JPH0224655B2 - - Google Patents

Info

Publication number
JPH0224655B2
JPH0224655B2 JP60210963A JP21096385A JPH0224655B2 JP H0224655 B2 JPH0224655 B2 JP H0224655B2 JP 60210963 A JP60210963 A JP 60210963A JP 21096385 A JP21096385 A JP 21096385A JP H0224655 B2 JPH0224655 B2 JP H0224655B2
Authority
JP
Japan
Prior art keywords
reinforced
adhesive
frp
strength
pvc pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60210963A
Other languages
Japanese (ja)
Other versions
JPS6271629A (en
Inventor
Naoya Kominami
Masahiro Kinoshita
Hiroichi Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP60210963A priority Critical patent/JPS6271629A/en
Publication of JPS6271629A publication Critical patent/JPS6271629A/en
Publication of JPH0224655B2 publication Critical patent/JPH0224655B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は主として腐食性を有する化学薬品等の
輸送配管に使用される特に耐熱性の優れた繊維強
化熱硬化性樹脂補強塩化ビニル系樹脂管(以下
FRP補強PVC管と略称する)に関するものであ
る。 〔従来の技術〕 従来、塩化ビニル系樹脂管(以下PVC管と略
称する)の優れた耐食性を生かし、機械的強度及
び耐熱強度を向上する目的でPVC管の外周を直
接繊維強化熱硬化性樹脂層(以下FRP層と略称
する)で補強した管が製造されているが、PVC
管とFRP層との接着強度が非常に弱く、機械的
強度においてもPVC管及びFRP層の強度より計
算される理論強度をも満足しておらず、高温高圧
下では使用できないものであつた。また、PVC
管の外周に、PVC管との接着性が向上した不飽
和ポリエステル樹脂系接着剤やエポキシ樹脂系接
着剤を介してFRP層を設けた管も製造されてい
るが、これらの管においても使用している接着剤
の引張伸び率が小さいために、機械的強度、特に
耐水圧強度において上記同様理論強度を満足して
おらず、高温高圧配管材料としては十分なものと
は言えなかつた。 本出願人はこれらの問題点を解決したFRP補
強PVC管を含む「強化熱可塑性樹脂積層体」に
ついて先に特許出願した。 該出願はすでに特開昭59−29156号公報に開示
されており、該公報にも示されているごとく、該
発明に基づき得られるFRP補強PVC管は、PVC
管とFRP層との間に双方への接着性を有する厚
み保持材入りゴム弾性体層を設けたことを特徴と
し、前記従来品よりも優れた機械的強度、特に耐
水圧強度及び耐熱性を有するものであつた。 〔発明が解決しようとする問題点〕 前記、本出願人の先願により得られたFRP補
強PVC管は、耐食性に優れ機械的強度、特に耐
水圧強度が大きく、しかも、85℃前後の耐熱性を
有したものであつた。しかしながら、最近におい
ては生産効率の向上に伴う各種薬液温度の上昇傾
向が著しくより耐熱温度の高いFRP補強PVC管
の開発の要求が強くなつてきた。 本発明者らは、その要求に対応すべく、まず
PVC系樹脂の高温における耐食性について研究
を重ねた結果、PVC系樹脂そのものは95℃前後
の高温において機械的強度は低下するものの十分
な耐食性を有することがわかつた。さらに本発明
者らは95℃前後の高温において使用できるFRP
補強PVC管用接着剤について鋭意検討した結果、
PVC管とFRP層の間に特定範囲の引張伸び率を
有し、かつ高温における接着強度が大きい接着剤
層を設け、その接着剤として引張伸び率の異なる
2種の不飽和ポリエステル樹脂とイソシアネート
化合物を主成分とするものを用いればよいことを
見い出し、本発明を成すに至つた。すなわち、本
発明の目的とするところは優れた耐食性及び機械
的強度、特に耐水圧強度を保持しつつ、かつ長期
耐熱温度が95℃前後に高められたFRP補強PVC
管を提供することである。 〔問題点を解決するための手段〕 前記従来技術の問題点を解決するために講じら
れた手段は、PVC管をFRP層で補強したFRP補
強PVC管において、PVC管とFRP層との中間に
引張伸び率が23℃において25〜45%で、かつ該
PVC管とFRP層との引張剪断接着強度が95℃に
おいて20Kgf/cm2以上である接着剤層を設け、そ
の接着剤を、23℃において50〜80%の引強伸び率
を有する不飽和ポリエステル樹脂と1〜6%の引
張伸び率を有する不飽和ポリエステル樹脂及びイ
ソシアネート化合物を主成分とするものから構成
したことである。 以下、本発明を具体的に説明する。 本発明において、FRP補強PVC管には、曲管、
ベンドチーズ、ソケツトなどの継手類及びフラン
ジなども含まれる。 本発明でいうPVC管を構成する塩化ビニル系
樹脂としては、ポリ塩化ビニル樹脂及び塩素化ポ
リ塩化ビニル樹脂などの塩素系樹脂などが挙げら
れ、該樹脂に安定剤、可塑剤及び基材などを配合
した樹脂組成物も好ましく使用される。 本発明において使用されるFRP層を構成する
熱硬化性樹脂としては、不飽和ポリエステル樹
脂、フエノール樹脂、エポキシ樹脂、尿素樹脂、
メラミン樹脂、ジアリルフタレート樹脂、アルキ
ド樹脂、シリコーン樹脂及びポリイミド樹脂など
が挙げられ、また補強繊維としては、ガラス繊
維、カーボン繊維、アラミツド繊維などの有機繊
維などが挙げられる。該FRP層はこれらの熱硬
化性樹脂と各種補強繊維を使用してハンドレイア
ツプ法、スプレーアツプ法、フイラメントワイン
デイング法などにより形成される。 本発明において、前記PVC管とFRP層との中
間に設けられる接着剤層を形成する接着剤は、そ
の引張伸び率が23℃において25〜45%であること
が必要である。該引張伸び率が25%未満では
FRP補強PVC管の耐水圧強度がPVC管とFRP層
の強度より計算された理論強度を満足せず、
FRP層で補強した効果が表われない。 特に、複雑な形状を有する配管の場合にこの現
象は著しい。 また、該引張伸び率が45%より大きい場合に
は、接着剤の耐熱性が低下し、95℃前後の高温に
おいてFRP層がPVC管より剥離しやすくなり、
PVC管とFRP層が強固に接着されたFRP補強
PVC管が得られない。なお、接着剤として23℃
において1〜6%の引張伸び率を有する不飽和ポ
リエステル樹脂、50〜80%の引張伸び率を有する
不飽和ポリエステル樹脂及びイソシアネート化合
物を混合する理由は、1〜6%の引張伸び率を有
する不飽和ポリエステル樹脂とイソシアネート化
合物の混合物では引張伸び率が低く、耐熱性は得
られるが機械的強度、特に耐水圧強度が理論強度
にならないが、50〜80%の引張伸び率を有する不
飽和ポリエステル樹脂を混合すれば、接着剤の引
張伸び率を25〜45%に調節可能となり、所期の目
的である機械的強度、特に耐水圧強度が大きく、
かつ耐熱性を有するFRP補強PVC管が得られる
からである。 引張伸び率とは、接着剤あるいは接着剤を構成
する不飽和ポリエステル樹脂のみを硬化剤等を用
いて完全硬化させ、第1図及び第2図に示す形
状、寸法の引張試験片を製作し、23℃において10
mm/minの速度で引張試験を行なつた場合の破断
時における伸び率のことである。なお、第1図は
引張試験片の平面図を、第2図は第1図に示す矢
印方向からみた側面図を示す。また、該接着剤が
95℃において20Kgf/cm2以上の引張剪断接着強度
を有する必要があるのは、該強度が20Kgf/cm2
満であると95℃前後の高温で長期間使用した場合
にFRP層がPVC管より剥離しやすくなるためで
ある。 該接着剤は不飽和ポリエステル樹脂の水酸基1
個に対してイソシアネート化合物のイソシアネー
ト基が0.5〜30個、さらに好ましくは0.75〜10個
の割合になるように配合するのがよい。該樹脂の
水酸基1個に対して該化合物のイソシアネートが
0.5個より少ない場合、および30個より多い場合
はPVC管とFRP層が強固に接着されたFRP補強
PVC管が得られない。 本発明において使用される前記不飽和ポリエス
テル樹脂とは多価アルコールと不飽和多塩基酸、
および飽和多塩基酸とのエステル化合物であれば
いずれでもよく、スチレンなどの不飽和結合と共
重合することのできるモノマーに溶解したもので
ある。さらに重合防止剤ならびにその他の添加剤
を加えたものであつてもよい。 本発明において使用されるイソシアネート化合
物とは、分子中にイソシアネート基を有する化合
物であり、1分子中に2個以上のイソシアネート
基を有する化合物であることが必要である。該化
合物としては、ヘキサメチレンジイソシアネート
の3量体、2,4―トリレンジイソシアネート、
2,6―トリレンジイソシアネート、ジフエニル
メタン―4,4′―ジイソシアネート、ヘキサメチ
レンジイソシアネート、ヘキサメチレンジイソシ
アネート3molとトリメチロールプロパン1molと
の反応物、トリフエニルメタン―4,4′,4″―ト
リイソシアネート、トリス―(p―イソシアネー
トフエニル)チオフオスフエイトなどがあり、こ
れらは単独であるいは2種以上の混合物として用
いられ、必要により酢酸エチル、塩化メチレンな
どの溶剤で希釈したものも好ましく使用できる。 尚、ここで接着剤に、硬化速度を速め、かつ硬
化を十分に進めるために、硬化剤としてメチルエ
チルケトンパーオキサイド、ベンゾイルパーオキ
サイド等の過酸化物を配合する必要がある。ま
た、硬化促進剤としてナフテン酸コバルト、ナフ
テン酸マンガン等の金属石けん類などを配合して
もよい。 また、接着剤の各配合物の混合順序は特に限定
されるものではないが、硬化促進剤を予め混合し
た引張伸び率の異なる2種の不飽和ポリエステル
樹脂とイソシアネート化合物を混合後硬化剤を加
えるのが好ましい。 本発明における接着剤はそのままPVC管へ塗
布してもよいが厚み保持材に浸透させてその厚み
保持材とともに塗布するのが好ましい。厚み保持
材としては、例えばガラス、カーボン、ポリアク
リロニトリル、アセタール化ポリビニルアルコー
ル(ビニロン)、ポリアミド及びポリエステル等
の繊維、麻、綿、絹及びセルロース等の織布又
は、不織布、あるいは和紙等の多孔質体を挙げる
ことができる。 本発明におけるFRP補強PVC管の製造方法に
ついては特に限定されるものではないが、例えば
以下のような方法で製造される。 予め押出成形などにより得られたPVC管の外
周をサンドプラスト処理後、引張伸び率の異なる
