JPH02247939A - Surface conductive electron emission element, image formation apparatus using it and manufacture of element - Google Patents

Surface conductive electron emission element, image formation apparatus using it and manufacture of element

Info

Publication number
JPH02247939A
JPH02247939A JP1067435A JP6743589A JPH02247939A JP H02247939 A JPH02247939 A JP H02247939A JP 1067435 A JP1067435 A JP 1067435A JP 6743589 A JP6743589 A JP 6743589A JP H02247939 A JPH02247939 A JP H02247939A
Authority
JP
Japan
Prior art keywords
substrate
fine
electrodes
emitting device
surface conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1067435A
Other languages
Japanese (ja)
Inventor
Shinya Mishina
伸也 三品
Nobuyuki Saito
信之 斉藤
Ichiro Nomura
一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1067435A priority Critical patent/JPH02247939A/en
Publication of JPH02247939A publication Critical patent/JPH02247939A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To largely improve reliability in the production of a surface conductive electron emission element by means of a fine-grain beam spraying process by leaning a substrate in a certain angle from the direction of the fine-grain beam radiated thereon and rotating the substrate at the same time. CONSTITUTION:Disclosed here is the production of a surface conductive electron emission element for dispersing and accumulating fine grains between a pair of or among a plurality of electrodes on the same substrate. The substrate is leant in a certain angle and turned at the same time to improve accumulation states at the end of a gap and ensure contact of end portions of electrodes 10 and 11 with the fine-grains. An angle theta between the direction of fine-grain beam and the substrate is set to 2 to 30 degrees. A rotation introduction section 12 applies forming movement to the substrate. With its speed of 5 to 60rpm. The minimum film thickness (a) of a fine-grain particle film and the film thickness A at the contact between both end electrodes shows mutual relationship a/A=0.6 to 0.7.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は、電子放出素子、詳しくは表面伝導形電子放出
素子の製造方法、特に微粒子ビーム吹き付は法及びこの
方法によって得られる電子放出素子に関するものである
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for manufacturing an electron-emitting device, specifically a surface conduction type electron-emitting device, particularly a fine particle beam spraying method, and an electron-emitting device obtained by this method. It is related to.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム アイ エリンソン(N、 I。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, M.I. Ellingson (N, I.

Elinaon)等によって発表された冷陰極素子が知
られている。[ラジオ エンジニアリング エレクトロ
ン フィシ4ツス(Radio Eng、 Elect
ron。
A cold cathode device announced by Elinaon et al. is known. [Radio Eng, Elect
Ron.

Phya、)第10巻、  12H=1298頁%1−
1185年1これは、基板上に形成された小面植の薄膜
に、膜面に平行に電流を流すことにより、電子放出が生
ずる現象を利用するもので、一般には表面伝導形電子放
出素子と呼ばれている。
Phya,) Volume 10, 12H=1298 pages%1-
11851 This utilizes the phenomenon in which electrons are emitted by passing a current parallel to the film surface through a small-facet thin film formed on a substrate, and is generally called a surface conduction electron-emitting device. being called.

この表面伝導形電子放出素子としては、前記エリンソン
等により開発された5nap (Sb)薄膜を用いたも
の、Au薄膜によるもの[ジー・ディトマー“スイン 
ソリッド フィルムス°’ (G、 Dittmer:
“Th1n 5olid Films” ) 、 9巻
、317頁、  (1972年)1、ITO薄膜による
もの[エム ハートウェル アンド シー ジー フオ
フスタツド“アイイー イー イー トランス”イー 
デイ−コンファルン(M、Hartwell  and
 C,G、Fonstad:“IEEE Trans、
 ED Conf、” ) 519頁、  (1975
年)]、カーボン薄膜によるもの〔荒木久他:“真空”
、第26巻、第1号、22頁、  (1983年)]等
が報告されている。
These surface conduction electron-emitting devices include those using the 5nap (Sb) thin film developed by Ellingson et al., and those using an Au thin film [G.
Solid Films°' (G, Dittmer:
“Th1n 5 Solid Films”), vol. 9, p. 317, (1972) 1. ITO thin film [M. Hartwell and C.F.
Day-Confaln (M, Hartwell and
C., G., Fonstad: “IEEE Trans.
ED Conf,” ) 519 pages, (1975
2006)], by carbon thin film [Hisashi Araki et al.: “Vacuum”
, Vol. 26, No. 1, p. 22, (1983)].

これらの素子は、電子放出を行う前に予めフォーミング
と呼ばれる通電加熱処理が必要である。つまり通電によ
り生じるジュール熱により膜を局所的に破壊、変形もし
くは変質し、電気的に高抵抗な部位を生じさせ、その部
位から電子を放出させるものである。
These devices require electrical heating treatment called forming before they emit electrons. In other words, the Joule heat generated by energization locally destroys, deforms, or alters the film, creating an electrically high-resistance region, and emitting electrons from that region.

[発明が解決しようとする課題] この素子の1つとして、予めフォトリソグラフィー等の
手法によって、石英ガラス等の絶縁基板上にパターニン
グされた電極基板上に微粒子を分散又は堆積させたもの
が考えられる。この電極基板の模式図を図2に示す、つ
まり絶縁基板9tに電圧印加用の低抵抗体からなる電極
lO及び11が微小間隔をおいて設けられている。この
間に電子放出材料微粒子を分散又は堆積させたものであ
る。この分散又は堆積の方法の1つとして、微粒子ビー
ム吹き付は法が挙げられる。ここで微粒子とは、粒径が
100OA以下の粒子(−次粒子)をいう、また微粒子
ビームとは、周囲の空間よりも高い密度で指向性をもっ
て一定方向へ流れる微粒子を含む噴流をいい、その断面
形状は問わないものとする。この微粒子ビーム吹き付は
法は1作製方法が比較的容易であるため、抵抗加熱、ス
パッタ、レーザー溶融等の方法により微粒子化が可能な
材料全てに用いることが可能である。
[Problems to be Solved by the Invention] One possible device is one in which fine particles are dispersed or deposited on an electrode substrate that has been patterned on an insulating substrate such as quartz glass using a technique such as photolithography. . A schematic diagram of this electrode substrate is shown in FIG. 2. In other words, electrodes 10 and 11 made of a low-resistance material for voltage application are provided at a minute interval on an insulating substrate 9t. During this time, electron-emitting material fine particles are dispersed or deposited. One of the methods for this dispersion or deposition is the particle beam spraying method. Here, fine particles refer to particles with a particle size of 100 OA or less (-order particles), and fine particle beam refers to a jet containing fine particles that flows in a fixed direction with directionality at a higher density than the surrounding space. The cross-sectional shape does not matter. Since this fine particle beam spraying method is relatively easy to produce, it can be used for all materials that can be made into fine particles by methods such as resistance heating, sputtering, and laser melting.

しかしながら、一般に微粒子ビーム吹き付は法には、素
子基板に分散、堆積させるにあたり、幾何学的問題から
素子作製の際、信頼性の面で大きな問題があった。
However, in general, the particle beam spraying method has a major problem in terms of reliability during device fabrication due to geometrical problems in dispersing and depositing particles on the device substrate.

つまり第3図に示す様に電極端部と微粒子の接触確率が
低いために、電気物性において信頼性に乏しい0例えば
、従来の微粒子ビーム吹き付は法を用いた場合、膜厚一
定の条件下においても電極間抵抗が1〜2桁、場合によ
っては3桁以上のバラツキを示す、またバラツキのみな
らずフォーミングの際生じる局所的な破壊、変形もしく
は変質の位置も定まらない等の不都合を生じる。この両
者は当然、表面伝導形電子放出素子作成にあたり、電気
物性のバラツキつまり素子の信頼性低下として大きな問
題となる。
In other words, as shown in Figure 3, the probability of contact between the electrode end and the particles is low, resulting in poor reliability in terms of electrical properties.For example, when using the conventional particle beam spraying method, the Also, the inter-electrode resistance shows a variation of one to two orders of magnitude, in some cases three orders of magnitude or more, and not only the variation but also the position of local breakage, deformation, or deterioration that occurs during forming cannot be determined. Both of these naturally pose a major problem when producing a surface conduction electron-emitting device, as they cause variations in electrical properties, that is, a decrease in device reliability.

本発明の目的は、この信頼性の向上にある。つまり表面
伝導形電子放出素子を微粒子ビーム吹き付は法により作
成する際の信頼性を大幅に向上させることにある。以下
に本発明の詳細な説明する。
An object of the present invention is to improve this reliability. In other words, the purpose of the fine particle beam spraying method is to greatly improve the reliability of surface conduction type electron-emitting devices when they are produced by the method. The present invention will be explained in detail below.

[課題を解決するための手段及び作用]本発明によれば
、同一基板上で一対又は複数の電極間に微粒子を分散、
堆積させる表面伝導形電子放出素子の製造方法において
、素子基板を飛来する微粒子ビームの方向からある角度
傾けて基板を回転させることにより、電極端部と微粒子
の接触がより確実となり1表面伝導形電子放出素子作成
にあたり素子の信頼性が大幅に向上するものである。つ
まり本発明は、表面伝導形電子放出素子の製造方法の一
つである微粒子ビーム堆積法の改良に係るものであり又
、この方法によって作成された同一基板りに形成された
電極であるが、これは第2図に模式図を示したが、前述
の様に絶縁基板、微小間隔をおいて設けられた電圧印加
用の低抵抗電極、から構成されており、絶縁基板として
は1石英ガラス、青板ガラス、シリコン、白板ガラス等
が挙げられる。また電圧印加用低抵抗電極としては、一
般的な導電性材料、例えばAu、 Aj)。
[Means and effects for solving the problem] According to the present invention, fine particles are dispersed between a pair or a plurality of electrodes on the same substrate,
In the method for manufacturing a surface conduction electron-emitting device, by rotating the device substrate at a certain angle from the direction of the incoming particle beam, contact between the electrode end and the particles becomes more reliable. This greatly improves the reliability of the device when producing the emitting device. In other words, the present invention relates to an improvement of the particle beam deposition method, which is one of the methods for manufacturing surface conduction electron-emitting devices, and electrodes formed on the same substrate created by this method. A schematic diagram of this is shown in Fig. 2, and as mentioned above, it consists of an insulating substrate and low resistance electrodes for voltage application provided at minute intervals.As the insulating substrate, quartz glass, Examples include blue plate glass, silicone, and white plate glass. Also, as a low resistance electrode for voltage application, a general conductive material such as Au, Aj) can be used.

Pt、 Ag、旧等の全屈の他SnO2,1丁0等の酸
化物やモリブデンシリサイドの様な化合物導電性材料が
使用可能である。厚みに関しては両者とも制限はないが
、絶縁基板に関しては0.5層−〜51■、電圧印加用
低抵抗電極としては、500八以上が好ましく、より好
ましくは、 100OA〜数μmが良い、また微小間隔
は、数too A〜数百pmが好ましい、勿論同一基板
上に形成された電極に関しては上記に制限されるわけで
はない。
In addition to conductive materials such as Pt, Ag, and old metals, oxides such as SnO2, 1-0, etc., and compound conductive materials such as molybdenum silicide can be used. There is no limit to the thickness for both, but for an insulating substrate it is preferably 0.5 to 51cm, and for a low resistance electrode for voltage application it is preferably 500mm or more, more preferably 100OA to several μm, and The minute spacing is preferably from several to several hundred pm, but of course is not limited to the above for electrodes formed on the same substrate.

次に微粒子ビーム吹き付は法であるが、これは、本発明
の概念図である第1図に従って説明する。先ず微粒子ビ
ーム生成法については、抵抗加熱、プラズマ分解等によ
り微粒子を形威しキャリアガスと共に基板に吹き付ける
従来公知の方法のいずれであってもかまわない、ここで
は抵抗加熱法を例に説明するが勿論これに限定されるわ
けではない。
Next, the method of particle beam spraying will be explained with reference to FIG. 1, which is a conceptual diagram of the present invention. First, regarding the particle beam generation method, any of the conventionally known methods in which particles are shaped by resistance heating, plasma decomposition, etc. and sprayed onto the substrate together with a carrier gas may be used.Here, the resistance heating method will be explained as an example. Of course, it is not limited to this.

蒸発源l及びるつぼ2を上流室3に配置し、外部電極よ
りるつぼ2に電圧を印加し、蒸発源lが蒸発する温度ま
で上昇させる。こうして生成された微粒子を基板4が配
置しである下流室5と上流室3との差圧を利用しキャリ
アガス導入口6から導入されたキャリアガスと共に基板
4へ吹き付ける。このとき、ビームを形成するためにオ
リフィス、先細ノズル、末広ノズル、縮少拡大ノズル等
を配置したビーム生成部7を設ける。るつぼ2は、蒸発
源の材料によりカーボンるつぼ、アルミするつぼ等より
適宜選択される。蒸発源の材料としては、必要とする1
的に応じて適宜選択して。
The evaporation source 1 and the crucible 2 are arranged in the upstream chamber 3, and a voltage is applied to the crucible 2 from an external electrode to raise the temperature to the point at which the evaporation source 1 evaporates. The fine particles thus generated are blown onto the substrate 4 together with the carrier gas introduced from the carrier gas inlet 6 using the differential pressure between the downstream chamber 5 and the upstream chamber 3 in which the substrate 4 is disposed. At this time, a beam generating section 7 is provided in which an orifice, a tapered nozzle, a diverging nozzle, a contracting/expanding nozzle, etc. are arranged to form a beam. The crucible 2 is appropriately selected from carbon crucibles, aluminum crucibles, etc., depending on the material of the evaporation source. As the material for the evaporation source, the required 1
Please select as appropriate.

微粒子とするわけであるが、本発明で用いられる微粒子
の材料は非常に広い範囲に及び通常の金属、半金属、半
導体といった導電性材料の殆ど全てを使用可能である。
The material of the fine particles used in the present invention is very wide, and almost all conductive materials such as ordinary metals, semimetals, and semiconductors can be used.

なかでも低仕事関数で高融点かつ低蒸気圧という性質を
もつ通常の陰極材料や、また従来のフォーミング処理で
表面伝導形電子放出素子を形成する薄膜材料や、2次電
子放出係数の大きな材料等が好適である。
Among them, ordinary cathode materials with low work function, high melting point, and low vapor pressure, thin film materials that form surface conduction electron-emitting devices through conventional forming processing, and materials with high secondary electron emission coefficients. is suitable.

具体的にはLam6. CeB6. YB4. GdB
s等の硼化物、TiC,Zr1C,HfC,TaC,S
in、 VC等の炭化物。
Specifically, Lam6. CeB6. YB4. GdB
Borides such as s, TiC, Zr1C, HfC, TaC, S
Carbide such as in, VC.

?iN、 ZrN、 HfN等の窒化物、Nb、 No
、 Rh、 Hf。
? Nitride such as iN, ZrN, HfN, Nb, No
, Rh, Hf.

Ta、  w、  Re+  Ir、  pt、  テ
i、  Au、  轟g、  Cu、  Cr、  ^
p。
Ta, w, Re+ Ir, pt, Tei, Au, Todoroki g, Cu, Cr, ^
p.

Go、旧、 Fe、 Pb、 Pd、 Cs、 Ba等
の金属、 In2O3゜5n02 、 Sb20:1等
の金属酸化物、 Si、 Ge等の半導体。
Metals such as Go, Fe, Pb, Pd, Cs, and Ba, metal oxides such as In2O3゜5n02, Sb20:1, and semiconductors such as Si and Ge.

カーボン、 AgMg等を一例として挙げることができ
る。尚、本発明は上記材料に限定されるものではない。
Examples include carbon, AgMg, etc. Note that the present invention is not limited to the above materials.

キャリアガスとしては、He、 Ar、 N2等から適
宜選択される。また利用する上流室と下流室の差圧であ
るが、それは圧力比にして10〜10000が好ましく
、より好ましくは100〜toooである0以上の方法
により、微粒子ビームを基板に吹き付けるが、本発明の
本質は以下に説IJJする基板のセツティング方法にあ
る。つまり基板を微粒子ビーム方向からある角度類は同
時に回転させることにより、ギャップ端部の堆桔状況を
図4に示す様に改善し、電極端部と微粒子の接触を確実
にする。
The carrier gas is appropriately selected from He, Ar, N2, etc. The differential pressure between the upstream chamber and the downstream chamber to be used is preferably 10 to 10,000 in terms of pressure ratio, more preferably 100 to too. The essence of this lies in the board setting method, which will be explained below. That is, by simultaneously rotating the substrate at certain angles from the particle beam direction, the deposition condition at the end of the gap is improved as shown in FIG. 4, and the contact between the electrode end and the particle is ensured.

ここでいうギャップとは、円電極の微小なすき間のこと
である。
The gap here refers to a minute gap between the circular electrodes.

更に、電極端面近傍と比較して中心部の厚みが薄いため
、フォーミングの際中心部で局所的な破壊、変形もしく
は変質が起こり易くなり、その場所を規定することが出
来る。
Furthermore, since the thickness of the central portion is thinner than that near the electrode end surface, local destruction, deformation, or alteration is likely to occur at the central portion during forming, and the location thereof can be defined.

尚、基板をセットした回転部の諸条件等を拡大図、第5
図を用いて説明する。ここで、微粒子ビーム方向と基板
の角度0は2°〜30°が好ましく、より好ましくは1
0’〜20°である。また回転導入部12から回転運動
を与えるが、この速度は5〜60rpmが好ましく、よ
り好ましくはlO〜40rptsである0以上説明して
きた概念に基づき検討した実施例を以下に示す。
In addition, the conditions of the rotating part where the board is set are shown in the enlarged view, No. 5.
This will be explained using figures. Here, the angle 0 between the particle beam direction and the substrate is preferably 2° to 30°, more preferably 1°.
It is 0' to 20°. Further, a rotational motion is applied from the rotation introducing portion 12, and the speed thereof is preferably 5 to 60 rpm, more preferably 10 to 40 rpm.Examples will be described below, which were studied based on the concept described above.

[実施例] 見立■ユ 洗浄した石英製の絶縁基板上にNi電極3000人を形
成しフォトリソグラフィーの手法を用い第2図に示した
様なパターンを形成する。ただしLは20μ閣、Gは3
00終1とした。
[Example] 3,000 Ni electrodes were formed on a quartz insulating substrate that had been thoroughly cleaned, and a pattern as shown in FIG. 2 was formed using a photolithography technique. However, L is 20μ, G is 3
The score was 00 and ended at 1.

次に上記基板を第1図に示した真空装置内に入れるが、
真空装置は前述の様に微粒子生成室(上流室)3と微粒
子堆積室(下流室)5及びその両室を継ぐ縮少拡大ノズ
ル(ビーム生成部7)部から構成され、微粒子堆積室5
内に第5図に示す様にセットした。この際のθはlOo
とした。そして排気系8で真空度を8 X 10−’T
orr以下になるまで排気した後Arガスを導入口6よ
り微粒子生成室3へ60SCCM流した。このときの微
粒子生成室3の圧力は4 X 1G−”Torr、微粒
子堆積室5の圧力は2.3 X 10=丁orrとなり
2桁以上の圧力比であった。この時の縮少拡大ノズルの
径は41φであり、ノズル−基板間距離は2001腸と
した。更に蒸9、源1にはPdを、るつぼ2にはカーボ
ン製るつぼを用いた。そして前述条件下にてPdを蒸発
させ。
Next, the above substrate is placed in the vacuum apparatus shown in FIG.
As mentioned above, the vacuum device is composed of a particle generation chamber (upstream chamber) 3, a particle deposition chamber (downstream chamber) 5, and a contraction/expansion nozzle (beam generation section 7) that connects both chambers.
It was set inside as shown in Figure 5. In this case, θ is lOo
And so. Then, the degree of vacuum is increased to 8 x 10-'T with exhaust system 8.
After exhausting until the temperature was below orr, 60 SCCM of Ar gas was flowed into the particle generation chamber 3 through the inlet 6. At this time, the pressure in the particle generation chamber 3 was 4 x 1G-'' Torr, and the pressure in the particle deposition chamber 5 was 2.3 x 10 = Torr, which was a pressure ratio of more than two digits.The contraction/expansion nozzle at this time The diameter of the nozzle was 41φ, and the distance between the nozzle and the substrate was 200 mm.Furthermore, Pd was used for evaporation 9 and source 1, and a carbon crucible was used for crucible 2.Then, Pd was evaporated under the above-mentioned conditions. .

Pd微粒子を縮少拡大ノズル7fflより吹き出させた
。この時、微粒子生成室3と微粒子堆積室5との圧力差
によりノズルから前述定義の微粒子ビームとして基板に
吹き付けられる。そしてこのビームの進行方向からlθ
°傾けた基板を同時に20rp謬で回転させ更に、基板
の傾きの位置を移動させる(第5図参照)、この基板上
に前述のPd微粒子・・ビームが吹き付けられ、微粒子
がギャップ部に堆積する。勿論、ビームの広がりにより
、ギヤツブ部以外にもPd微粒子が飛来するが、不必要
部には、電圧印加が起こらないので素子自体には何ら影
響はない、この堆積物を高分解能FE−9EHにより観
察したところ1粒径約80〜150 Aの微粒子が堆積
してした。ここで、堆積膜(微粒子膜)の膜厚について
は、中央部と両端電極接続部の比がほぼ0.6〜0.7
 : 1−になっていた。
Pd fine particles were blown out from a contraction/expansion nozzle of 7ffl. At this time, due to the pressure difference between the particle generation chamber 3 and the particle deposition chamber 5, the particle beam as defined above is sprayed onto the substrate from the nozzle. And from the traveling direction of this beam, lθ
The tilted substrates are simultaneously rotated at 20 rpm and the tilted position of the substrate is moved (see Figure 5).The above-mentioned Pd particle beam is blown onto this substrate, and the particles are deposited in the gap. . Of course, due to the spread of the beam, Pd fine particles fly to areas other than the gear part, but since no voltage is applied to unnecessary parts, there is no effect on the device itself.This deposit is removed by high-resolution FE-9EH. When observed, fine particles with a diameter of about 80 to 150 A were deposited. Here, regarding the film thickness of the deposited film (fine particle film), the ratio between the central part and the electrode connection parts at both ends is approximately 0.6 to 0.7.
: It was 1-.

次にこの素子を真空度5 X 10−’Torr以下で
引き出し電極を基板面に対し垂直方向に5mm離した位
置に設置し、1.5KVの電圧をかけ電極10.11間
に14Vの電圧を印加し電子放出特性を評価した。
Next, this element was placed at a vacuum level of 5 x 10-' Torr or less with the extraction electrodes spaced 5 mm apart in the vertical direction from the substrate surface, and a voltage of 1.5 KV was applied between the electrodes 10 and 11. The electron emission characteristics were evaluated.

この素子作成と評価を15回行った時の素子抵抗放出電
流値に関する結果を表1に示す。
Table 1 shows the results regarding the device resistance emission current value when this device fabrication and evaluation was performed 15 times.

表1 ここで、R,Ieは各々素子抵抗、放出電流値を示し添
字a+ax、 sin、 meanは各々最大、最小、
平均を示す。
Table 1 Here, R and Ie represent the element resistance and emission current value, respectively, and the subscripts a+ax, sin, and mean represent the maximum, minimum, and maximum, respectively.
Shows average.

またFE−3EMにより亀裂部(電子を放出する部位)
はいずれもほぼギャップ中央部に生じていることが確認
出来た。
In addition, cracks (parts that emit electrons) using FE-3EM
It was confirmed that all of these occurred almost at the center of the gap.

これらにより1、素子製造時の特性信頼性に関しては、
良好な特性を得ている。さらに、この素子を複数配列し
た電子源を設けて画像形成装置な作成したが、従来に比
べ画面のちらつきや明るさのバラツキに効果があった。
As a result of these factors, 1. Regarding the reliability of characteristics during device manufacturing,
Good characteristics have been obtained. Furthermore, an image forming apparatus was created by providing an electron source with a plurality of these elements arranged, and this was more effective in reducing screen flickering and brightness variations than in the past.

罠i■ユ 微粒子ビームと基板の角度を2°とした以外は実施例1
と全く同様の方法で実験した結果を以下に記す。堆積状
況及び亀裂に関しては実施例1と概ね同等であった。表
2に得られた素子特性値を記す。
Example 1 except that the angle between the particle beam and the substrate was 2°.
The results of an experiment conducted in exactly the same manner as above are described below. The deposition condition and cracks were almost the same as in Example 1. Table 2 shows the obtained element characteristic values.

表2 またこの時の微粒子生成室3の圧力並びに微粒子堆積室
5の圧力は素子基板の状態に依らないので勿論、実施例
1の場合と全く同様であった。
Table 2 Also, the pressure in the particle generation chamber 3 and the pressure in the particle deposition chamber 5 at this time were, of course, exactly the same as in Example 1 since they did not depend on the state of the element substrate.

夾1■ユ 蒸発源としてAuを用いた以外実施例1と全く同様の方
法で実験した結果を以下に記す。堆積状況及び亀裂に関
して、粒径は120人〜250人とPdと比べて多少大
きくなったが、大きな差は認められない10表3に得ら
れた素子特性値を記す。
EXAMPLE 1 The results of an experiment conducted in exactly the same manner as in Example 1 except that Au was used as the evaporation source are described below. Regarding the deposition status and cracks, the particle size was 120 to 250 particles, which was somewhat larger than that of Pd, but no major difference was observed.Table 3 shows the obtained device characteristic values.

表3 Pdの場合と同様に、Auに関しても素子製造時の特性
信頼性に関しては、良好な特性を得ている。
Table 3 As in the case of Pd, good characteristics were obtained with respect to the reliability of characteristics during device manufacturing with respect to Au.

尚、以上の実施例の中で微粒子生成方法は抵抗加熱法に
限定されるわけではなく、また微粒子ビーム生成方法も
縮少拡大ノズルに限定されるわけではない0次に従来技
術に基づく比較例を記す。
In addition, in the above examples, the particle generation method is not limited to the resistance heating method, nor is the particle beam generation method limited to the contraction/expansion nozzle. Write down.

比]L例 ビームの進行方向を基板に対して垂直方向としまた回転
速度もOrpmとした。これは従来の微粒子ビーム堆積
法の典型例である。前記以外は実施例1と全く同様の方
法で実験した結果を以下に記す。
[Ratio] Example L The traveling direction of the beam was perpendicular to the substrate, and the rotation speed was also set to Orpm. This is typical of conventional particulate beam deposition methods. The results of an experiment conducted in exactly the same manner as in Example 1 except for the above are described below.

微粒子堆積状態は実施例1と殆ど差異はなく粒径に関し
ても、80〜150人と全く変わりはない。
The state of fine particle deposition is almost the same as in Example 1, and the particle size is also the same as 80 to 150 people.

しかし、表4に示す様に素子特性のバラツキには大きな
違いがあった。また亀裂も中心からかなりずれた位置に
あるものもあった。
However, as shown in Table 4, there was a large difference in the variation in device characteristics. In addition, some of the cracks were located quite far from the center.

表4 表4から明らかな様に従来技術では素子製造時の特性信
頼性は非常に乏しい。
Table 4 As is clear from Table 4, the conventional technology has very poor characteristic reliability during device manufacturing.

[発明の効果] 以上説明した様に、同一平面内に一対又は複数の電極間
に微粒子を分散、堆積させる表面伝導形電子放出素子の
製造方法において、素子基板を飛来する微粒子ビームの
方向からある角度傾けかつ回転させることにより素子ご
との特性のバラツキを減少させ、亀裂発生部位をある程
度規定でき製造時の信頼性を大幅に向上させる効果があ
る。これは、電極端面と微粒子のコンタクトが確実にな
り素子の電気特性が安定し、信頼性が大幅に向上するた
めと考えられ、また、従来技術と比較してギャップ中央
部の膜厚が周辺部よりも薄いために、フォーミング処理
の際、中央部に亀裂が生じ易くなり亀裂の発生箇所をあ
る程度規定出来ることにもよる。
[Effects of the Invention] As explained above, in a method for manufacturing a surface conduction electron-emitting device in which particles are dispersed and deposited between a pair or a plurality of electrodes in the same plane, there is By tilting the angle and rotating it, variations in characteristics from element to element are reduced, and the crack generation site can be defined to a certain extent, which has the effect of greatly improving reliability during manufacturing. This is thought to be because the contact between the electrode end surface and the fine particles is ensured, the electrical characteristics of the device are stabilized, and the reliability is greatly improved.In addition, the film thickness at the center of the gap is smaller than that at the periphery compared to the conventional technology. Because it is thinner, cracks tend to occur in the center during the forming process, and the location where cracks occur can be defined to some extent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いる装置の概念図、第2図は電極基
板の模式図、第3図は基板に傾斜を与えない場合の微粒
子の堆積状況断面概念図、第4図は本発明の方法による
微粒子の堆積状況断面概念図、第5図は基板回転部拡大
図である。 1・・・蒸発源、   2・・・るつぼ、3・・・上流
室(微粒子生成室)、 4.9・・・絶縁基板、 5・・・下流室(微粒子堆積室)、 6・・・キャリアガス導入口、7・・・ビーム生成部、
8・・・排気系、   10.11・・・電圧印加用電
極、12・・・回転導入部。
Fig. 1 is a conceptual diagram of the device used in the present invention, Fig. 2 is a schematic diagram of an electrode substrate, Fig. 3 is a conceptual cross-sectional diagram of the deposition state of fine particles when the substrate is not tilted, and Fig. 4 is a conceptual diagram of the device used in the present invention. FIG. 5 is a cross-sectional conceptual diagram of the deposition state of fine particles according to the method, and FIG. 5 is an enlarged view of the substrate rotation part. DESCRIPTION OF SYMBOLS 1... Evaporation source, 2... Crucible, 3... Upstream chamber (fine particle generation chamber), 4.9... Insulating substrate, 5... Downstream chamber (fine particle deposition chamber), 6... carrier gas inlet, 7...beam generation section,
8... Exhaust system, 10.11... Voltage application electrode, 12... Rotation introduction part.

Claims (3)

【特許請求の範囲】[Claims] (1)一対又は複数の電極間に微粒子を分散、堆積させ
て成る微粒子膜を有する表面伝導形電子放出素子におい
て、該微粒子膜の最小膜厚aと両端電極接続部膜厚Aと
の関係がa/A=0.6〜0.7である微粒子膜を特徴
とする表面伝導形電子放出素子。
(1) In a surface conduction electron-emitting device having a particulate film formed by dispersing and depositing particulates between a pair or a plurality of electrodes, the relationship between the minimum film thickness a of the particulate film and the film thickness A of the electrode connecting portions at both ends is A surface conduction electron-emitting device characterized by a fine particle film having a/A=0.6 to 0.7.
(2)請求項1記載の表面伝導形電子放出素子から放出
した電子を画像形成部材に照射することを特徴とする画
像形成装置。
(2) An image forming apparatus characterized in that an image forming member is irradiated with electrons emitted from the surface conduction type electron-emitting device according to claim 1.
(3)同一基板上で一対又は複数の電極間に微粒子を分
散、堆積させる表面伝導形電子放出素子の製造方法にお
いて、該基板を飛来する微粒子ビームの方向からある角
度傾けて、かつ、回転させることを特徴とする表面伝導
形電子放出素子の製造方法。
(3) In a method for manufacturing a surface conduction electron-emitting device in which fine particles are dispersed and deposited between a pair or a plurality of electrodes on the same substrate, the substrate is tilted at a certain angle from the direction of the incoming fine particle beam and rotated. A method for manufacturing a surface conduction electron-emitting device, characterized in that:
JP1067435A 1989-03-22 1989-03-22 Surface conductive electron emission element, image formation apparatus using it and manufacture of element Pending JPH02247939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067435A JPH02247939A (en) 1989-03-22 1989-03-22 Surface conductive electron emission element, image formation apparatus using it and manufacture of element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067435A JPH02247939A (en) 1989-03-22 1989-03-22 Surface conductive electron emission element, image formation apparatus using it and manufacture of element

Publications (1)

Publication Number Publication Date
JPH02247939A true JPH02247939A (en) 1990-10-03

Family

ID=13344841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067435A Pending JPH02247939A (en) 1989-03-22 1989-03-22 Surface conductive electron emission element, image formation apparatus using it and manufacture of element

Country Status (1)

Country Link
JP (1) JPH02247939A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717428A2 (en) * 1994-12-16 1996-06-19 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US5759080A (en) * 1987-07-15 1998-06-02 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated form electrodes
USRE40062E1 (en) * 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
US7442405B2 (en) 1997-03-21 2008-10-28 Canon Kabushiki Kaisha Method for production of electron source substrate provided with electron emitting element and method for production of electronic device using the substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759080A (en) * 1987-07-15 1998-06-02 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated form electrodes
USRE40062E1 (en) * 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
EP0717428A2 (en) * 1994-12-16 1996-06-19 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
EP0717428A3 (en) * 1994-12-16 1997-03-19 Canon Kk Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
AU707487B2 (en) * 1994-12-16 1999-07-08 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US6060113A (en) * 1994-12-16 2000-05-09 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US6390873B1 (en) 1994-12-16 2002-05-21 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US6419746B1 (en) 1994-12-16 2002-07-16 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US6511358B2 (en) 1994-12-16 2003-01-28 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US6511545B2 (en) 1994-12-16 2003-01-28 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US6761925B2 (en) 1994-12-16 2004-07-13 Canon Kabushiki Kaisha Electron-emitting device, electron source substrate, electron source, display panel and image-forming apparatus, and production method thereof
US7442405B2 (en) 1997-03-21 2008-10-28 Canon Kabushiki Kaisha Method for production of electron source substrate provided with electron emitting element and method for production of electronic device using the substrate

Similar Documents

Publication Publication Date Title
US5536193A (en) Method of making wide band gap field emitter
JP2715312B2 (en) Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device
JP3096629B2 (en) Method of manufacturing an electron field emission device
US5399238A (en) Method of making field emission tips using physical vapor deposition of random nuclei as etch mask
JP3631959B2 (en) Field electron emission materials and equipment
JP2630988B2 (en) Electron beam generator
JPH08236010A (en) Field emission device using hyperfine diamond particle-form emitter and its preparation
JPH02247939A (en) Surface conductive electron emission element, image formation apparatus using it and manufacture of element
JPH01149335A (en) Electron emitting element
JPH0689651A (en) Fine vacuum device and manufacture thereof
JP2000208033A (en) Nonevaporative getter, its manufacture, and image forming device
JPH01200532A (en) Electron emission element and manufacture thereof
JPH0644893A (en) Cathode structure
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JP2734965B2 (en) Field emission device and method of manufacturing the same
JP2715318B2 (en) Method of manufacturing flat display
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JPH06231678A (en) Manufacture of electron emitting film and electron emitting element
JPH02299121A (en) Surface conductive type electron emitting element and image forming device using element thereof
JP2000173444A (en) Electric field emitting type cold negative electrode, and its manufacture
JP2715315B2 (en) Method for manufacturing electron-emitting device
JPH0260025A (en) Electron emission element and manufacture thereof
JPH01311534A (en) Surface conductive emitting element
JP2783498B2 (en) Method for manufacturing field emission cathode
JP2748128B2 (en) Electron beam generator