JPH02247938A - Electron emission element - Google Patents
Electron emission elementInfo
- Publication number
- JPH02247938A JPH02247938A JP1067434A JP6743489A JPH02247938A JP H02247938 A JPH02247938 A JP H02247938A JP 1067434 A JP1067434 A JP 1067434A JP 6743489 A JP6743489 A JP 6743489A JP H02247938 A JPH02247938 A JP H02247938A
- Authority
- JP
- Japan
- Prior art keywords
- electron
- fluorine
- organic compound
- emitting
- electron emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 22
- 239000011737 fluorine Substances 0.000 claims abstract description 22
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 21
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 16
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 11
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 6
- 125000005010 perfluoroalkyl group Chemical group 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 239000010687 lubricating oil Substances 0.000 abstract description 2
- 239000004094 surface-active agent Substances 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 229940125758 compound 15 Drugs 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract 1
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract 1
- 229920005604 random copolymer Polymers 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 239000010409 thin film Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 10
- 230000008021 deposition Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 241001663154 Electron Species 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、電子放出素子に関し、特に安定した放出電流
を得られる電子放出素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron-emitting device, and particularly to an electron-emitting device that can obtain a stable emission current.
[従来の技術]
従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム アイ エリンソン(M、 I。[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, M.I. Ellingson (M, I.
Elinson)等によって発表された冷陰極素子が知
られている。[ラジオ エンジニアリング エレクトロ
ン フィジイッス(Radio Hug、 Elect
ron。A cold cathode device announced by John Elinson et al. is known. [Radio Engineering Electron Physics (Radio Hug, Elect
Ron.
Pbya、)第10巻、 1290〜129B頁、
11385年]これは、基板上に形成された小面積の
薄膜に、膜面に平行に電流を流すことにより、電子放出
が生ずる現象を利用するもので、一般には表面伝導形電
子放出素子と呼ばれている。Pbya, ) Volume 10, pp. 1290-129B,
11385] This device utilizes the phenomenon that electrons are emitted when a current is passed through a small-area thin film formed on a substrate parallel to the film surface, and is generally called a surface conduction electron-emitting device. It is.
この表面伝導形電子放出素子としては、前記エリンソン
等により開発された5nOz (Sb)薄膜を用いたも
の、Au薄膜によるもの[ジー・ディトマー“スイン
ソリド フィルムス”(G、 旧ttmar:″Th1
n 5olid Films”)、9巻、317頁、
(1972年)】、■↑0薄膜によるもの[エム ハ
ートウェル アンド シー ジー フオフスタッド“ア
イイー イー イー トランス”イー デイ−コニ/
7 (M、 Hartwell and C,G、 F
onstad: IEEETrans、 ED Co
n?、 ” ) 519頁、 (1975年)]、カ
ーボン薄膜によるもの[荒木久他:“真空”。This surface conduction type electron-emitting device includes one using a 5nOz (Sb) thin film developed by Ellingson et al., and one using an Au thin film [G.
Solid Films” (G, former ttmar: “Th1
n 5 solid Films”), volume 9, page 317,
(1972)], ■↑Thin film [M. Hartwell and C.G.
7 (M, Hartwell and C, G, F
onstad: IEEE Trans, ED Co
n? , ” ) 519 pages, (1975)], by carbon thin film [Hisashi Araki et al.: “Vacuum”.
第26巻、第1号、22頁、 (1983年)]などが
報告されている。Vol. 26, No. 1, p. 22 (1983)].
これらの表面伝導形電子放出素子の典型的な素子構成を
第2図に示す、同第2図において、l及び2は電気的接
続を得る為の電極、3は電子放出材料で形成される薄膜
、4は絶縁性基板、5は電子放出部を示す。A typical device configuration of these surface conduction type electron-emitting devices is shown in FIG. 2. In FIG. 2, l and 2 are electrodes for obtaining electrical connection, and 3 is a thin film formed of an electron-emitting material. , 4 is an insulating substrate, and 5 is an electron emitting part.
従来、これらの表面伝導形電子放出素子に於ては、電子
放出を行う前に予めフォーミングと呼ばれる通電加熱処
理によって電子放出部を形成する。即ち、前記電極lと
電極2の間に電圧を印加する事により、薄l13に通電
し、これにより発生するジュール熱で薄膜3を局所的に
破壊、変形もしくは変質せしめ、電気的に高抵抗な状態
にした電子放出部5を形成することにより電子放出機能
を得ている。Conventionally, in these surface conduction type electron-emitting devices, an electron-emitting portion is formed in advance by an electrical heating process called forming before electron emission. That is, by applying a voltage between the electrode 1 and the electrode 2, the thin film 13 is energized, and the Joule heat generated thereby causes the thin film 3 to be locally destroyed, deformed, or altered, resulting in a high electrical resistance. The electron emitting function is obtained by forming the electron emitting portion 5 in the state.