2種の不飽和ポリエステル樹脂とイソシアネート
化合物を主成分とする接着剤を塗布し、ゲル化さ
せた後、ガラス繊維等を不飽和ポリエステル樹脂
で含浸させながら積層して常温または加熱下で硬
化させることによりFRP補強PVC管が得られる。 〔実施例〕 以下、実施例により本発明を具体的に説明する
が、本発明はこれら実施例に何ら限定されるもの
ではない。 尚、下記実施例等における、引張剪断接着強
度、耐水圧破壊強度等は、次の試験方法により測
定した。 (1) 引張剪断接着強度 得られたFRP補強PVC管から第3図乃至第
5図に示す形状及び寸法の試験片を作製し、
JIS−K6850に準じた方法により、23℃及び95
℃において測定した。なお第3図は該試験片の
横方向側面図、第4図は縦方向側面図、第5図
は平面図を示し、図面中符号1はFRP層、2
は接着剤層、3はPVC層を示す。 (2) 長期高温処理後の引張剪断接着強度 得られたFRP補強PVC管を100℃×1000時間
または120℃×1000時間の条件で処理した後、
第3図乃至第5図に示す形状及び寸法の試験片
に加工し、JIS−K6850に準じた方法により、
23℃において測定した。 (3) 耐水圧破壊強度 得られたFRP補強PVC管に第6図に示すよ
うな治具を取付け該管の内部に20℃の水を満た
し、1分間に10Kgf/cm2の速度で水圧を上げ、
管が破断した時の水圧を測定した。 第6図においては符号1はFRP層、2は接
着剤層、4はPVC管、5はPVCフランジ、6
はパテ、7は鋼製フランジ、8は水圧、を示
す。 実施例 1 呼び径75mm、肉厚6.0mm、長さ2mのPVC管の
外周をサンドプラスト処理後、以下に示す配合か
らなる接着剤を該PVC管の外周に塗布し室温で
ゲル化させた後、更にその外側に不飽和ポリエス
テル樹脂(ユピカ4521PT、日本ユピカ(株)製)を
含浸させたガラスチヨツプドストランドマツト2
層、ガラスロービングクロス1層及びガラスヤー
ンクロス1層からなるFRP層(厚み2.7mm)を積
層した。これを50℃で48時間放置して該接着剤及
び該不飽和ポリエステル樹脂を完全に硬化させ、
目的とするFRP補強PVC管を得た。得られた
FRP補強PVC管の引張剪断接着強度、長期高温
処理後の引張剪断接着強度及び耐水圧破壊強度を
測定した結果を第1表に示す。 ●スチレンモノマーを含む不飽和ポリエステル樹
脂A〔ユピカ8671、引張伸び率:62%、日本ユ
ピカ(株)製〕 50部 ●スチレンモノマーを含む不飽和ポリエステル樹
脂B〔ユピカ4521PT、引張伸び率:2.6%、日
本ユピカ(株)製〕 30部 ●イソシアネート化合物〔ヘキサメチレンジイソ
シアネートの三量体、コロネートEH、日本ポ
リウレタン工業(株)製〕 20部 ●メチルエチルケトンパーオキサイド55%ジメチ
レンフタレート溶液〔カヤメツクA、化薬ヌー
リー(株)製〕(以下MEKPOと略称する) 1.5部 ●ナフテン酸コバルト6%溶液(以下Na−Coと
略称する) 0.5部 第1表より、接着剤の引張伸び率が32%である
ため、耐水圧破壊強度は初期値及び95℃×1000時
間処理後ともに理論強度(170Kgf/cm2)を保持
しており、また、接着強度の耐熱性も良好であ
る。 実施例 2、3 実施例1において使用した接着剤の代わりに第
1表に示す接着剤を用いた以外は実施例1と同様
の方法でFRP補強PVC管を得た。 実施例 4 接着剤層に厚み保持材としてポリエステル製不
織布を用いた以外は実施例1と同様の方法で
FRP補強PVC管を得た。 実施例2〜4により得られたFRP補強PVC管
の前記各強度の測定結果を第1表に示す。第1表
より、実施例1と同様に耐水圧破壊強度及び接着
強度の耐熱性は良好である。 比較例 1〜5 実施例1において使用した接着剤の代わりに第
1表に示す接着剤を用いた以外は実施例1と同様
の方法でFRP補強PVC管を得た。但し、比較例
5においては接着剤層に厚み保持材としてポリエ
ステル製不織布を使用した。得られたFRP補強
PVC管の前記各強度の結果を第1表に示す。 第1表より、比較例1及び比較例2で得られた
FRP補強PVC管は、各々使用されている接着剤
の引張伸び率が25%未満であるため、接着強度の
耐熱性は良好であるが、耐水圧強度が初期値にお
いて理論強度を満足せず、95℃×1000時間処理後
においてはさらに大きく低下している。 また、比較例3で得られたFRP補強PVC管は、
使用されている接着剤の引張伸び率が45%より大
きく、該接着剤の耐熱性が低いため、耐水圧破壊
強度の初期値は理論強度を満足しているが、95℃
で1000時間処理することによりPVC管とFRP層
が剥離している。 さらに、比較例4で得られたFRP補強PVC管
は、使用されている接着剤がイソシアネート化合
物を含有していないためにPVC管とFRP層との
接着強度が低く、95℃で1000時間処理することに
よりPVC管とFRP層が剥離している。 比較例5で得られたFRP補強PVC管は従来よ
り85℃で長時間問題なく使用されているものであ
るが、耐水圧破壊強度は初期値及び95℃で1000時
間処理後においても理論値を満足し、かつ23℃及
び95℃における引張剪断接着強度も実施例1〜4
と同等の強度を有しているものの、100℃及び120
℃で各々1000時間処理後の該接着強度の低下が大
きい。
[Industrial Field of Application] The present invention mainly relates to fiber-reinforced thermosetting resin-reinforced vinyl chloride resin pipes (hereinafter referred to as
(abbreviated as FRP reinforced PVC pipe). [Conventional technology] Conventionally, to take advantage of the excellent corrosion resistance of vinyl chloride resin pipes (hereinafter abbreviated as PVC pipes), the outer periphery of PVC pipes was directly coated with fiber-reinforced thermosetting resin to improve mechanical strength and heat resistance. Although pipes reinforced with layers (hereinafter referred to as FRP layers) are manufactured, PVC
The adhesive strength between the pipe and the FRP layer was very weak, and the mechanical strength did not satisfy the theoretical strength calculated from the strength of the PVC pipe and the FRP layer, so it could not be used under high temperature and high pressure. Also, PVC
Some pipes are manufactured with an FRP layer attached to the outer circumference of the pipe using an unsaturated polyester resin adhesive or epoxy resin adhesive that has improved adhesion to PVC pipes, but it is not possible to use FRP for these pipes. Due to the low tensile elongation of the adhesive, the mechanical strength, particularly the water pressure strength, did not satisfy the theoretical strength as described above, and it could not be said to be sufficient as a high temperature and high pressure piping material. The applicant previously filed a patent application for a "reinforced thermoplastic resin laminate" containing FRP-reinforced PVC pipes that solved these problems. This application has already been disclosed in Japanese Unexamined Patent Publication No. 59-29156, and as shown in this publication, the FRP-reinforced PVC pipe obtained based on the invention is made of PVC.
It is characterized by a rubber elastic layer containing a thickness retaining material that has adhesive properties between the pipe and the FRP layer, and has superior mechanical strength, especially water pressure strength and heat resistance, compared to the conventional products. It was something I had. [Problems to be solved by the invention] The above-mentioned FRP-reinforced PVC pipe obtained by the applicant's earlier application has excellent corrosion resistance and mechanical strength, especially high water pressure resistance, and is also heat resistant at around 85°C. It had the following characteristics. However, in recent years, as production efficiency has improved, the temperature of various chemical solutions has tended to rise significantly, creating a strong demand for the development of FRP-reinforced PVC pipes with higher heat resistance. In order to meet this demand, the present inventors first
As a result of repeated research on the corrosion resistance of PVC resin at high temperatures, it was found that PVC resin itself has sufficient corrosion resistance at high temperatures of around 95°C, although its mechanical strength decreases. Furthermore, the present inventors developed an FRP that can be used at high temperatures of around 95℃.
As a result of intensive study on adhesives for reinforced PVC pipes,
An adhesive layer with a specific range of tensile elongation and high adhesive strength at high temperatures is provided between the PVC pipe and the FRP layer, and the adhesive is two types of unsaturated polyester resins with different tensile elongations and an isocyanate compound. The present inventors have discovered that it is sufficient to use a material containing as a main component, and have accomplished the present invention. In other words, the object of the present invention is to produce FRP-reinforced PVC that maintains excellent corrosion resistance and mechanical strength, especially water pressure strength, and has a long-term heat resistance temperature of around 95°C.
It is to provide a tube. [Means for Solving the Problems] The measures taken to solve the problems of the prior art are that in an FRP-reinforced PVC pipe in which a PVC pipe is reinforced with an FRP layer, a The tensile elongation rate is 25 to 45% at 23℃, and
An adhesive layer having a tensile shear adhesive strength of 20 kgf/cm 2 or more at 95°C between the PVC pipe and the FRP layer is provided, and the adhesive is made of unsaturated polyester having a tensile elongation rate of 50 to 80% at 23°C. The main components are a resin, an unsaturated polyester resin having a tensile elongation of 1 to 6%, and an isocyanate compound. The present invention will be explained in detail below. In the present invention, the FRP reinforced PVC pipe includes a bent pipe,
Also includes joints such as bend cheeses and sockets, and flanges. Examples of the vinyl chloride resin constituting the PVC pipe in the present invention include chlorine resins such as polyvinyl chloride resin and chlorinated polyvinyl chloride resin, and stabilizers, plasticizers, base materials, etc. are added to the resin. Blended resin compositions are also preferably used. Thermosetting resins constituting the FRP layer used in the present invention include unsaturated polyester resins, phenolic resins, epoxy resins, urea resins,
Examples of the reinforcing fibers include melamine resin, diallyl phthalate resin, alkyd resin, silicone resin, and polyimide resin. Examples of reinforcing fibers include organic fibers such as glass fiber, carbon fiber, and aramid fiber. The FRP layer is formed by a hand lay-up method, a spray-up method, a filament winding method, etc. using these thermosetting resins and various reinforcing fibers. In the present invention, the adhesive forming the adhesive layer provided between the PVC pipe and the FRP layer must have a tensile elongation rate of 25 to 45% at 23°C. If the tensile elongation rate is less than 25%
The water pressure strength of the FRP-reinforced PVC pipe did not satisfy the theoretical strength calculated from the strength of the PVC pipe and FRP layer.
The effect of reinforcing the FRP layer is not visible. This phenomenon is particularly noticeable in the case of piping having a complicated shape. In addition, if the tensile elongation rate is greater than 45%, the heat resistance of the adhesive will decrease, and the FRP layer will peel more easily than the PVC pipe at high temperatures around 95°C.
FRP reinforcement with strong bonding of PVC pipe and FRP layer
PVC pipe is not available. In addition, as an adhesive, the temperature is 23℃.
The reason for mixing an unsaturated polyester resin with a tensile elongation rate of 1 to 6%, an unsaturated polyester resin with a tensile elongation rate of 50 to 80%, and an isocyanate compound is that A mixture of a saturated polyester resin and an isocyanate compound has a low tensile elongation rate, and although heat resistance can be obtained, mechanical strength, especially hydrostatic strength, does not reach the theoretical strength, but an unsaturated polyester resin has a tensile elongation rate of 50 to 80%. By mixing the adhesive, the tensile elongation rate of the adhesive can be adjusted to 25 to 45%, which increases the desired mechanical strength, especially water pressure resistance, and
This is because an FRP-reinforced PVC pipe having heat resistance can also be obtained. Tensile elongation rate is determined by completely curing only the adhesive or the unsaturated polyester resin that makes up the adhesive using a curing agent, etc., and producing a tensile test piece with the shape and dimensions shown in Figures 1 and 2. 10 at 23℃
This is the elongation rate at break when a tensile test is performed at a speed of mm/min. In addition, FIG. 1 shows a plan view of the tensile test piece, and FIG. 2 shows a side view seen from the direction of the arrow shown in FIG. 1. Moreover, the adhesive
It is necessary to have a tensile shear adhesive strength of 20Kgf/cm2 or more at 95℃.If the strength is less than 20Kgf/ cm2 , the FRP layer will be stronger than the PVC pipe when used for a long period at high temperatures around 95℃. This is because it becomes easier to peel off. The adhesive has 1 hydroxyl group of unsaturated polyester resin.
It is preferable to blend the isocyanate compound so that the number of isocyanate groups is 0.5 to 30, more preferably 0.75 to 10. The isocyanate of the compound per one hydroxyl group of the resin
For less than 0.5 pieces and more than 30 pieces, FRP reinforcement with PVC pipe and FRP layer firmly bonded
PVC pipe is not available. The unsaturated polyester resin used in the present invention includes polyhydric alcohol and unsaturated polybasic acid,
Any ester compound with a saturated polybasic acid or a saturated polybasic acid may be used, and it is dissolved in a monomer that can be copolymerized with an unsaturated bond such as styrene. Furthermore, a polymerization inhibitor and other additives may be added. The isocyanate compound used in the present invention is a compound having an isocyanate group in its molecule, and needs to be a compound having two or more isocyanate groups in one molecule. The compounds include hexamethylene diisocyanate trimer, 2,4-tolylene diisocyanate,
2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, hexamethylene diisocyanate, reaction product of 3 mol of hexamethylene diisocyanate and 1 mol of trimethylolpropane, triphenylmethane-4,4',4''-triisocyanate, Examples include tris-(p-isocyanate phenyl) thiophosphate, which can be used alone or as a mixture of two or more, and if necessary, diluted with a solvent such as ethyl acetate or methylene chloride can also be preferably used. Incidentally, in order to speed up the curing speed and sufficiently proceed with curing, it is necessary to add a peroxide such as methyl ethyl ketone peroxide or benzoyl peroxide as a curing agent to the adhesive.Also, a curing accelerator Metal soaps such as cobalt naphthenate and manganese naphthenate may also be blended as a binder.Also, the order of mixing each adhesive compound is not particularly limited, but It is preferable to add a curing agent after mixing two types of unsaturated polyester resins with different elongation rates and an isocyanate compound.The adhesive used in the present invention may be applied to the PVC pipe as it is, but it can be applied to the PVC pipe by penetrating it into the thickness maintaining material. It is preferable to apply it together with a retaining material.As the thickness retaining material, for example, glass, carbon, polyacrylonitrile, acetalized polyvinyl alcohol (vinylon), fibers such as polyamide and polyester, woven fabrics such as linen, cotton, silk and cellulose, or , nonwoven fabric, or porous materials such as Japanese paper.The method for manufacturing the FRP-reinforced PVC pipe in the present invention is not particularly limited, but for example, it can be manufactured by the following method.Pre-extrusion After the outer circumference of the PVC pipe obtained by molding etc. is sandblasted, an adhesive mainly composed of two types of unsaturated polyester resins with different tensile elongation rates and an isocyanate compound is applied, gelled, and then glass fiber An FRP-reinforced PVC pipe can be obtained by laminating the pipes while impregnating them with an unsaturated polyester resin and curing them at room temperature or under heating. The invention is not limited to these Examples in any way. In the Examples below, the tensile shear adhesive strength, hydrostatic fracture strength, etc. were measured by the following test methods. (1) Tensile shear adhesive strength obtained A test piece with the shape and dimensions shown in Figures 3 to 5 was prepared from the FRP-reinforced PVC pipe, and
23℃ and 95℃ by method according to JIS-K6850
Measured at °C. In addition, FIG. 3 shows a horizontal side view of the test piece, FIG. 4 shows a vertical side view, and FIG. 5 shows a plan view.
3 indicates the adhesive layer and 3 indicates the PVC layer. (2) Tensile shear adhesive strength after long-term high temperature treatment After treating the obtained FRP-reinforced PVC pipe at 100℃ x 1000 hours or 120℃ x 1000 hours,
Processed into test pieces with the shape and dimensions shown in Figures 3 to 5, and by a method according to JIS-K6850.
Measured at 23°C. (3) Hydraulic pressure rupture strength A jig as shown in Figure 6 was attached to the obtained FRP-reinforced PVC pipe, the inside of the pipe was filled with water at 20°C, and water pressure was applied at a rate of 10 kgf/cm 2 per minute. Raise,
The water pressure at the time the pipe broke was measured. In Figure 6, 1 is the FRP layer, 2 is the adhesive layer, 4 is the PVC pipe, 5 is the PVC flange, and 6
indicates putty, 7 indicates steel flange, and 8 indicates water pressure. Example 1 After the outer periphery of a PVC pipe with a nominal diameter of 75 mm, wall thickness of 6.0 mm, and length of 2 m was sandblasted, an adhesive having the composition shown below was applied to the outer periphery of the PVC pipe and gelled at room temperature. , glass chopped strand mat 2 whose outside was further impregnated with unsaturated polyester resin (Yupica 4521PT, manufactured by Nippon Upica Co., Ltd.)
An FRP layer (thickness: 2.7 mm) consisting of one layer of glass roving cloth and one layer of glass yarn cloth was laminated. This was left at 50°C for 48 hours to completely cure the adhesive and the unsaturated polyester resin,
The desired FRP reinforced PVC pipe was obtained. obtained
Table 1 shows the results of measuring the tensile shear adhesive strength, the tensile shear adhesive strength after long-term high temperature treatment, and the hydraulic fracture strength of the FRP-reinforced PVC pipe. ●Unsaturated polyester resin A containing styrene monomer [Yupica 8671, tensile elongation rate: 62%, manufactured by Nippon Upica Co., Ltd.] 50 parts ●Unsaturated polyester resin B containing styrene monomer [Yupica 4521PT, tensile elongation rate: 2.6% , manufactured by Nippon U-Pica Co., Ltd.] 30 parts ● Isocyanate compound [trimer of hexamethylene diisocyanate, Coronate EH, manufactured by Nippon Polyurethane Industries Co., Ltd.] 20 parts ● Methyl ethyl ketone peroxide 55% dimethylene phthalate solution [Kayametsuku A, Chemical Manufactured by Yaku Nouri Co., Ltd.] (hereinafter abbreviated as MEKPO) 1.5 parts Cobalt naphthenate 6% solution (hereinafter abbreviated as Na-Co) 0.5 parts From Table 1, the tensile elongation rate of the adhesive is 32%. Therefore, the hydraulic rupture strength maintains the theoretical strength (170 Kgf/cm 2 ) both at the initial value and after treatment at 95° C. for 1000 hours, and the heat resistance of the adhesive strength is also good. Examples 2 and 3 FRP-reinforced PVC pipes were obtained in the same manner as in Example 1, except that the adhesive shown in Table 1 was used instead of the adhesive used in Example 1. Example 4 The same method as Example 1 was used except that a polyester nonwoven fabric was used as a thickness retaining material for the adhesive layer.
FRP reinforced PVC pipe was obtained. Table 1 shows the measurement results of each strength of the FRP-reinforced PVC pipes obtained in Examples 2 to 4. From Table 1, similar to Example 1, the heat resistance of hydraulic fracture strength and adhesive strength is good. Comparative Examples 1 to 5 FRP-reinforced PVC pipes were obtained in the same manner as in Example 1, except that the adhesive shown in Table 1 was used instead of the adhesive used in Example 1. However, in Comparative Example 5, a polyester nonwoven fabric was used as a thickness retaining material for the adhesive layer. Obtained FRP reinforcement
Table 1 shows the results of each strength of the PVC pipe. From Table 1, the results obtained in Comparative Example 1 and Comparative Example 2
Since the tensile elongation rate of each adhesive used in FRP reinforced PVC pipes is less than 25%, the heat resistance of adhesive strength is good, but the initial value of water pressure resistance does not satisfy the theoretical strength. After treatment at 95°C for 1000 hours, the decrease was even greater. In addition, the FRP-reinforced PVC pipe obtained in Comparative Example 3 was
The tensile elongation rate of the adhesive used is greater than 45% and the adhesive has low heat resistance, so the initial value of the hydraulic fracture strength satisfies the theoretical strength, but at 95℃
After 1000 hours of treatment, the PVC pipe and FRP layer peeled off. Furthermore, the FRP-reinforced PVC pipe obtained in Comparative Example 4 had low adhesive strength between the PVC pipe and the FRP layer because the adhesive used did not contain an isocyanate compound, and was treated at 95°C for 1000 hours. This caused the PVC pipe and FRP layer to separate. The FRP-reinforced PVC pipe obtained in Comparative Example 5 has been used at 85℃ for a long time without any problems, but the hydraulic fracture strength does not exceed the theoretical value even after treatment at 95℃ for 1000 hours. The tensile shear adhesive strength at 23°C and 95°C was also as high as that of Examples 1 to 4.
Although it has the same strength as 100℃ and 120℃
The adhesive strength decreased significantly after each treatment at ℃ for 1000 hours.

【表】【table】

【表】【table】

【表】 実施例 5 実施例1と同じ接着剤を用い第7図に示す形
状、寸法の耐薬品性試験片を作製し、20℃におけ
る飽和塩素水を入れた第8図に示す形状、寸法の
試験容器に浸漬し、密閉した。なお、第7図は試
験片の断面図を示し、符号1はFRP層、2は接
着剤層、9はPVC板、11はPVC溶接部を示す。
また、第8図は試験容器の断面図を示し、符号1
2はSUS製蓋、13はPVDF製蓋、14はPVDF
製被覆パツキン、15はSUS製容器、16は
PVDF製容器、17は飽和塩素水を示す。その試
験容器を95℃の恒温槽に入れ、所定日数放置後、
該試験片を取り出し中央から切断し、PVC板と
FRP層との接着状態を観察するとともに、PVC
の接液部の変色部分を浸食厚みとして、顕微鏡に
て測定した。変色部分以外はPVCの劣化は認め
られなかつた。尚、飽和塩素水は2日に1回取り
換えた。 得られた試験結果を第2表に示す。また、浸食
厚みと浸漬日数の関係を第9図に示す。
[Table] Example 5 A chemical resistance test piece with the shape and dimensions shown in Figure 7 was prepared using the same adhesive as in Example 1, and the shape and dimensions shown in Figure 8 were prepared by adding saturated chlorine water at 20°C. immersed in a test container and sealed. In addition, FIG. 7 shows a cross-sectional view of the test piece, in which reference numeral 1 indicates the FRP layer, 2 indicates the adhesive layer, 9 indicates the PVC plate, and 11 indicates the PVC welded part.
Moreover, FIG. 8 shows a cross-sectional view of the test container, and the reference numeral 1
2 is SUS lid, 13 is PVDF lid, 14 is PVDF
15 is a container made of SUS, 16 is a covered packing made of
PVDF container 17 indicates saturated chlorine water. Place the test container in a constant temperature bath at 95℃ and leave it for a specified number of days.
Take out the test piece, cut it from the center, and attach it to a PVC plate.
While observing the adhesion state with the FRP layer,
The discolored portion of the liquid contact area was measured as the erosion thickness using a microscope. No deterioration of PVC was observed except for discolored areas. The saturated chlorine water was replaced once every two days. The test results obtained are shown in Table 2. Moreover, the relationship between the erosion thickness and the number of days of immersion is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

前記した実施例1〜4で得られた本発明による
FRP補強PVC管は、比較例5で得られた本出願
人の先願発明に係るFRP補強PVC管と比較した
場合、23℃及び95℃における引張剪断接着強度に
おいては大差ないが、一方100℃及び120℃で各々
1000時間処理後の該強度においては非常に優れて
おり、特に120℃において顕著である。 また、PVCは100℃以上の高温においては熱分
解が起こりやすくこの温度以上での長期使用は困
難であることが一般的に知られている。 以上のことから本発明のFRP補強PVC管の長
期耐熱温度は95℃前後であると判断され、これは
本出願人の先願発明による該管の長期耐熱温度85
℃よりも10℃程度向上していることがわかる。 また、本発明において使用されるPVC管と
FRP層との接着剤は引張伸び率が大きいため、
得られるFRP補強PVC管は本出願人の先願発明
によるFRP補強PVC管と同等の優れた耐水圧破
壊強度を有している。 さらに、本発明に得られるFRP補強PVC管は
95℃前後の高温における耐食性にも優れている。
例えば実施例5に示したごとく、飽和塩素水に対
しても第9図の浸食厚みと浸漬日数との片対数グ
ラフから95℃で10年間使用後の浸食厚みは、0.8
mm程度と予想され、十分に長期使用が可能である
ことがわかる。 以上に説明したごとく、本発明によれば、耐食
性に優れ機械的強度特に耐水圧破壊強度が大き
く、かつ長期耐熱性に優れたFRP補強PVC管が
得られる。 本発明により得られるFRP補強PVC管は以上
のような効果を有するため、95℃前後の高温を有
する塩素水をはじめ塩酸、硝酸、硫酸等の腐食性
流体の輸送配管にも使用することが可能となつ
た。
According to the present invention obtained in Examples 1 to 4 described above
When compared with the FRP-reinforced PVC pipe according to the applicant's earlier invention obtained in Comparative Example 5, there is no significant difference in tensile shear adhesive strength at 23°C and 95°C, but on the other hand, at 100°C and 120℃ respectively
The strength after treatment for 1000 hours is very good, especially at 120°C. Furthermore, it is generally known that PVC tends to undergo thermal decomposition at high temperatures of 100°C or higher, making it difficult to use it for long periods at temperatures above this temperature. From the above, it is determined that the long-term heat-resistant temperature of the FRP-reinforced PVC pipe of the present invention is around 95°C, which is higher than the long-term heat-resistant temperature of 85°C according to the applicant's prior invention.
It can be seen that the temperature is about 10℃ higher than that of ℃. In addition, the PVC pipe used in the present invention
Since the adhesive with the FRP layer has a high tensile elongation rate,
The resulting FRP-reinforced PVC pipe has an excellent hydraulic rupture strength equivalent to that of the FRP-reinforced PVC pipe according to the applicant's earlier invention. Furthermore, the FRP reinforced PVC pipe obtained in the present invention is
It also has excellent corrosion resistance at high temperatures around 95℃.
For example, as shown in Example 5, for saturated chlorine water, the erosion thickness after 10 years of use at 95°C is 0.8 from the semi-logarithm graph of erosion thickness and immersion days in Figure 9.
It is expected to be around mm, indicating that it can be used for a sufficiently long period of time. As explained above, according to the present invention, it is possible to obtain an FRP-reinforced PVC pipe that has excellent corrosion resistance, high mechanical strength, particularly high hydraulic fracture strength, and excellent long-term heat resistance. Since the FRP-reinforced PVC pipe obtained by the present invention has the above-mentioned effects, it can also be used for transportation piping for corrosive fluids such as chlorine water, hydrochloric acid, nitric acid, and sulfuric acid, which have a high temperature of around 95°C. It became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は接着剤層の引張伸び率を求めるための
試験片の平面図、第2図は第1図の矢印方向から
みた側面図、第3図、第4図及び第5図はPVC
管とFRP層との引張剪断接着強度を求めるため
の試験片の構造を示すもので第3図は該試験片の
横方向側面図、第4図は縦方向側面図、第5図は
平面図を示し、第6図はFRP補強PVC管の耐水
圧破壊強度を求めるための装置の縦断面図、第7
図は耐薬品性試験片の断面図、第8図は耐薬品性
試験片及び飽和塩素水を入れた耐薬品性試験容器
の断面図、第9図は95℃の飽和塩素水浸漬試験に
おける浸食厚みと浸漬日数の関係を示した図であ
る。 1……FRP層、2……接着剤層、3……PVC
層、4……PVC管、5……PVCフランジ、6…
…パテ、7……鋼製フランジ、8……水圧、9…
…PVC板、10……PVCパイプ、11……PVC
溶接部、12……SUS製蓋、13……PVDF製
蓋、14……PVDF被覆パツキン、15……SUS
製容器、16……PVDF製容器、17……飽和塩
素水。
Figure 1 is a plan view of a test piece for determining the tensile elongation rate of the adhesive layer, Figure 2 is a side view as seen from the arrow direction in Figure 1, Figures 3, 4 and 5 are PVC
This figure shows the structure of a test piece for determining the tensile shear adhesive strength between a pipe and an FRP layer. Figure 3 is a lateral side view of the test piece, Figure 4 is a longitudinal side view, and Figure 5 is a plan view. Figure 6 is a longitudinal cross-sectional view of the device for determining the hydraulic fracture strength of FRP-reinforced PVC pipes;
The figure is a cross-sectional view of a chemical resistance test piece, Figure 8 is a cross-sectional view of a chemical resistance test piece and a chemical resistance test container containing saturated chlorine water, and Figure 9 is a cross-sectional view of a chemical resistance test piece and a chemical resistance test container containing saturated chlorine water. It is a figure showing the relationship between thickness and immersion days. 1...FRP layer, 2...adhesive layer, 3...PVC
Layer, 4...PVC pipe, 5...PVC flange, 6...
...Putty, 7...Steel flange, 8...Water pressure, 9...
...PVC board, 10...PVC pipe, 11...PVC
Welded part, 12... SUS lid, 13... PVDF lid, 14... PVDF coated packing, 15... SUS
Container made of 16...PVDF container, 17...Saturated chlorine water.

Claims (1)

【特許請求の範囲】 1 塩化ビニル系樹脂管を繊維強化熱硬化性樹脂
層で補強した繊維強化熱硬化性樹脂補強塩化ビニ
ル系樹脂管において、塩化ビニル系樹脂管と繊維
強化熱硬化性樹脂層との中間に、引張伸び率が23
℃において25〜45%で、かつ該塩化ビニル系樹脂
管と該繊維強化熱硬化性樹脂層との引張剪断接着
強度が95℃において20Kgf/cm2以上である接着剤
層を設け、その接着剤が、23℃において50〜80%
の引張伸び率を有する不飽和ポリエステル樹脂と
1〜6%の引張伸び率を有する不飽和ポリエステ
ル樹脂およびイソシアネート化合物を主成分とす
ることを特徴とする繊維強化熱硬化性樹脂補強塩
化ビニル系樹脂管。 2 接着剤が不飽和ポリエステル樹脂の水酸基1
個に対してイソシアネート化合物のイソシアネー
ト基が0.5〜30個の割合になるように配合されて
なることを特徴とする特許請求の範囲第1項記載
の繊維強化熱硬化性樹脂補強塩化ビニル系樹脂
管。 3 接着剤層が厚み保持材を含んでなることを特
徴とする特許請求の範囲第1項又は第2項記載の
繊維強化熱硬化性樹脂補強塩化ビニル系樹脂管。
[Scope of Claims] 1. In a fiber-reinforced thermosetting resin-reinforced vinyl chloride resin pipe in which a vinyl chloride resin pipe is reinforced with a fiber-reinforced thermosetting resin layer, the vinyl chloride resin pipe and the fiber-reinforced thermosetting resin layer The tensile elongation rate is 23 between
Provide an adhesive layer having a tensile shear adhesive strength of 25 to 45% at 95°C and a tensile shear adhesive strength between the vinyl chloride resin pipe and the fiber-reinforced thermosetting resin layer of 20 Kgf/cm 2 or more at 95°C, and the adhesive but 50-80% at 23℃
A fiber-reinforced thermosetting resin-reinforced vinyl chloride resin pipe characterized in that the main components are an unsaturated polyester resin having a tensile elongation of 1 to 6%, and an isocyanate compound. . 2 Hydroxyl group of unsaturated polyester resin as adhesive 1
The fiber-reinforced thermosetting resin-reinforced vinyl chloride resin pipe according to claim 1, characterized in that the isocyanate group of the isocyanate compound is blended at a ratio of 0.5 to 30 to . 3. The fiber-reinforced thermosetting resin-reinforced vinyl chloride resin pipe according to claim 1 or 2, wherein the adhesive layer contains a thickness maintaining material.
JP60210963A 1985-09-26 1985-09-26 Vinyl chloride resin pipe reinforced with fiber-reinforced thermosetting resin Granted JPS6271629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210963A JPS6271629A (en) 1985-09-26 1985-09-26 Vinyl chloride resin pipe reinforced with fiber-reinforced thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210963A JPS6271629A (en) 1985-09-26 1985-09-26 Vinyl chloride resin pipe reinforced with fiber-reinforced thermosetting resin

Publications (2)

Publication Number Publication Date
JPS6271629A JPS6271629A (en) 1987-04-02
JPH0224655B2 true JPH0224655B2 (en) 1990-05-30

Family

ID=16598011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210963A Granted JPS6271629A (en) 1985-09-26 1985-09-26 Vinyl chloride resin pipe reinforced with fiber-reinforced thermosetting resin

Country Status (1)

Country Link
JP (1) JPS6271629A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235287A (en) * 1988-07-22 1990-02-05 Sekisui Chem Co Ltd Resin composite pipe and resin composite pipe joint
JPH0624202Y2 (en) * 1988-12-27 1994-06-29 積水化学工業株式会社 Resin composite pipe and resin composite pipe joint
FR2936856A1 (en) * 2008-10-07 2010-04-09 Aerazur COMPOSITE PIPE SUITABLE FOR INDISTINENTLY TRANSPORTING HYDROCARBON FUEL OR HYDRAULIC FLUID
EP2615137B2 (en) * 2012-01-13 2018-03-28 Georg Fischer DEKA GmbH Polyvinyl chloride compound, tube, gutter or container, use of a PVC compound and use of a tube, gutter or container

Also Published As

Publication number Publication date
JPS6271629A (en) 1987-04-02

Similar Documents

Publication Publication Date Title
US4954393A (en) Polymeric films
JP2004506550A (en) Multi-layer products including fluoroplastic layers
GB2032333A (en) Manufacture of seamless laminated tubing
Hogg Factors affecting the stress corrosion of GRP in acid environments
JPH0224655B2 (en)
JP2017527753A (en) Tubular liner for retrofitting fluid conduit equipment
US5534337A (en) Thermoset reinforced corrosion resistant laminates
JPH04339635A (en) Fiber-reinforced synthetic resin complex and its molding method
JP2013052598A (en) Wall face panel, horizontal sheathing, and soldier beam horizontal sheathing type water protection wall
US5624744A (en) High strength acid stable composite materials
JP2007517100A (en) Reinforced fluoropolymer plate, method for producing the plate, corrosion-resistant reactor equipped with the plate, method for producing the reactor, and fluorination method in the reactor
JP2011246595A (en) Glass fiber-reinforced composite material and production method therefor
JP2005163830A (en) Tube, and method for manufacturing it
CN218660804U (en) Recoverable thermosetting carbon fiber plate
JP2001179831A (en) Sheet-like molding material for molding lining for inner face in pipeline
JPS6334826B2 (en)
JPH01221236A (en) Adhesive sheet for reinforcement of thin sheet
US20070275225A1 (en) Reinforced Fluoropolymer Plates, Production Methods Thereof, Corrosion-Resistant Reactors Containing Said Plates, Production Methods Of Same And Fluorination Methods Performed In Said Reactors
JP2018172823A (en) Fiber sheet for reinforcement of building structure
JPH0624202Y2 (en) Resin composite pipe and resin composite pipe joint
JPH085155B2 (en) Heat-peelable resin composite tube with reinforced layer
JP2004043769A (en) Epoxy resin composition, roving prepreg and its manufacturing method
JPS6310176B2 (en)
KR102429647B1 (en) Method for enhancing resistance to delamination of a coating layer applied to a rigid, monolithic substrate
JP2546810B2 (en) Carbon fiber coated with polycyanoaryl ether and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees