
交互撚糸を得た。
The present invention relates to a highly twisted yarn-like specially processed yarn that provides strong twist effects such as a delicate silky feel, drapability, weight, and elastic texture similar to a highly twisted yarn, and unevenness similar to a spun yarn on the fabric surface. . More specifically, in the longitudinal direction of the yarn, the filaments are bundled and thinned without being fused to each other; an untwisted part with a length on the order of meters, and an over-twisted part with a length on the order of meters. Yarn portion 1 is formed by alternating the untwisted portion and the over-twisted portion, in which the untwisted portion is substantially absent in the twist direction changing portion between the untwisted portion and the over-twisted portion, and the untwisted portion and the over-twisted portion. The untwisted yarn portion 2 exists at irregular intervals and has an irregular length in the twisting direction changing portion between the untwisted portion and the untwisted yarn portion 1. Both the part and the over-untwisted part relate to highly twisted yarn-like specially processed yarn having a low initial elastic modulus. Conventionally, techniques for alternately forming untwisted parts and over-twisted parts by actively performing unsteady false twisting during false twisting are disclosed in Japanese Patent Publication No. 49-8414 and Japanese Patent Application Laid-Open No. 49-108353. Publication No. 51-49949,
It has been proposed in Japanese Patent Application Laid-Open No. 53-61745. These yarn twisting techniques utilize the transient phenomenon of twist propagation, and depending on the yarn speed and the intermittent period of false twisting, the length of the untwisted part and the overly untwisted part is 1 to 2 m or more. Alternately twisted yarns can be formed in the above manner, but all of these conventional techniques have untwisted portions of considerable length, and the twist density of the untwisted portions and overtwisted portions is low. Therefore, not only a high degree of strong twisting effect could not be obtained, but also the design effect was poor. On the other hand, many techniques have been introduced in which untwisted portions and overtwisted portions are alternately formed by performing a fixed false twisting operation. For example, Japanese Patent Application Laid-open No. 56-91018 recommends setting the false twisting heat setting temperature to a high temperature near the fusion temperature, or using filament yarns with a wide range of melting temperatures such as acrylic synthetic fibers or partially undrawn yarns. By false-twisting the filaments at a high temperature, the filaments are fused together to cause untwisting defects, and only the number of twists that have failed in untwisting (the number of untwisted twists) remains as an over-twisted part. A method of making S and Z alternately twisted yarns by twisting is described. In addition, Japanese Patent Application Laid-open No. 52-70143 discloses that by taking advantage of the fact that the melting temperature of acrylonitrile synthetic fibers is unclear, false twisting is performed at high temperatures to prevent untwisting defects due to mutual fusion between filaments. A method is disclosed in which an untwisted part and an overtwisted part are generated to form an S and Z alternately twisted yarn. In all of these methods, S and Z alternate twists are formed due to poor untwisting due to mutual fusion of filaments during fixed-strand false twisting, so the number of twists remaining in the obtained alternately twisted yarn is The number of twists remains as is due to fusion bonding of the filaments, and the number of twists is as high as the number of false twists, but since the yarn is twisted continuously in one direction, downstream of the twisting point, the number of twisted twists is as high as the number of false twists. The parts are twisted in the opposite direction, and the untwisted parts are inevitably separated,
Therefore, it is never possible to obtain a twisted part with a length of centimeter order or more, and no matter how much this technology is developed, it is theoretically impossible to lengthen the twisted part, and unraveled parts of meter order cannot be obtained. However, it was not possible to obtain an over-twisted part. In addition, these processed yarns have non-twisted bulky parts randomly between short untwisted parts and short over-twisted parts, so the frequency of non-twisted bulky parts is high; When processed yarn is made into a fabric, a uniform pattern is formed over the entire surface, and the slub yarn-like pattern effect sought by the present invention cannot be obtained, nor can the highly twisted yarn-like texture effect be obtained. In order to eliminate the drawbacks of the conventional alternating twist yarn, the present inventors have grasped the phenomenon of alternating twist yarn formation during active unsteady false twisting operations and investigated the principle, and as a result, the conventional alternating twist forming means has a special By adding and combining various processing operations, we can synergistically enhance the twisting effect and create strong twists with a strong twisting feel, drapability, weight, and elastic texture that have never been achieved before. The present invention was achieved by successfully obtaining an alternately twisted yarn that can give a strong twist effect and spun yarn-like unevenness to the fabric surface. To provide a highly twisted yarn-like specially processed yarn capable of imparting unevenness to the fabric surface. That is, the present invention provides an untwisted portion having a length including a meter order with twist in the false twisting direction, and an overly untwisted portion having a length including a meter order having a twist in the false twisting and untwisting direction. The filament yarns are formed by alternating with each other, and the filaments in these twisted parts have a twist number distribution in the longitudinal direction without being fused to each other, and the average number of twists is 8000/√(T/M) The above is the yarn portion 1 in which the untwisted portion is substantially absent in the twist direction changing portion from the untwisted portion to the overly twisted portion and the twisting direction changing portion from the overly twisted portion to the untwisted portion. and yarn portion 2 in which a non-twisted portion exists in the twist direction change portion from the untwisted portion to the over-untwisted portion and the twist direction change portion from the over-untwisted portion to the untwisted portion, respectively. The yarn portions 1 are present at irregular intervals and at irregular lengths, and the yarn portions 1
The untwisted part and the over-untwisted part are characterized by an initial elastic modulus of 40 g/d, which is a highly twisted yarn-like specially processed yarn. The present invention will now be described in detail. First, the processed yarn of the present invention can be produced by the method described below, but in the method described below, an untwisted part is formed when the yarn is in a state where twisting is stopped, and when the yarn is untwisted. An overtwisted portion is formed. The processed yarn of the present invention has a twist direction changing part formed when the yarn is changed from a untwisted state to a twisted state, that is, a twist direction changing part from an untwisted part to an overly untwisted part, and a yarn. The twisting direction changing part that is formed when the thread changes from the twisted state to the untwisting state of the yarn, that is, the twisting direction changing part from the over-untwisted part to the untwisted part, has a substantially non-twisted part. The yarn portion 1 that does not exist, the twist direction changing portion from the untwisted portion to the overly untwisted portion, and the twist direction changing portion from the overly untwisted portion to the untwisted portion each have a non-twisted portion. The yarn portion 1 and the yarn portion 2 are present at irregular intervals and at irregular lengths in the longitudinal direction of the yarn. The fact that there is substantially no untwisted part here means that the untwisted part that has become a non-twisted state or a low-twisted state in the twisting direction conversion part does not reduce the high degree of strong twisting effect that is the object of the present invention. It also refers to the fact that the yarn-like uneven effect of other non-twisted parts is inconspicuous so as to effectively exhibit the effect, and specifically, the number of twists is
This refers to cases where the part below 100T/M is less than 1cm. In order to express a highly twisted effect and natural unevenness similar to spun yarn on the fabric surface, it is important that most of the threads have a high twist density, and in order to express the natural unevenness, there is no twisting. The existence of yarn sections means that they are present at random intervals and at random lengths, and if there are too many untwisted sections or twisted sections with low twist density, a high degree of strong twist effect cannot be obtained, and the fabric will not have a crisp feel and will be bulky. Get close to the cloth. On the other hand, if there are no untwisted portions in all of the twist direction changing portions, it is not possible to express spun yarn-like natural unevenness. However, in the processed yarn of the present invention, there is substantially no untwisted portion in the twist direction change portion from the untwisted portion to the over-untwisted portion and the twist direction change portion from the over-untwisted portion to the untwisted portion. The thread portions 1 and the thread portions 2 in which the non-twist portions of these twist direction changing portions are present are alternately or consecutively arranged. Since the processed yarn of the present invention has a high twist density in both the untwisted part and the excessively untwisted part, there is a boundary between the untwisted part, the untwisted part and the overly untwisted part, that is, the highly twisted yarn part. is clear, and therefore a highly twisted effect and natural spun yarn-like unevenness can be expressed on the fabric surface. In addition, in order to sufficiently achieve the strong twist effect, the yarn section 1 should be designed to occupy the majority of the yarn, or if the surface effect is to be expressed more, the yarn section 2 should be increased as appropriate. can. However, in order to more effectively exhibit the strong twist effect, which is the object of the present invention, it is preferable that the yarn portion 1 is present in the yarn in an amount of 50% or more. FIG. 1 is a schematic side view of the processed yarn of the present invention, which is composed of an untwisted part A1 having twist in the false twisting direction and an overtwisted part C1 having twist in the false twisting and untwisting direction. The untwisted part B 1 between the untwisted part A 1 and the over-untwisted part C 1 and the untwisted part D 1 between the over-untwisted part C 1 and the untwisted part A 2 that follows are a yarn portion 1 that is substantially absent;
The untwisted part A 2 is composed of an untwisted part A 2 having a twist in the false-twisting direction and an over-untwisted part C 2 having a twist in the false-untwisting direction, and the ununtwisted part A 2 and the over-untwisted part C The thread portion 2 in which the bulky non-twisted portion B 2 and the over-untwisted portion C 2 exist between the untwisted portion A 1 and the bulky non-twisted portion D 2 between the untwisted portion A 1 and the untwisted portion B 2 are random lengths. exist alternately. Fig. 1 shows a part where yarn portion 1 and yarn portion 2 exist alternately, but yarn portion 1 and yarn portion 2
can be arbitrarily formed so that they exist alternately or consecutively. If the thread part 1 is continuous, the untwisted part following the over-untwisted part C1 is A1 , and if the thread part 2 is continuous, the untwisted part is the over-untwisted part C1.
The untwisted part following C 2 becomes A 2 , and the untwisted part following the untwisted part becomes A 1 or A depending on whether the following yarn part is yarn part 1 or yarn part 2. 2 . Next, both the untwisted part A 1 and the overtwisted part C 1 of the yarn portion 1 in the processed yarn have an initial elastic modulus of 40.
g/d or less. The drapability of fibrous fabrics is related to the initial elastic modulus of the yarn used.In order to improve the drapability of the fabric, it is necessary for the yarn to have a low initial elastic modulus; Drapability can be imparted to the fabric when it is about 40 g/d or less. Conventional alternately twisted yarns have not been able to improve fabric drape properties by reducing their initial elastic modulus, but the untwisted portion, which is the highly twisted yarn portion, of the processed yarn of the present invention
A 1 and the over-twisted portion C 1 have an initial elastic modulus of 40 g/d or less. This initial elastic modulus is less than 50% of the supplied yarn, for example in the case of polyester filament yarn.
30g/d or less, for nylon filament yarn
It is possible to make it 20g/d or less. Thus, according to the processed yarn of the present invention in which the strongly twisted yarn portion is present in preferably 50% or less of the yarn, superior drape properties can be imparted to the fibrous fabric. FIG. 2 is a graph showing the relationship between the untwisted portion A 1 and the overly twisted portion C 1 of the processed yarn of the present invention and the initial stress and elongation of the supplied raw yarn. The initial elastic modulus is expressed by the following formula () and corresponds to the initial tensile resistance (g/d) described in JIS L-1013. Initial modulus of elasticity (g/d) = P/(l'/l) x d...() Where, P: Load at elongation l' when the sample is pulled (g) d: Fineness of yarn ( (denier) l: Sample length l': Amount of elongation when the sample is pulled The value obtained by dividing the The initial elastic modulus of the supplied yarn I shown in Figure 2 is 95g/
d [When the elongation is 3.16%, the stress is 3 g/d, ()
According to the formula, 3/(3.16/100) = 95 g/d], whereas the initial elastic modulus of the untwisted part B of the processed yarn of the present invention is 20 g/d [when the elongation is 14.9%, the stress is 3 g/d]. d, and from formula () 3/(14.9/100)=20g/d],
The initial elastic modulus of the over-twisted part C is 19 g/d [elongation 15.0%
When , the stress is 2.85g/d, and from formula ()
2.85/(15.0/100)=19 g/d], and it can be seen that the initial elastic modulus is low in both the untwisted part and the over-twisted part. Next, the method and principle for manufacturing the specially processed yarn of the present invention will be explained. First, regarding the formation of the non-twisted portion of conventional alternately twisted yarn, we will explain the case of false twisting by intermittent fluid twisting. By passing fluid through the nozzle intermittently, the yarn is repeatedly wound and stopped, and the yarn is processed using the transient phenomenon of false twisting. In this case, an untwisted part A2 is formed when the fluid is stopped, an overtwisted part C2 is formed when the fluid is supplied, and an untwisted part B2 is formed between the untwisted part A2 and the overtwisted part C2 . However, a non-twisted portion D 2 is formed between the over-untwisted portion C 2 and the following untwisted portion A 2 . The formation of the non-twisted portion B2 will be explained using FIG. 3. 1 in FIG. 3 shows a state in which the supply of fluid to the nozzle is stopped and an untwisted portion A2 is formed. Next, when the supply of fluid to the nozzle is started as shown in 2 in FIG. Part A2 is strongly twisted and firmly fixed, and this untwisting action does not lead to over-untwisting, but only untwists the untwisted part A2 ,
This is because the result is a non-twisted portion B2 . 3 in FIG. 3 is a diagram showing the subsequent formation of the over-twisted portion C2 . Next, the formation of the non-twisted portion D2 will be explained using FIG. 4. 1 in FIG. 4 shows a state in which fluid is supplied to the nozzle and an over-twisted portion C2 is formed. Next, as shown in 2 in Fig. 4, when the supply of fluid to the nozzle is stopped, the yarn in the untwisting zone centering on the twisting section near the nozzle is transferred to the over-twisting section C 2 and the twisting zone. A certain yarn becomes an untwisted part A2 , but it becomes an untwisted part D2 because the twists of these twisted parts cancel each other out by the torques of the twisted parts having different directions. 3 in Figure 4 is the untwisted part after this.
FIG. 2 is a diagram showing the formation of A2. In this way, the non-twisted part B 2 and the non-twisted part D 2 are formed.
exists between the untwisted part A 2 and the over-twisted part C 2 along the longitudinal direction of the yarn, and between the over-untwisted part C 2 and the untwisted part A 2 . Therefore, when these yarns are made into fiber fabrics, non-twisted portions appear frequently, and the alternating twists imparted are too light to bring about a converging effect and are far from being called strong twists, making them preferable as clothing fabrics. This is because conventional alternately twisted yarns do not stretch. In order to make such alternately twisted yarn have both a strong twist effect and natural spun yarn-like unevenness, it is necessary to prevent the formation of non-twisted parts that exhibit a strong twist effect and unnecessary pattern patterns, and to express spun yarn-like unevenness. This required a technique that goes beyond the common sense of conventional alternately twisted yarns, in which only the non-twisted portions necessary for this purpose are actively present to the extent that the strong twisting effect is not diminished. The present inventors have carefully observed the transient phenomenon of false twisting in the above-mentioned false twisting process, and as a result of various experiments, the inventors have found that by applying a specific processing operation to the conventional technology, the formation of non-twisted portions can be prevented. It has been found that the specially processed yarn of the present invention can be obtained in which the yarn portion 1 and the yarn portion 2 representing a uneven portion in which non-twisted portions are actively present are mixed. That is, the yarn portion 1 of the processed yarn of the present invention is formed by using, for example, a roller having a variable speed function in conjunction with the supply and stop of fluid to the nozzle as a supply roller in a false twisting process using a nozzle. , if we first thread the yarn at a predetermined high overfeed rate and simultaneously increase the speed of the variable bunching rollers while supplying fluid to the nozzle, the yarn runs at a higher overfeed rate and thus in the untwisting zone. Twisting with ballooning. In this case, ballooning in the untwisting zone causes the nozzle and delivery roller to vibrate as nodes of string vibration, so the untwisted parts in the untwisting zone are delivered sequentially from the vicinity of the nozzle due to the propagation of twist. Rather than unraveling to the roller section, the untwisted portion near the delivery roller is loosened by string vibration and becomes easier to untwist, so the twist of the yarn reaches the delivery roller all at once. However, the untwisted portion in the untwisting zone can be made into an over-untwisted portion, thus preventing the formation of a no-twisted portion between the untwisted portion and the following over-untwisted portion. This state will be explained using FIG. 5. 1 in FIG. 5 shows a state in which the supply of fluid to the nozzle is stopped and untwisted portions 4 are formed. Then the fifth
As shown in 2 in the figure, when the fluid is started to be supplied to the nozzle and the yarn is over-supplied, unlike a mechanical false twisting spindle, it is used as a twisting device.
Because it uses a nozzle that sprays high-pressure fluid,
Stable false twisting is possible even when the speed of the variable bundle roller is increased, and since the amount of twist of the yarn increases by increasing the overfeed rate, the twist during twisting when fluid is supplied is 2. It becomes a heavy twist or a semi-double twist, and can be twisted at a high density, and a high number of twists can remain in the yarn. The fact that the twist state during twisting becomes double twist or semi-double twist means that the length of the yarn after untwisting is significantly longer than in the case of normal false twisting. It also has the advantage of increasing column ballooning. Furthermore, since the textured yarn obtained in this way has a high number of twists, the elongation stress component changes to shear slip stress during elongation, exhibiting a high elongation strain with respect to the initial low stress, and the initial elasticity of the textured yarn changes. The rate can be significantly reduced to less than 50% of that of the supplied yarn. In this way, a high number of twists can be left in the yarn, and the formation of a non-twisted part B 1 in the part where the twist direction changes from the untwisted part A 1 to the over-twisted part C 1 can be eliminated. The initial elastic modulus of both twisted portions can be reduced to 40 g/d or less. After supplying the fluid to the nozzle as described above, the fluid supply is then stopped, but at the same time as the fluid supply is stopped, the speed of the variable flux roller is reduced. This state will be explained using FIG. 6. 1 in Figure 6 is
A state in which fluid is supplied to the nozzle and an over-twisted portion C1 is formed is shown. Next, as shown at 2 in FIG. 6, the supply of fluid to the nozzle is stopped, and at the same time, the yarn supply speed is reduced, so that the yarn running at a high overfeed rate becomes slack.
It prevents the running yarn from being unable to run due to winding around the rollers, etc., and also prevents the running yarn from becoming extremely low in tension and maintains the tension at a predetermined level, thereby reducing the twisting of the over-untwisted portion in the untwisting zone. It is possible to extend beyond the twist change point and approach the untwisted portion. In this case, since twisting of the yarn has stopped, the predetermined tension must be sufficiently lower than the yarn tension during twisting, and thus the untwisted portion is heat-treated in a low tension state. Therefore, it is possible to obtain a strong twisted part that has a high twisting effect and is difficult to untwist. 3 in FIG. 6 is a diagram showing the subsequent formation of the untwisted portion A1 . Also,
For this reason as well, the heat setting temperature is preferably set higher than the temperature set in the case of normal false twisting.
In this way, by making the untwisted part into a strong twisted part, and by bringing the twist of the over-untwisted part in the untwisting zone close to the untwisted part, the over-untwisted part and the following untwisted part can be Formation of a non-twisted portion D1 between the untwisted portion and the untwisted portion can be prevented. In this way, since there is virtually no untwisted part and there is a high density of twists, the untwisted part A 1
A yarn portion 1 in which the initial elastic modulus of the over-twisted portion C 1 is 40 g/d or less is obtained. Next, the formation of the yarn portion 2 will be described.
If the speed of the variable speed roller is reduced simultaneously with the supply of fluid to the nozzle while the yarn is running at a predetermined high overfeed rate, the yarn will run at a lower overfeed rate and therefore the yarn will be lower in the untwisting zone. The string becomes taut without ballooning, and the untwisted part A2 in the untwisted zone is untwisted in sequence from the vicinity of the nozzle to the delivery roller part due to the propagation of the twist. It is not possible to over-untwist the twisted part A 2 all at once, and for this reason, the untwisted portion is only offset by the over-untwisting torque,
Non-twisted area between untwisted area A 2 and subsequent over-twisted area C 2
B 2 is formed. The degree to which the speed of the variable speed roller is decreased should be limited to such an extent that the strong twisting effect of the overly twisted portion C2 to be formed is not significantly diminished, and the amount of change should be within a range of several percent. After the nozzle fluid is supplied as described above, the fluid supply is then stopped, and at the same time as the fluid supply is stopped, the speed of the variable speed roller is increased to return to the original predetermined overfeed rate. At this time, the yarn has stopped twisting, so the tension decreases regardless of the increase in overfeed rate. However, by further reducing the yarn tension, the twist in the over-untwisted part in the untwisting zone is reduced. The untwisted portion D 2 is prevented from substantially disappearing by exceeding the twisting transition point and reaching the edge of the untwisted portion. Incidentally, the increase in the overfeed rate returns to a predetermined overfeed rate, and the amount of change is only a few percent, and does not cause the yarn to become unable to run, such as wrapping around a roller. The yarn portion 1 and yarn portion 2 formed in this way operate at variable speeds with respect to the time for supplying fluid to the nozzle (referred to as ON time) and the time for stopping fluid supply to the nozzle (referred to as OFF time). Determined by increasing or decreasing the roller speed, its length is
These correspond to the ON time and OFF time, but the non-twisted parts B 2 and D 2 of the yarn section 2 are the processing conditions, namely the ON time, OFF time, and period (sum of ON time and OFF time).
It is determined by the ratio of ON time to OFF time, yarn speed, length of twisting zone, length of untwisting zone, etc., and the ratio of ON time to OFF time is small within the range where the steady state of false twisting does not appear. Indeed, the shorter the period or the higher the yarn speed, the longer the lengths of the non-twisted portions B 2 and D 2 become. Non-twisted part B 2 ,
Although there are still many points that are unclear regarding the relationship between the length of D 2 and the above processing conditions, regarding the untwisted part B 2 , it is possible to untwist the untwisted part of the untwisted zone according to the twist propagation speed without over-twisting the untwisted part at once. The length of the untwisted part B2 is related to the untwisting zone, yarn speed, and heat setting temperature, and the length of the untwisted part D2 is related to the untwisting zone, yarn speed, and heat setting temperature.
The twist state during twisting changes depending on the ON time, OFF time, cycle, and the ratio of ON time to OFF time. It is thought that the ease of uniformly untwisting changes, and as a result, the distance at which the overly untwisted portion and the untwisted portion cancel each other changes. As mentioned above, the length of the yarn portion 2 and the length of the non-twisted portions B 2 and D 2 are related to the processing conditions, so for example, a random pulse generator may be used to supply and stop the fluid using a fluid supply valve. As a result, the yarn portions 2 and non-twisted portions B 2 and D 2 can be formed at appropriate intervals and with appropriate lengths. In this way, the yarn portion 1 with a high twisting effect, which is substantially free of non-twisted portions, occupies most of the yarn, and the yarn portion 2 with non-twisted portions, which has a spun yarn-like uneven effect, is a yarn. Interspersed threads can be produced. The nozzle used for manufacturing the above-mentioned processed yarn of the present invention may be any nozzle as long as it has the function of twisting the yarn by turning the yarn at high speed, and is capable of directing the flow of fluid around the circumference of the cylindrical yarn passage. a combination of one or more fluid conduits positioned in a directional manner;
Any type of material may be used as long as it is provided at a position substantially oriented in the cutting line direction with respect to the inner periphery of the yarn path. Alternatively, the fluid conduit may lie in a plane substantially perpendicular to the longitudinal axis of the thread passage, or may be otherwise, but inclined from the perpendicular plane so as to impart an advancing action to the thread. is preferred. In addition, in the false twisting process using a nozzle, the processed yarn of the present invention uses a passive yarn feeding device (hereinafter referred to as a feeder) that rotates by the running tension of the yarn as a yarn feeding device, so that the non-twisted portion is substantially removed. The yarn portion 1 that does not have a specific characteristic is formed by changing the feeder load to a light load at the same time as fluid is supplied to the nozzle, and changing the feeder load to a high load at the same time as the fluid supply to the nozzle is stopped. , and non-twisted part B 2 ,
The yarn portion 2 having D 2 is formed by applying a high load when the fluid is supplied to the nozzle or a low load when the fluid is stopped, contrary to the formation of the yarn portion 1. In order for the effect of twisting to significantly affect the texture, the average number of twists in the untwisted portions and overtwisted portions of the processed yarn of the present invention must be 8000/√(D: yarn fineness) or more. It is necessary that Yarn part 1
The proportion of the non-twisted portion B 2 of the yarn portion 2 to the yarn is
Although it depends on the length of D2 , it is preferably 50% or more, particularly preferably 70 to 80%. Note that the average number of twists referred to herein is the number of twists distributed in each twisted portion, measured using a twister or a microscope, averaged, and converted into the number of twists per 1 m. The thermoplastic synthetic fibers in the processed yarn of the present invention include synthetic fibers obtained from polymers such as polyester and polyamide, and copolymers and blend polymers thereof. As described above, since the processed yarn of the present invention has the above-described structure, it exhibits the following unique effects. That is, since the processed yarn of the present invention adopts the above-mentioned structure, the yarn portion has an untwisted part and an overly untwisted part with a high twist density on the order of meters and a length of several centimeters.
There is a yarn portion 2 with a non-twisted portion of ~10-odd centimeters,
The non-twisted parts are irregularly spaced and have irregular lengths, so when made into a woven or knitted fabric, a spun yarn-like uneven surface effect can be obtained, and the strong twist creates a high degree of smoothness and an excellent design. It can be effective. The processed yarn of the present invention has an essential requirement that both the length of the untwisted part and the overtwisted part be long, including lengths on the order of meters. In other words, when tensile stress or bending stress is applied to an untwisted part or an over-twisted part, this stress becomes a shear stress along the strands, causing slippage between the strands, and as a result, the fabric has poor drapability and weight. A feeling is given. However, when the length of the untwisted part and the over-twisted part is on the order of several millimeters to several centimeters at the longest, the number of twist direction changing parts increases to 10 or more per 1 m. If there is a large amount of strands, tensile stress and bending stress are not converted into shear stress that causes the strands to slip, making it impossible to impart drapability and weight to the fabric. In order to impart drapability and weight to the fabric, these twisted portions must have lengths on the order of meters. As mentioned above, the processed yarn of the present invention is obtained by adopting a manufacturing technology that is completely different from the conventional technology, and the processing principle for obtaining the processed yarn of the present invention is the twisting and untwisting of false twisting. This is an application of the transient phenomenon that occurs when the twists cancel each other out. In order to vary the speed of the yarn supplied to the twisting area in synchronization with the intermittent false twisting operation, the untwisted part and the overtwisted part have a unique twist number distribution, resulting in a highly twisted yarn texture. 8000/√ enough to get
A high twist number of D (T/M) or more remains in the yarn, and the initial elastic modulus of the untwisted part and the overtwisted part is
40g/d or less. In addition, in the processed yarn of the present invention, there is substantially no untwisted part in the twist direction changing part other than the untwisted part of the yarn portion 2, and due to the high twist density of the untwisted part and the overtwisted part. Since the fibers are narrowed and bundled, the apparent thickness of the fabric is thinner, giving it a sense of weight. Furthermore, since the yarn portion 1 of the processed yarn of the present invention has a low initial elastic modulus of 40 g/d or less in the untwisted portion and the excessively untwisted portion, it is difficult to impart drapability to the obtained woven or knitted fabric. can. In addition, this low initial elastic modulus, together with the fact that the twisted portion has a high twist density of 8000/√(T/M) or more, provides a fabric with good flexibility and elasticity. be able to. Furthermore, due to strong twisting, the yarns in the woven or knitted fabric do not become flat, and the contact area at the intersecting points of the yarns in the woven or knitted fabric becomes small, which makes it easy for the threads to slip at the intersecting points, improving drapability. By using the processed yarn of the present invention, it is possible to obtain a fabric with a strong twist effect similar to a strong twist yarn and a spun yarn-like uneven effect on the surface of the fabric, which could not be obtained with conventional alternately twisted yarn. A knitted fabric can be obtained. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Polyester filament 150d/72f (circular cross-sectional shape, semi-dull yarn, initial elastic modulus 96 g/d) was supplied to a processing process consisting of a variable speed supply roller, a heater, a nozzle, and a delivery roller, and the above-mentioned process was carried out. Processing was carried out under the following processing conditions to obtain alternately twisted yarns as shown in Table 1.

【表】 糸条部分1及び糸条部分2は不規則な出現、頻
度、時間となるようあらかじめマイクロコンピユ
ーターにプログラムし、糸条部分1の比率は75%
となるようにした。 流体の種類 常温空気 流体の圧力 5Kg/cm2 ヒーター温度 190℃ 巻取ローラ速度 78m/min
[Table] The microcomputer is programmed in advance so that yarn portion 1 and yarn portion 2 have irregular appearance, frequency, and time, and the ratio of yarn portion 1 is 75%.
I made it so that Type of fluid Room temperature air Fluid pressure 5Kg/cm 2Heater temperature 190℃ Take-up roller speed 78m/min

【表】 得られた加工糸の無撚部は最大16cm、最小3cm
の種々の長さで不規則に存在しており、無撚部
B1は撚方向変換点としてのみ存在し、実質的な
長さはみられなかつた。この加工糸を経糸密度90
本/、緯糸密度58本/吋で経緯2本交互に用いて
製織し、この織物に通常のポリエステルアルカリ
減量加工(19%減量)を施し、染色、仕上、加工
を行つたところ、嵩高部が経緯に交叉し紡績糸様
の表面斑形態を呈すると共に、強撚糸様の繊細な
感覚のシヤリ感、ドレープ性、重量感及び弾力性
のある優れた風合の織物が得られた。
[Table] The untwisted part of the obtained processed yarn is maximum 16 cm and minimum 3 cm.
It exists irregularly with various lengths, and the non-twisted part
B1 existed only as a twist direction change point, and no substantial length was observed. This processed yarn has a warp density of 90
Weaving was carried out using two wefts alternately at a weft density of 58 wefts/inch, and this fabric was subjected to normal polyester alkali weight loss processing (19% weight loss), dyed, finished, and processed. A fabric with an excellent texture, which exhibits a spun yarn-like surface mottled form intersecting the warp and warp, and has a delicate silky feel similar to that of highly twisted yarn, drapability, weight, and elasticity was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明加工糸の一例の概略側面図、第
2図は本発明加工糸の糸条部分1の未解撚部A1
過解撚部C1及び供給原糸の初期応力と伸長との
関係を示すグラフである。また、第3図及び第4
図は、糸条の供給速度を可変速しない場合の無撚
部B2及びD2の形成の説明図、第5図及び第6図
は、糸条の供給速度を可変速して無撚部の存在し
ない糸条部分1を製造するための説明図である。 A1:糸条部分1の未解撚部、B1:糸条部分1
の未解撚部から過解撚部への撚方向変換部におけ
る無撚部、C1:糸条部分1の過解撚部、D1:糸
条部分1の過解撚部から未解撚部への撚方向変換
部における無撚部、A2:糸条部分2の未解撚部、
B2:糸条部分2の未解撚部から過解撚部への撚
方向変換部における無撚部、C2:糸条部分2の
過解撚部、D2:糸条部分2の過解撚部から未解
撚部への撚方向変換部における無撚部。
FIG. 1 is a schematic side view of an example of the processed yarn of the present invention, and FIG. 2 is an untwisted portion A 1 of the thread portion 1 of the processed yarn of the present invention,
It is a graph showing the relationship between the initial stress and elongation of the over-twisted part C1 and the supplied yarn. Also, Figures 3 and 4
The figure is an explanatory diagram of the formation of non-twisted portions B 2 and D 2 when the yarn feeding speed is not variable. FIG. 3 is an explanatory diagram for manufacturing a yarn portion 1 in which no . A 1 : Untwisted part of yarn section 1, B 1 : Yarn section 1
C 1 : Over-untwisted part of yarn section 1, D 1 : Untwisted part from over-untwisted part of yarn section 1 A 2 : untwisted part of the yarn part 2,
B 2 : Non-twisted part at the part where the twist direction changes from the untwisted part to the over-untwisted part of the yarn part 2, C 2 : The over-untwisted part of the yarn part 2, D 2 : The untwisted part of the yarn part 2 A non-twisted part in a twisting direction change part from an untwisted part to an untwisted part.

Claims (1)

【特許請求の範囲】[Claims] 1 仮撚加撚方向の撚を有したメートルオーダー
を含む長さの未解撚部と、仮撚解撚方向の撚を有
したメートルオーダーを含む長さの過解撚部とを
交互に形成せしめたフイラメント糸条であつて、
これらの撚部のフイラメント相互は融着すること
なく長手方向に撚数分布を有し、その平均撚数は
8000/√(T/M)以上であり、未解撚部から
過解撚部への撚方向転換部及び過解撚部から未解
撚部への撚方向転換部には無撚部が実質的に存在
しない糸条部分1と、未解撚部から過解撚部への
撚方向転換部及び過解撚部から未解撚部への撚方
向転換部にそれぞれ無撚部が存在する糸条部分2
とが不規則な間隔で、しかも不規則な長さで存在
しており、かつ前記糸条部分1の未解撚部及び過
解撚部は40g/d以下の初期弾性率であることを
特徴とする強撚糸様特殊加工糸。
1 Alternately forming untwisted portions with a length including the meter order with twist in the false twisting direction and overly untwisted portions with the length including the meter order with twist in the false twisting/untwisting direction. The filament yarn has been tightened,
The filaments of these twisted parts have a twist number distribution in the longitudinal direction without being fused together, and the average number of twists is
8000/√(T/M) or more, and the untwisted part is substantially present in the part where the twisting direction changes from the untwisted part to the overtwisted part and the part where the twisting direction changes from the overtwisted part to the untwisted part. A yarn in which a non-twisted portion exists in a yarn portion 1 that does not exist in the yarn portion 1, a twisting direction change portion from an untwisted portion to an overly untwisted portion, and a twisting direction change portion from an overly untwisted portion to an untwisted portion, respectively. Row part 2
are present at irregular intervals and at irregular lengths, and the untwisted portions and excessively untwisted portions of the yarn portion 1 have an initial elastic modulus of 40 g/d or less. Specially processed yarn that resembles highly twisted yarn.
JP3449182A 1982-03-03 1982-03-03 Hard twisted yarn-like special processed yarn Granted JPS58156045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3449182A JPS58156045A (en) 1982-03-03 1982-03-03 Hard twisted yarn-like special processed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3449182A JPS58156045A (en) 1982-03-03 1982-03-03 Hard twisted yarn-like special processed yarn

Publications (2)

Publication Number Publication Date
JPS58156045A JPS58156045A (en) 1983-09-16
JPH0375648B2 true JPH0375648B2 (en) 1991-12-02

Family

ID=12415709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3449182A Granted JPS58156045A (en) 1982-03-03 1982-03-03 Hard twisted yarn-like special processed yarn

Country Status (1)

Country Link
JP (1) JPS58156045A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063419U (en) * 1983-10-11 1985-05-04 日本鋼管株式会社 Bucket conveyor type sand raking device
JP2530596B2 (en) * 1985-05-20 1996-09-04 ユニチカ株式会社 Method for manufacturing fan chain

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149949A (en) * 1974-10-22 1976-04-30 Toyo Orimono Kk KAZARINENSHI
JPS5398444A (en) * 1977-02-01 1978-08-28 Toray Industries Falseetwisted yarn of special type
JPS551332A (en) * 1978-06-16 1980-01-08 Teijin Ltd Spun like two layer structure fluf yarn and method
JPS55148231A (en) * 1979-05-04 1980-11-18 Toray Industries Special processed yarn * production thereof and woven and knitted fabric using same
JPS55152828A (en) * 1979-05-16 1980-11-28 Oda Gosen Kogyo Kk Crimped yarn and production thereof
JPS5881639A (en) * 1981-11-05 1983-05-17 ユニチカ株式会社 Hard twisted-like special processed yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149949A (en) * 1974-10-22 1976-04-30 Toyo Orimono Kk KAZARINENSHI
JPS5398444A (en) * 1977-02-01 1978-08-28 Toray Industries Falseetwisted yarn of special type
JPS551332A (en) * 1978-06-16 1980-01-08 Teijin Ltd Spun like two layer structure fluf yarn and method
JPS55148231A (en) * 1979-05-04 1980-11-18 Toray Industries Special processed yarn * production thereof and woven and knitted fabric using same
JPS55152828A (en) * 1979-05-16 1980-11-28 Oda Gosen Kogyo Kk Crimped yarn and production thereof
JPS5881639A (en) * 1981-11-05 1983-05-17 ユニチカ株式会社 Hard twisted-like special processed yarn

Also Published As

Publication number Publication date
JPS58156045A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
US20060014016A1 (en) Method of producing yarns and fabrics
US4265082A (en) Spun-like yarn and a process for manufacturing the same
JPS6119733B2 (en)
US4345425A (en) Process for making bulky textured multifilament yarn
JPH0317934B2 (en)
JPH0375648B2 (en)
JPS5928650B2 (en) Temporary unsolved yarn
JPS5917209B2 (en) Special alternating twisted yarn
JP4373571B2 (en) Stretch false twist slab composite yarn, production method and production apparatus, woven fabric and knitted fabric
JPS6319610B2 (en)
JPH0224934B2 (en)
JPH0299626A (en) Production method for crimped yarn with a multilayer structure
JP3908894B2 (en) Polyester false twisted yarn, production method thereof and woven / knitted fabric thereof
JPS60126340A (en) Production of core yarn
JPH0849129A (en) Special conjugated finished yarn and its production method
JPH0224935B2 (en)
JPS6011130B2 (en) Composite processing method
JP3232662B2 (en) Method for producing composite false twisted yarn having spanned thickness unevenness
JPS6138927Y2 (en)
JPS5939529B2 (en) Manufacturing method of spun yarn-like yarn
JPS6212329B2 (en)
JPS6360139B2 (en)
JPH034655B2 (en)
JPH043455B2 (en)
JPH08291433A (en) Production of low-crimped textured yarn