上述、電気的に高抵抗状態とは薄膜3の一部に0.51
〜51の亀裂を有し、且つ亀裂内が所謂島構造を有する
不連続状態膜をいう、島構造とは一般に数十へから数終
■径の微粒子が基板4上にあり、各微粒子は空間的に不
連続で電気的に連続な膜を云う。As mentioned above, the electrically high resistance state is 0.51 in a part of the thin film 3.
It refers to a discontinuous state film that has ~51 cracks and has a so-called island structure within the crack.The island structure is generally a structure in which fine particles with a diameter of several tens to a few centimeters are located on the substrate 4, and each fine particle has a space. A film that is electrically discontinuous and electrically continuous.
従来、表面伝導形電子放出素子は上述高抵抗不連続膜に
電極1.2により電圧を印加し、素子表面に電流を流す
ことにより、上述微粒子より電子放出せしめるものであ
る。Conventionally, a surface conduction type electron-emitting device is one in which a voltage is applied to the above-mentioned high-resistance discontinuous film through an electrode 1.2, and a current is caused to flow across the surface of the device, thereby causing the above-mentioned fine particles to emit electrons.
[発明が解決しようとする課題]
しかしながら、上記の様な従来の通電加熱によるフォー
ミング処理によって製造された電子放出素子は、電子放
出部となる島構造の設計が不可能なために、素子の改良
が難しく、作製された素子毎の電子放出部の位置や特性
にもバラツキを生じ易く、不安定で再現性に乏しいもの
となっていた。[Problems to be Solved by the Invention] However, in the electron-emitting device manufactured by the conventional forming process using electric heating as described above, it is impossible to design an island structure that becomes the electron-emitting part, so it is difficult to improve the device. However, the position and characteristics of the electron-emitting portion tend to vary between manufactured devices, resulting in instability and poor reproducibility.
そこで、フォーミングを使用せず、上記島構造を作製す
る方法として、微粒子を分散形成する方法や熱処理によ
る局所的な析出現象を利用する方法、微粒子を直接吹き
付けて島構造に堆積する方法等が提案されている。Therefore, as methods to create the above island structure without using forming, methods have been proposed such as a method of dispersing fine particles, a method of utilizing local precipitation phenomenon by heat treatment, and a method of directly spraying fine particles and depositing them on the island structure. has been done.
ところが、これらの方法を用いて作製された電子放出素
子でも水や酸素を含む環境にさらすと。However, even when electron-emitting devices fabricated using these methods are exposed to an environment containing water or oxygen,
その特性にバラツキを生じ、不安定で再現性に乏しいこ
とが分かった。このことは、その素子を応用したり製造
する際において、その特性を制御して作製することを困
難にしていた。このような問題点があるため、従来の表
面伝導形電子放出素子は、素子構造は簡単であるという
利点があるにもかかわらず、産業上積極的に応用される
には至っておらず、環境に左右されにくい素子が望ま終
ていた。It was found that the characteristics varied, were unstable, and had poor reproducibility. This makes it difficult to control the characteristics when applying or manufacturing the device. Due to these problems, conventional surface conduction electron-emitting devices have not been actively applied in industry, despite having the advantage of a simple device structure, and are environmentally friendly. I was hoping for an element that was not easily affected.
以上の点に鑑み、本発明は、前述従来の問題を除去する
為になされたものであり5表面伝導形電子放出素子にお
いて、電子放出部の表面改質を施すことにより、環境に
左右されずに特性のバラツキが少なく、低真空でも安定
して寿命の長い電子放出素子を提供することにある。In view of the above points, the present invention has been made to eliminate the above-mentioned problems of the conventional technology.5 Surface conduction type electron-emitting devices are not influenced by the environment by modifying the surface of the electron-emitting portion. The object of the present invention is to provide an electron-emitting device that has little variation in characteristics, is stable even in low vacuum, and has a long life.
[課題を解決するための手段及び作用]本発明は1表面
伝導形電子放出素子において、電子放出部の少なくとも
電子が放出される領域の表面が、フッ素を含む有機化合
物で被われていることを特徴とする電子放出素子に係る
ものである。[Means and effects for solving the problems] The present invention provides a surface conduction type electron-emitting device in which at least the surface of the region where electrons are emitted in the electron-emitting portion is covered with an organic compound containing fluorine. The present invention relates to a characteristic electron-emitting device.
以下、図面に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on the drawings.
第1図は本発明の電子放出素子の一実施態様を示す説明
図である。同第1図に於いて、4は絶縁性基板、l及び
2は電圧印加用の低抵抗体からなる一対の電極、6は電
子放出材料で形成される島状構造体で、電極1.2間の
微小間隔部分に配置され、これが電子放出部5となる。FIG. 1 is an explanatory diagram showing one embodiment of the electron-emitting device of the present invention. In FIG. 1, 4 is an insulating substrate, 1 and 2 are a pair of electrodes made of a low-resistance material for voltage application, 6 is an island-like structure formed of an electron-emitting material, and electrodes 1.2 The electron emitting section 5 is arranged at a minute interval between the two electrodes.
さらに、この素子上の少なくとも電子放出部には、フッ
素を含む有機化合物膜7が被われている。Further, at least the electron emitting portion on this element is covered with an organic compound film 7 containing fluorine.
本発明でいう島状構造体は、微粒子あるいは微粒子の葆
合体で粒径が数十A〜数μ履でさらに各微粒子間の間隔
が数10A〜0.5μ層の範囲内で形成されるとよい、
この島状構造体で使われる電子放出材料としては、非常
に広い範囲におよび通常の金属、半金属、半導体といっ
た導電性材料の殆ど全てを使用できる。なかでも低仕事
関数で高融点かつ低蒸気圧という性質をもつ通常の陰極
材料や、また従来のフォーミング処理で表面伝導形電子
放出素子を形成する薄膜材料や、2次電子放出係数の大
きな材料等が好適である。The island-like structure referred to in the present invention is formed by fine particles or aggregation of fine particles with a particle size of several tens of amps to several micrometers, and an interval between each fine particle in the range of several tens of microns to 0.5 micrometers. good,
As the electron-emitting material used in this island-like structure, almost all conductive materials such as ordinary metals, semimetals, and semiconductors can be used in a very wide range. Among them, ordinary cathode materials with low work function, high melting point, and low vapor pressure, thin film materials that form surface conduction electron-emitting devices through conventional forming processing, and materials with high secondary electron emission coefficients. is suitable.
こうした材料から、必要とする目的に応じて適宜材料を
選んで微粒子として用いることにより、所望の電子放出
素子を形成することができる。A desired electron-emitting device can be formed by selecting an appropriate material from these materials depending on the required purpose and using it as fine particles.
具体的には、LaBa、 CeBs、 YB4. Gd
B4等の硼化物、Tic、 ZrC,HfC,TaC,
SiC,WC等の炭化物、7iN、 zrN、 HfN
等の窒化物、Nb、 Mo、 Rh、 Hf。Specifically, LaBa, CeBs, YB4. Gd
Borides such as B4, Tic, ZrC, HfC, TaC,
Carbide such as SiC, WC, 7iN, zrN, HfN
Nitrides such as Nb, Mo, Rh, Hf.
Ta、 W、 Re、 Ir、 Pt、 Ti、 Au
、 Ag、 Cu、 Cr、 AR。Ta, W, Re, Ir, Pt, Ti, Au
, Ag, Cu, Cr, AR.
Go、 Ni、 Fe、 Pb、 Pd、 Cs、 B
a等の金属、I n * Os *5nOx、 Sb*
Os等の金属酸化物、Si、 Ge等の半導体、カーボ
ン、AgMg等を一例として挙げることができる。尚、
本発明は上記材料に堰定されるものではない。Go, Ni, Fe, Pb, Pd, Cs, B
Metals such as a, I n *Os *5nOx, Sb*
Examples include metal oxides such as Os, semiconductors such as Si and Ge, carbon, and AgMg. still,
The present invention is not limited to the above materials.
電極材としては、一般的な導電性材料、Au。The electrode material is a common conductive material, Au.
Pt、 Ag等の金属の他のSnO,、ITO等の酸化
物導電性材料でも使用できる。図1において電極の厚み
は数100人から数4m程度が適当であるが、この数値
に限るものではない、また電極間隔りの寸法は数100
0人〜数100 I&m、幅Wの寸法は数ILmから数
IIIII程度が適当であるがこのL及びWの寸法に限
定するものではない。In addition to metals such as Pt and Ag, oxide conductive materials such as SnO and ITO can also be used. In Figure 1, the appropriate thickness of the electrodes is from several hundred meters to several four meters, but it is not limited to this value, and the electrode spacing is approximately several hundred meters thick.
0 to several 100 I&m, and the width W dimensions are suitably from several ILm to several III, but are not limited to these L and W dimensions.
フッ素を含む有機化合物としてはポリテトラフルオロエ
チレン、テトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体、ポリクロロトリフルオロエチレン、テ
トラフルオロエチレン−エチレン共重合体、ポリビニル
フルオライド等のいわゆるフッ素樹脂あるいはフッ素系
ランダム共重合樹脂、パーフロロアルキル基を一成分と
した共重合体、例えば幹鎖がパーフロロアルキルメタク
リレート系で枝鎖がPMMAであるグラフト共重合アク
リル樹脂、より低分子量のものとしては、パーフロロア
ルキル基(Rf)を含む化合物(例えば一般式RfCO
OH及びその塩、CH!=CHC00CHsRf。Organic compounds containing fluorine include so-called fluororesins such as polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, tetrafluoroethylene-ethylene copolymer, polyvinyl fluoride, or fluorine-based random. Copolymer resins, copolymers containing perfluoroalkyl groups as one component, such as graft copolymer acrylic resins in which the main chain is perfluoroalkyl methacrylate and the branch chains are PMMA, and for those with lower molecular weight, perfluoroalkyl Compounds containing a group (Rf) (e.g. general formula RfCO
OH and its salt, CH! =CHC00CHsRf.
RfCHICHfiSi−(OCHI)l、 RfCf
iH40H,RfCH=CH1等)や市販のフッ素系界
面活性剤(例えばパーフロロアルキルスルホン酸塩、パ
ーフルオロアルキルエチレンオキシド付加物、パーフル
オロアルキルトリメチルアンモニウム塩、パーフルオロ
アルキルリン酸エステル等)、市販のフッ素系潤滑油(
例えば商品名モンテフルオス(社)のフオフブリン、デ
ュポン(社)のクライトックスに代表されるパーフルオ
ロポリエーテル等)、フッ素化オイル、フッ素化グリ7
ス、フッ素系オリゴマー化合物等を一例として挙げるこ
とができる。RfCHICHfiSi-(OCHI)l, RfCf
iH40H, RfCH=CH1, etc.), commercially available fluorine-based surfactants (e.g. perfluoroalkyl sulfonate, perfluoroalkyl ethylene oxide adduct, perfluoroalkyl trimethylammonium salt, perfluoroalkyl phosphate ester, etc.), commercially available fluorine Lubricating oil (
For example, perfluoropolyethers such as Fufubulin (product name: Monte Fluos), Krytox (Dupont), fluorinated oils, fluorinated glycols, etc.
Examples include sulfur, fluorine-based oligomer compounds, and the like.
フッ素を含む有機化合物の塗布量は、電子放出特性を損
わない程度の量が好適である。電子放出材料や電子放出
部の形状にもよるが、膜厚150 A相当以下が好まし
い。The amount of the organic compound containing fluorine to be applied is preferably an amount that does not impair the electron emission characteristics. Although it depends on the electron-emitting material and the shape of the electron-emitting part, the film thickness is preferably 150 A or less.
次に、本発明の電子放出素子の製造方法について説明す
る。第1図において先ず洗浄されたガラス、石英等から
なる絶縁基板上に蒸着もしくはスパッタ法、メツキ法等
により電極材料となる薄膜を形成する0次いで、フォト
リソグラフィーにより、電子放出部となる微小間隔を有
する電極パターンを形成する0次いで電子放出材料の島
状構造体を形成する。その方法としては、微粒子を吹き
付けて直接堆積する方法や微粒子を分散形成する方法、
熱処理による局所的な析出現象を利用する方法が挙げら
れる。尚、電子放出材料となる薄膜を先に形成し次いで
電極材料をマスク蒸着してパターンを形成し、電極間に
電圧を印加して電子放出材料の薄膜をジェール熱で局所
的に破壊、変形、もしくは変質せしめて、電気的に高抵
抗な状態の電子放出部を形成した第2図に示すが如きフ
ォーミング型素子のような方法でも可能である。このよ
うにして形成した、電子放出部の少なくとも電子が放出
される領域の表面にフッ素を含む有機化合物なEB蒸着
や抵抗加熱法、イオン、ブレーティング等の真空蒸着に
より形成する乾式コーティング、溶剤に溶かして塗布す
るディッピング法、バーコード法、リバースロールコー
ティング法、ロッドコーティング法、スピンコード法等
に代表される湿式コーティングの公知の技術で被覆する
ことができる。この時、電子放出材料外の部分にも、こ
のフッ素を含む有機化合物が被われることもあるが、本
発明の被覆厚では、殆どの場合に問題にならない、場合
によっては、電極表面をマスクして被着させることも可
能である。Next, a method for manufacturing an electron-emitting device according to the present invention will be explained. In Fig. 1, a thin film that will become an electrode material is first formed on an insulating substrate made of cleaned glass, quartz, etc. by vapor deposition, sputtering, plating, etc. Next, micro-intervals that will become electron-emitting regions are formed by photolithography. Then, island structures of electron emitting material are formed. Methods include direct deposition by spraying fine particles, dispersion of fine particles,
One example is a method that utilizes local precipitation phenomena caused by heat treatment. Note that a thin film of the electron-emitting material is first formed, then an electrode material is deposited using a mask to form a pattern, and a voltage is applied between the electrodes to locally destroy and deform the thin film of the electron-emitting material using gel heat. Alternatively, a forming type element as shown in FIG. 2, in which the electron emission region is formed in an electrically high resistance state by alteration, is also possible. On the surface of at least the electron-emitting region of the electron-emitting region thus formed, a dry coating of an organic compound containing fluorine is formed by EB evaporation, resistance heating, ion, or vacuum evaporation such as brating, or a solvent is applied. Coating can be performed using known wet coating techniques such as dipping, barcoding, reverse roll coating, rod coating, spin-coating, and the like. At this time, parts outside the electron-emitting material may also be covered with this fluorine-containing organic compound, but with the coating thickness of the present invention, this does not pose a problem in most cases, and in some cases, the electrode surface may be masked. It is also possible to apply it using a method.
本発明のフッ素を含む有機化合物で電子放出される領域
の表面を被うことにより特性のバラッキが少なくなり、
安定で寿命が長くなる理由について詳細は不明であるが
、フッ素を含む有機化合物は、撥水性が高く、表面エネ
ルギーを小さくさせるため有極性ガス分子特に酸素や水
が吸着しにくく、電子放出部の島状構造体の表面変質が
避けられ、特性変化を防いでいるためと考えられる。By covering the surface of the region where electrons are emitted with the fluorine-containing organic compound of the present invention, variations in characteristics are reduced.
Although the details of why they are stable and have a long lifespan are unknown, organic compounds containing fluorine have high water repellency and low surface energy, making it difficult for polar gas molecules, especially oxygen and water, to be adsorbed. This is thought to be because surface alteration of the island-like structure is avoided, preventing changes in characteristics.
[実施例J
以下、図面に基づいて実施例により本発明の詳細な説明
する。[Example J] Hereinafter, the present invention will be explained in detail by way of examples based on the drawings.
宜J目1ユ
先ず、清浄な石英基板上に旧電極3000A真空蒸着法
で形成し、フォトリソグラフィー手法を用いて、第1図
の電極パターンを形成する。第1図中のLは30終曹、
Wは40Gpmとした0次に試料基板を第3図に示した
真空装置にセットする。第3図に示した装置は、微粒子
生成室7と微粒子堆積室8及び前記両室を蟲ぐノズル9
から構成され、試料素子1Gは同図中10の位置にセッ
トされる。排気系11で真空度を5 X 1G−’To
rrまで排気した後導入Arガス12を微粒子生成室7
へ80SCCN流した0作成条件は、微粒子生成室7の
圧力5 X 1O−2Torr、微粒子堆積室8の圧力
I X 10−’Torr、ノズル径5φ、ノズル−基
板間距離150層層とした0次にカーボン製るつぼの蒸
発源13よりPdを前述条件下で蒸発させて生成したP
d微粒子をノズル9より吹き出させシャッター14の開
閉により所定量堆積させる。このとき、Pd微粒子の堆
蹟厚は100 Aである。微粒子は試料全面に配置され
るが、形成される電子放出部以外のPd微粒子は、実質
的に電圧が印加されないため何ら支障はない、 Pd微
粒子の径は約50〜200 Aで中心粒径は100 A
、基板に島状に散在していた。First, an old electrode 3000A is formed on a clean quartz substrate by a vacuum evaporation method, and an electrode pattern as shown in FIG. 1 is formed using a photolithography method. L in Figure 1 is 30th grade,
The zero-order sample substrate with W set to 40 Gpm was set in the vacuum apparatus shown in FIG. The device shown in FIG.
The sample element 1G is set at position 10 in the figure. The degree of vacuum in the exhaust system 11 is 5 x 1G-'To
After exhausting to rr, the introduced Ar gas 12 is introduced into the particle generation chamber 7.
The zero-order conditions were as follows: pressure in the particle generation chamber 7 was 5 x 10-2 Torr, pressure in the particle deposition chamber 8 was I x 10-' Torr, nozzle diameter was 5φ, and distance between nozzle and substrate was 150 layers. P was produced by evaporating Pd from the evaporation source 13 of a carbon crucible under the above conditions.
d Fine particles are blown out from the nozzle 9 and deposited in a predetermined amount by opening and closing the shutter 14. At this time, the deposition thickness of the Pd fine particles was 100 A. Although the fine particles are placed over the entire surface of the sample, there is no problem with the Pd fine particles other than the formed electron emitting part because no voltage is substantially applied to them.The diameter of the Pd fine particles is about 50 to 200 A, and the center particle size is 100A
, scattered in islands on the substrate.
次に、同じ試料上にFEP(4フフ化エチレン−67〕
化プロピレン共重合)樹脂を真空中でEB蒸着する。
FEPの蒸着速度は約3.0 A l5etで。Next, apply FEP (tetrafluoroethylene-67) on the same sample.
Polypropylene copolymerization) resin is EB-deposited in vacuum.
The deposition rate of FEP was approximately 3.0 Al5et.
150 Aの厚さを電子放出部付近にマスク蒸着した。A thickness of 150 A was deposited using a mask near the electron emitting part.
この試料を、温度30℃、湿度70%RHの大気中環境
に24Hrさらした後、 I X 1O−6Torr
の真空下に引いて素子に対し、引き出し電極を基板鉛直
方向に5sam離した位置に設定し、第1図中電極1.
2間に15Vの印加電圧で測定した。その結果平均放出
電流0.9pm、放出電流の安定性±9%の安定な電子
放出を得た。・また、素子間の再現性も良く特性(安定
性)のバラツキは5〜17%であった。電子放出のくり
返し寿命も100Hr以上の動作が可能である。After exposing this sample to an atmospheric environment with a temperature of 30°C and a humidity of 70% RH for 24 hours, I
The extraction electrode was set at a position 5 sam away from the device in the vertical direction of the substrate under vacuum, and the electrode 1. in FIG.
The measurement was performed with an applied voltage of 15 V between 2 and 3. As a result, stable electron emission was obtained with an average emission current of 0.9 pm and an emission current stability of ±9%. - Also, the reproducibility between elements was good, and the variation in characteristics (stability) was 5 to 17%. It is also possible to operate with a repeated electron emission life of 100 hours or more.
比10江上
実施例1に於いてFEP樹脂を蒸着しなかった他は、実
施例1と同様に試料を作製して評価した。Ratio 10 Egami Samples were prepared and evaluated in the same manner as in Example 1, except that the FEP resin was not deposited in Example 1.
その結果、平均放出電流1.0μI放出電流の安定性±
37%でそのバラツキは、±12〜73%であり、バラ
ツキが非常に大きい、電子放出のくり返し寿命は20〜
62Hrであった。As a result, the average emission current was 1.0 μI, and the stability of emission current ±
37%, the variation is ±12 to 73%, and the variation is extremely large.The repeated life of electron emission is 20 to 73%.
It was 62 hours.
叉」U糺l
実施例1に於いてFEP樹脂を蒸着するのに代えて、パ
ーフロロアルキル基を一成分としたグラフト共重合アク
リル樹脂(総研化学■製くし型ポリマーLF−40)を
トルエン/MEK= l : lに溶かし、スピンコー
ド法により塗布し、80’CI5分乾燥な行行った。被
着厚みは重量性換算で約85Aであった。それ以外は、
実施例1と同様に処理し評価した。その結果、平均放出
電流1.2μA、放出電流の安定性±11%でそのバラ
ツキは、±6〜14%であった。電子放出のくり返し寿
命も100Hr以上の動作が可能であった。Instead of depositing the FEP resin in Example 1, a graft copolymerized acrylic resin containing a perfluoroalkyl group as one component (comb-shaped polymer LF-40 manufactured by Soken Kagaku ■) was deposited in toluene/ MEK = 1: It was dissolved in 1, applied by a spin code method, and dried at 80'CI for 5 minutes. The adhesion thickness was approximately 85A in terms of weight. Other than that,
It was processed and evaluated in the same manner as in Example 1. As a result, the average emission current was 1.2 μA, the stability of the emission current was ±11%, and the variation thereof was ±6 to 14%. The repeat life of electron emission was also 100 hours or more.
1崖亘1
実施例1のPd微粒子に代えて、1次粒径80〜20O
A(7)S1102分散液(SnO2: i g p溶
剤: MEK/シクロヘキサノン= 3 / 1 10
00cc 、ブチラール:lr)をスピンコードして塗
布し、250℃で加熱処理して形成した0次に、パーフ
ルオロカプリル酸Cr F r s にOOHをIPA
に溶かし、スピンコード法で塗布し80℃lO分乾燥さ
せた。被着厚みは約12OAであった。他は実施例1と
同様に処理し評価した。その結果、平均放出電流0.7
pA 、放出電流の安定性5%でバラツキは±4〜12
%、電子放出のくり返し寿命も100Hr以上の動作が
回部であった。1 cliff crossing 1 Instead of Pd fine particles in Example 1, primary particle size 80-20O
A (7) S1102 dispersion (SnO2: i g p solvent: MEK/cyclohexanone = 3/1 10
00cc, butyral: lr) was spin-coated and heat-treated at 250°C to form OOH.
It was applied by a spin code method and dried at 80° C. for 10 minutes. The deposition thickness was approximately 12 OA. The rest was treated and evaluated in the same manner as in Example 1. As a result, the average emission current was 0.7
pA, stability of emission current is 5%, variation is ±4 to 12
%, and the repetition life of electron emission was 100 hours or more.
実」11A
第2図の如く、白板ガラス基板からなる絶縁性基板4上
に膜厚1000AのIn2O3からなる薄膜3と膜厚1
000AのAj)からなる電極1,2をフォトリソグラ
フィーの手法を使って形成した0次いで電極1.2間に
約30Vの電圧を印加し、薄wJ3に通電し、これによ
り発生するジュール熱で薄膜3を局所的に、電気的に高
抵抗な状態にした電子放出部を形成し、該電子放出部の
表面に、熱硬化型フッ素樹脂(旭硝子■製ルミフロン)
をキシレン:メチルイソブチルケトン:インシアネート
(硬化剤)=l:1:0.3の配合比の溶剤に溶かし、
試料上にスピンコーティングし、230℃5分間で硬化
させた。このときの被着厚は約40Aであった。11A As shown in Fig. 2, a thin film 3 made of In2O3 with a film thickness of 1000A and a film thickness 1 are deposited on an insulating substrate 4 made of a white glass plate.
Electrodes 1 and 2 consisting of Aj) of 000 A were formed using a photolithography method. Then, a voltage of about 30 V was applied between the electrodes 1 and 2, electricity was applied to the thin wJ3, and the Joule heat generated thereby caused a thin film. 3 is locally made into an electrically high-resistance state to form an electron-emitting region, and a thermosetting fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.) is applied to the surface of the electron-emitting region.
Dissolved in a solvent with a mixing ratio of xylene: methyl isobutyl ketone: incyanate (curing agent) = l: 1: 0.3,
It was spin coated onto the sample and cured at 230°C for 5 minutes. The deposition thickness at this time was about 40A.
この様にして得られた電子放出素子の電子放出特性をI
X 1O−5Torrの条件下で測定した結果、15
vの印加電圧で平均放出電流0.8路A 、放出電流の
安定性±9%程度、そのバラツキ7〜20%を得た。The electron emission characteristics of the electron-emitting device obtained in this way are I
As a result of measurement under the condition of X 1O-5Torr, 15
At an applied voltage of v, an average emission current of 0.8 path A was obtained, stability of the emission current was about ±9%, and its variation was 7 to 20%.
電子放出のくり返し寿命も100Hr以上の動作が可能
であった。The repeat life of electron emission was also 100 hours or more.
[発明の効果]
以上説明したように、本発明の電子放出素子は、電子放
出部の少なくとも電子が放出される領域の表面がフッ素
を含む有機化合物で被われていることにより、真空度や
、空気中に存在するガス質環境に左右されに<<、ゆら
ぎの小さい安定した放出電流が得られ、高寿命で素子ご
とのバラツキも少なく、再現性も良好になる等の効果が
あり、この素子を産業上応用するにあたっても、極めて
信頼度の高い製品に寄与することが期待できる。[Effects of the Invention] As explained above, in the electron-emitting device of the present invention, at least the surface of the region where electrons are emitted in the electron-emitting part is covered with an organic compound containing fluorine, so that the degree of vacuum, This element has the following effects: it can obtain a stable emission current with little fluctuation, regardless of the gaseous environment present in the air, has a long life, has little variation from element to element, and has good reproducibility. It is expected that this technology will contribute to extremely reliable products when applied industrially.
第1図は本発明の電子放出素子の一実施例を示す概略図
、第2図は本発明の電子放出素子の別の実施例を示すフ
ォーミング型電子放出素子の概略図、第3図は、電極間
に微粒子を堆積させる一実施例の真空装置図である。
1.2・・・電極、 3・・・薄膜。
4・・・絶縁基板、 5・・・電子放出部。
6・・・島状構造体、 7・・・微粒子生成室、8
・・・微粒子堆積室、 9・・・ノズル、lO・・・
試料素子、
12・・・導入Arガス、
14・・・シャッター
11・・・排気系、
13・・・蒸発源。
15・・・有機化合物膜。FIG. 1 is a schematic diagram showing one embodiment of the electron-emitting device of the present invention, FIG. 2 is a schematic diagram of a forming-type electron-emitting device showing another embodiment of the electron-emitting device of the present invention, and FIG. FIG. 2 is a diagram of an embodiment of a vacuum apparatus for depositing fine particles between electrodes. 1.2... Electrode, 3... Thin film. 4... Insulating substrate, 5... Electron emission part. 6... Island-like structure, 7... Fine particle generation chamber, 8
...Particle deposition chamber, 9...Nozzle, lO...
Sample element, 12... Introduced Ar gas, 14... Shutter 11... Exhaust system, 13... Evaporation source. 15...Organic compound film.
Claims (2)
子が放出される領域の表面が、フッ素を含む有機化合物
膜で被われていることを特徴とする電子放出素子。(1) An electron-emitting device of surface conduction type, characterized in that at least the surface of a region from which electrons are emitted is covered with an organic compound film containing fluorine.
下であることを特徴とする請求項1記載の電子放出素子
。(2) The electron-emitting device according to claim 1, wherein the film thickness of the fluorine-containing organic compound is 150 Å or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6743489A JP2715315B2 (en) | 1989-03-22 | 1989-03-22 | Method for manufacturing electron-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6743489A JP2715315B2 (en) | 1989-03-22 | 1989-03-22 | Method for manufacturing electron-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02247938A true JPH02247938A (en) | 1990-10-03 |
JP2715315B2 JP2715315B2 (en) | 1998-02-18 |
Family
ID=13344809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6743489A Expired - Fee Related JP2715315B2 (en) | 1989-03-22 | 1989-03-22 | Method for manufacturing electron-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2715315B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002091417A1 (en) * | 2001-04-25 | 2002-11-14 | Sony Corporation | Electron emitter and its production method, cold-cathode field electron emitter and its production method, and cold-cathode filed electron emission display and its production method |
JP2007173249A (en) * | 1996-09-18 | 2007-07-05 | Matsushita Electric Ind Co Ltd | Method of manufacturing plasma display panel, and plasma display panel |
-
1989
- 1989-03-22 JP JP6743489A patent/JP2715315B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007173249A (en) * | 1996-09-18 | 2007-07-05 | Matsushita Electric Ind Co Ltd | Method of manufacturing plasma display panel, and plasma display panel |
WO2002091417A1 (en) * | 2001-04-25 | 2002-11-14 | Sony Corporation | Electron emitter and its production method, cold-cathode field electron emitter and its production method, and cold-cathode filed electron emission display and its production method |
US6991949B2 (en) | 2001-04-25 | 2006-01-31 | Sony Corporation | Manufacturing method of an electron emitting apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2715315B2 (en) | 1998-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0343645B1 (en) | Electron-emitting device and electron-beam generator making use of it | |
JP2715312B2 (en) | Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device | |
JPH01311533A (en) | Surface conductive emitting element and electron emitter using same | |
Rakhshani et al. | Observations of local defects caused by electrical conduction through thin sandwich structures of Ag SiO/BaO Ag | |
US7507135B2 (en) | Method of manufacturing field emitter | |
JPH02247938A (en) | Electron emission element | |
JP2003141984A (en) | Tunnel emitting device and forming method | |
Mousa | A new perspective on the hot-electron emission from metal-insulator microstructures | |
Paik | Field emission characteristics of Diamond-like Carbon (DLC) films prepared using a Magnetron Sputter-type Negative Ion Source (MSNIS) | |
Mousa | Cold cathode field emission using both Al-resin and Au-resin coatings on a tungsten substrate | |
US6815733B2 (en) | Switching element and method of making the same | |
JPH06252056A (en) | Fixation of minute substance and formation of electrode | |
Shimoi et al. | Field-emission durability employing highly crystalline single-walled carbon nanotubes in a low vacuum with activated gas | |
JP2727193B2 (en) | Method for manufacturing electron-emitting device | |
US4115228A (en) | Method of making secondary-electron emitters | |
JPH01311534A (en) | Surface conductive emitting element | |
JPH0662978B2 (en) | Method for producing solid lubricating film | |
JP3010306B2 (en) | Method of manufacturing electron emission device | |
Kaneko et al. | Emission property and current fluctuation of starlike thin‐film field emitter array with self‐feedback function | |
JPH01186740A (en) | Electron emission element | |
JPH02247939A (en) | Surface conductive electron emission element, image formation apparatus using it and manufacture of element | |
JPS63184230A (en) | Electron emission element | |
JP2748128B2 (en) | Electron beam generator | |
JPH03127428A (en) | Surface conduction type electron radiating element and manufacture thereof | |
Murata et al. | Improvement of Electron Emission Properties of Volcano-Structured Silicon Emitters by Titanium Nitride Coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |