JP2011246595A - Glass fiber-reinforced composite material and production method therefor - Google Patents

Glass fiber-reinforced composite material and production method therefor Download PDF

Info

Publication number
JP2011246595A
JP2011246595A JP2010120859A JP2010120859A JP2011246595A JP 2011246595 A JP2011246595 A JP 2011246595A JP 2010120859 A JP2010120859 A JP 2010120859A JP 2010120859 A JP2010120859 A JP 2010120859A JP 2011246595 A JP2011246595 A JP 2011246595A
Authority
JP
Japan
Prior art keywords
resin
glass fiber
composite material
matrix resin
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010120859A
Other languages
Japanese (ja)
Inventor
Masahiko Miyauchi
雅彦 宮内
Takanao Iwahara
孝尚 岩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010120859A priority Critical patent/JP2011246595A/en
Publication of JP2011246595A publication Critical patent/JP2011246595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass fiber-reinforced composite material increased in adhesion and mechanical strength and obtained by forming a dry prepreg, laminating plural dry prepreg, and monolithically molding under high temperature and pressurized conditions, wherein the dry prepreg is produced by using a polyvinyl chloride resin as the matrix resin and the resin is affixed to the surface of and inside the fiber bundles of, glass fiber-woven fabrics, as the reinforcing fiber.SOLUTION: The glass fiber-reinforced composite material is, for example, prepared by: immersing a glass fiber-woven fabric of the reinforcing fiber in a resin solution prepared by previously dissolving a matrix resin in an organic solvent, and drying the obtained material to prepare the dry prepreg impregnated with the matrix resin in the fiber bundle; immersing the prepreg in the resin solution again; then, laminating plural sheets of products obtained by adhering the resin solution to the dry prepreg surface and drying it; pressurizing the resulting material in a condition of a temperature of the softening point of the matrix resin or higher; and cooling and curing the resultant material.

Description

本発明は、ガラス繊維を強化材とし、熱可塑性樹脂を母材(マトリックス)とするガラス繊維強化熱可塑性複合材料に関するものである。
The present invention relates to a glass fiber reinforced thermoplastic composite material having glass fiber as a reinforcing material and a thermoplastic resin as a base material (matrix).

従来から、熱可塑性樹脂に無機の充填剤を配合して機械的強度、耐熱性を付与する研究が多数なされてきており、実用化に至っている。   Conventionally, many studies have been made to add mechanical strength and heat resistance by blending an inorganic filler into a thermoplastic resin, and it has been put to practical use.

上記、熱可塑性樹脂の一例として、例えばポリ塩化ビニル系(PVC)樹脂は、耐薬品性、電気絶縁性などが優れた樹脂であり、また、安価であることから、フィルム、繊維、各種パイプ、継手、建材、波板をはじめ様々な形状の成形品などの広い範囲で汎用的に使用されている。   As an example of the thermoplastic resin, for example, a polyvinyl chloride (PVC) resin is a resin excellent in chemical resistance, electrical insulation and the like, and since it is inexpensive, films, fibers, various pipes, It is widely used in a wide range of joints, building materials, corrugated sheets, and other shaped products.

このような特徴を有するPVCは、機械的特性のさらなる向上のために、針状無機物あるいは板状の無機系粘土、炭酸カルシウム、ガラス繊維等の無機充填剤が配合されたものが一般的に知られている。しかし、針状無機物である珪酸カルシウム、チタン酸カリウム、塩基性硫酸マグネシウム、セピオライト、ゾノトライト、ホウ酸アルミニウム等、または板状無機物としてタルク、マイカ等の無機粘土系を充填剤に用いた場合には、補強効果が少なく、十分に機械的強度を向上させるためには多量の配合を必要とし、それによって耐衝撃性、靭性が低下するという問題がある。一方、ガラス繊維が充填材として用いられる場合は、軽量化や強度の向上だけでなく、電気絶縁性や加工性等の多くの要求を実現可能であり、そのガラス繊維の形態としては、例えば短繊維の形状のチョップドストランドが挙げられ、射出成形や押出成形によりガラス短繊維が混入したペレット形状の成形品やスタンパブルシートなどとして知られている。   PVC having such characteristics is generally known to contain inorganic fillers such as needle-like inorganic materials or plate-like inorganic clays, calcium carbonate, and glass fibers in order to further improve mechanical properties. It has been. However, when using inorganic clays such as talc, mica, etc. as fillers as acicular inorganic materials such as calcium silicate, potassium titanate, basic magnesium sulfate, sepiolite, zonotlite, aluminum borate, etc. There is a problem that the reinforcing effect is small, and a large amount of blending is required to sufficiently improve the mechanical strength, thereby reducing impact resistance and toughness. On the other hand, when glass fiber is used as a filler, not only weight reduction and strength improvement but also many requirements such as electrical insulation and workability can be realized. Examples thereof include chopped strands in the form of fibers, which are known as pellet-shaped molded products or stampable sheets in which short glass fibers are mixed by injection molding or extrusion molding.

連続したガラス繊維を用いた複合材料は、例えば、目付量が小さい格子(網)状の織布を、シート状の塩化ビニル樹脂で挟んだ形状の波板材やカーテン材などの成形品が知られており、他にも、連続した一方向のガラス繊維を粉体状のPVC樹脂中を通過させて、強化繊維に樹脂を付着させた後に、連続的に加熱溶融し、強化繊維と一体化させた成形品も知られている。また、織物形状を有するガラス繊維を予め金型内に基材配置し、PVCを溶融押出することにより一体化させる方法などが知られているが、数百〜数万本のモノフィラメントからなるガラス繊維織物材を強化繊維に用いた場合、高温下で溶融した状態のPVC樹脂の粘度が大きいため、樹脂の流動と共に強化繊維が流され、織物材の目崩れを起こしたり、ガラス繊維のモノフィラメント束の内部まで十分に含浸されず、ボイド(空隙)が発生し、機械的強度が低下しやすい問題がある。また、ボイドを無くすために長時間熱プレスを施した場合は、樹脂及び強化繊維が熱劣化し、複合材料の強度等が低下する問題点がある。   As composite materials using continuous glass fibers, for example, molded products such as corrugated sheet materials and curtain materials in a shape in which a lattice (mesh) woven fabric with a small basis weight is sandwiched between sheet-like vinyl chloride resins are known. In addition, after passing continuous unidirectional glass fiber through the powdery PVC resin and attaching the resin to the reinforcing fiber, it is continuously heated and melted and integrated with the reinforcing fiber. Molded articles are also known. Also known is a method in which glass fibers having a woven shape are preliminarily placed in a mold and integrated by melting and extruding PVC. Glass fibers comprising hundreds to tens of thousands of monofilaments are known. When the woven material is used as the reinforcing fiber, the viscosity of the PVC resin melted at a high temperature is large. Therefore, the reinforcing fiber is caused to flow along with the flow of the resin, and the woven material is broken. There is a problem that the inside is not sufficiently impregnated, voids (voids) are generated, and the mechanical strength tends to be lowered. In addition, when hot pressing is performed for a long time to eliminate voids, there is a problem that the resin and the reinforcing fiber are thermally deteriorated, and the strength and the like of the composite material are lowered.

また、ガラス繊維表面にプラズマ処理またはオゾン処理、コロナ処理、さらにはケミカルエッチング処理にて官能基を施して、PVC樹脂に適合したサイジング剤を付着させたり、添加剤を加えるなどにより、界面の接着性を向上させる方法があるが、工程数が増えて製造コストが増大したり、ガラス繊維そのものに損傷を与えたり、複合材料の強度を低下させるなどの問題がある。   In addition, the glass fiber surface is functionalized by plasma treatment, ozone treatment, corona treatment, and chemical etching treatment to attach a sizing agent suitable for PVC resin, or by adding an additive to the interface. However, there are problems such as an increase in the number of processes and an increase in manufacturing cost, damage to the glass fiber itself, and a reduction in the strength of the composite material.

特開2005−299047号公報JP 2005-299047 A 特開1987−156359号公報JP-A-1987-156359 特開1991−158211号公報JP 1991-158211 特開1991−158211号公報JP 1991-158211 特開1998−278121号公報JP 1998-278121 A 特開2010−52370号公報JP 2010-52370 A

ポリ塩化ビニル系樹脂をマトリックス樹脂とし、強化繊維としてガラス繊維織物のモノフィラメント束内部および表面に樹脂を付着させたドライプリプレグを作製し、複数枚積層した状態で、高温加圧条件下で一体成形して得られる、接着性および機械的強度が向上した、織物繊維の目崩れのないガラス繊維強化複合材料を提供する。   A dry prepreg with a polyvinyl chloride resin as a matrix resin and a resin attached to the inside and surface of a monofilament bundle of glass fiber fabric as a reinforcing fiber is manufactured and laminated in a single piece under high temperature and pressure conditions. A glass fiber reinforced composite material with improved adhesiveness and mechanical strength, which is free from disruption of textile fibers, is provided.

このような課題に対して、鋭意検討した結果、本発明を完成させるに至った。すなわち、本発明は以下の構成よりなる。
(1)ポリ塩化ビニル系樹脂をマトリックス樹脂とし、モノフィラメント束からなる織布形状を有するガラス繊維を強化繊維とする、ASTM−D2344に基づく3点曲げによるショートビームシェア試験法により測定した見かけの層間せん断強度が25℃で20MPa以上であるガラス繊維強化複合材料。
(2)あらかじめマトリックス樹脂を有機溶媒に溶解させた樹脂溶液に、ガラス繊維織物を含浸させ、乾燥することにより、モノフィラメント束内および束表面にマトリックス樹脂を含浸させたドライプリプレグを作製し、これを再度樹脂溶液中に含浸させてドライプリプレグ表面に樹脂溶液を付着させ、乾燥させることにより得られたものを、複数枚積層した状態で、マトリックス樹脂の軟化点以上の温度条件下で加圧した後に、冷却、硬化させることにより作製される(1)に記載のガラス繊維強化複合材料。
(3)あらかじめマトリックス樹脂を有機溶媒に溶解させた樹脂溶液に、ガラス繊維織物を含浸させ、乾燥することにより、モノフィラメント束内および束表面にマトリックス樹脂を含浸させたドライプリプレグを作製し、これとマトリックス樹脂とを、交互に複数枚積層した状態で、マトリックス樹脂の軟化点以上の温度条件下で加圧した後に、冷却、硬化させることにより作製される(1)に記載のガラス繊維強化複合材料。
(4)マトリックス樹脂の重量含有率が20%〜60%である(1)〜(3)のいずれかに記載のガラス繊維強化複合材料。
As a result of intensive studies on such problems, the present invention has been completed. That is, the present invention has the following configuration.
(1) Apparent interlayer measured by a short beam shear test method by three-point bending based on ASTM-D2344 using a polyvinyl chloride resin as a matrix resin and glass fibers having a woven fabric shape made of monofilament bundles as reinforcing fibers. A glass fiber reinforced composite material having a shear strength of 20 MPa or more at 25 ° C.
(2) A resin solution in which a matrix resin is dissolved in an organic solvent in advance is impregnated with a glass fiber fabric and dried to prepare a dry prepreg in which the matrix resin is impregnated in the monofilament bundle and on the bundle surface. After pressurizing under the temperature condition above the softening point of the matrix resin in a state where a plurality of layers obtained by impregnating the resin solution again to adhere the resin solution to the surface of the dry prepreg and drying it are laminated. The glass fiber reinforced composite material according to (1), which is prepared by cooling and curing.
(3) A glass fiber fabric is impregnated in a resin solution in which a matrix resin is dissolved in an organic solvent in advance and dried to prepare a dry prepreg in which the matrix resin is impregnated in the monofilament bundle and on the bundle surface. The glass fiber reinforced composite material according to (1), which is produced by pressurizing under a temperature condition equal to or higher than the softening point of the matrix resin in a state where a plurality of matrix resins are alternately laminated, and then cooling and curing. .
(4) The glass fiber reinforced composite material according to any one of (1) to (3), wherein the weight content of the matrix resin is 20% to 60%.

本発明により、連続したガラス繊維と、ポリ塩化ビニル系樹脂からなる、機械的物性が向上した、織物繊維の目崩れのないガラス繊維強化複合材料を得ることができる。
According to the present invention, it is possible to obtain a glass fiber reinforced composite material made of continuous glass fibers and a polyvinyl chloride resin, which has improved mechanical properties and has no collapse of textile fibers.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

本発明に適用するガラス繊維のガラス組成は、Eガラス(無アルカリガラス組成)、ARガラス(耐アルカリ性ガラス組成)、Cガラス(耐酸性のアルカリ石灰含有ガラス組成)、Dガラス(低誘電率を実現する組成)等を適用することが出来るが、好ましくはEガラスが適している。   The glass composition of the glass fiber applied to the present invention is E glass (non-alkali glass composition), AR glass (alkali resistant glass composition), C glass (acid resistant alkali lime-containing glass composition), D glass (low dielectric constant). The composition to be realized) can be applied, but E glass is preferable.

さらに、ガラス繊維以外に、本発明の効果を損なわない程度に例えば、他種炭素繊維、金属繊維、セラミック繊維等の無機繊維、ポリアミド繊維、ポリエステル系繊維、ポリオレフィン系繊維、ノボロイド繊維などの有機合成繊維を組み合わせて用いる事ができる。   Furthermore, in addition to glass fibers, organic synthesis such as inorganic fibers such as other types of carbon fibers, metal fibers, and ceramic fibers, polyamide fibers, polyester fibers, polyolefin fibers, and novoloid fibers, to the extent that the effects of the present invention are not impaired. A combination of fibers can be used.

ガラス繊維織物材に使用されるガラス繊維はモノフィラメントが複数本収束したストランド(トウ)形状を有するが、そのモノフィラメントの数は、特に限定されるものではなく、好ましくは数百から数万であり、より好ましくは数百から数千本である。   The glass fiber used for the glass fiber woven material has a strand (toe) shape in which a plurality of monofilaments are converged, but the number of monofilaments is not particularly limited, and is preferably several hundred to several tens of thousands, More preferably, it is several hundred to several thousand.

また、繊維強化複合材料を構成する繊維材料の形態は、織り(平織、綾織、朱子織、からみ織、模紗織、斜紋織、二重織など)による連続した繊維形状の構造体である限り、特に限定されるものでなく、その目的に応じ適宜選択すれば良く、これらを単独あるいは組み合わせて用いることができる。一般的に、前記ガラス繊維には、サイジング処理が施されているが、本発明では、必要に応じて、本発明の実施の前にサイジングを除去しておくことが望ましい。   Moreover, as long as the form of the fiber material constituting the fiber reinforced composite material is a continuous fiber-shaped structure by weaving (plain weaving, twill weaving, satin weaving, tangle weaving, imitation weaving, oblique weaving, double weaving, etc.) It is not particularly limited and may be appropriately selected according to the purpose, and these can be used alone or in combination. In general, the glass fiber is subjected to a sizing treatment. In the present invention, it is desirable to remove the sizing before the implementation of the present invention, if necessary.

本発明に適用される強化繊維の目付は、好ましくは50〜400g/m2であり、より好ましくは100〜300g/m2である。強化繊維の目付が50g/m2に満たないと、樹脂溶液が十分に付着されず、乾燥後のドライプリプレグに樹脂の抜けが発生しやすく、強化繊維の目付が400g/m2を超えると、含浸時に樹脂が厚み方向の中央部まで到達せず、未含浸部(ボイド)が残存した繊維強化複合材料となり、機械的物性の低下を招く可能性がある。 The basis weight of the reinforcing fiber applied to the present invention is preferably 50 to 400 g / m 2 , more preferably 100 to 300 g / m 2 . When the basis weight of the reinforcing fiber is less than 50 g / m 2 , the resin solution is not sufficiently adhered, and the resin detachment is likely to occur in the dried prepreg after drying. When the basis weight of the reinforcing fiber exceeds 400 g / m 2 , At the time of impregnation, the resin does not reach the central part in the thickness direction, and a fiber-reinforced composite material in which an unimpregnated part (void) remains remains, which may cause a decrease in mechanical properties.

本発明に適用されるポリ塩化ビニル系樹脂とは、塩化ビニルモノマーに由来する繰り返し単位を50重量%以上含む樹脂をいう。本発明のポリ塩化ビニル系樹脂における、塩化ビニルモノマーに由来する繰り返し単位量は、60重量%以上であることが好ましく、75重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。本発明のポリ塩化ビニル系樹脂は、典型的には塩化ビニルモノマーのラジカル重合により製造され、特に限定されることは無いが、塩化ビニル単独もしくは塩化ビニルと共重合し得る単重合体との共重合体が含まれる。例えば、有機酸のビニルエステル、ビニリデンフルオロフロライド、ビニリデンクロライド、対称ジクロルエチレン、アクリロニトリル、メタクリロニトリル、アルキルアクリレートエステル、アルキルメタクリレートエステル、ジブチルフマレート、およびジエチルマレート等の不飽和二塩基酸のジアルキルエステル、不飽和炭化水素、アリール化合物、共役および交叉共役エチレン不飽和化合物等との共重合体が含まれる。このような共重合体は、直線状共重合体や枝分かれした共重合体、グラフト共重合体、ブロック共重合体などである。   The polyvinyl chloride resin applied to the present invention refers to a resin containing 50% by weight or more of a repeating unit derived from a vinyl chloride monomer. In the polyvinyl chloride resin of the present invention, the repeating unit amount derived from the vinyl chloride monomer is preferably 60% by weight or more, more preferably 75% by weight or more, and 90% by weight or more. Further preferred. The polyvinyl chloride resin of the present invention is typically produced by radical polymerization of a vinyl chloride monomer, and is not particularly limited. However, vinyl chloride alone or a copolymer with a copolymer capable of copolymerizing with vinyl chloride can be used. A polymer is included. For example, unsaturated dibasic acids such as vinyl esters of organic acids, vinylidene fluorofluoride, vinylidene chloride, symmetric dichloroethylene, acrylonitrile, methacrylonitrile, alkyl acrylate esters, alkyl methacrylate esters, dibutyl fumarate, and diethyl malate And copolymers with dialkyl esters, unsaturated hydrocarbons, aryl compounds, conjugated and cross-conjugated ethylenically unsaturated compounds, and the like. Such copolymers include linear copolymers, branched copolymers, graft copolymers, block copolymers, and the like.

また、本発明に適用されるポリ塩化ビニル系樹脂の分子量は、本発明において作製された複合材料の特性を損なわない程度であれば、特に限定されるものではなく、好ましくは、5000〜100000の重合体である。   The molecular weight of the polyvinyl chloride resin applied to the present invention is not particularly limited as long as it does not impair the characteristics of the composite material produced in the present invention. Preferably, the molecular weight is 5,000 to 100,000. It is a polymer.

適用するポリ塩化ビニル系樹脂の形態としては、特に限定されるものではないが、粉末状、ペレット状、フィルム状、板状、パウダー状のものが用いられる。   Although it does not specifically limit as a form of the polyvinyl chloride resin to apply, A powder form, a pellet form, a film form, plate shape, and a powder form are used.

本発明に適用されるポリ塩化ビニル系樹脂には、必要に応じて、熱安定剤、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸着剤などの安定剤、または架橋剤、連鎖移動剤、核剤、滑剤、可塑剤、充填材、強化材、顔料、染料、難燃剤、帯電防止剤などの添加剤を本発明の効果を損なわない範囲内で添加してもよい。   The polyvinyl chloride resin applied to the present invention includes a heat stabilizer, an antioxidant, a metal deactivator, a phosphorus processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, and a fluorescent brightening agent as necessary. Stabilizers such as metal soap and antacid adsorbents, or additives such as cross-linking agents, chain transfer agents, nucleating agents, lubricants, plasticizers, fillers, reinforcing materials, pigments, dyes, flame retardants, antistatic agents, etc. You may add within the range which does not impair the effect of this invention.

塩化ビニル樹脂と上記安定剤等の添加剤を混合させる方法は、特に限定されるものではないが、例えば、塩化ビニル樹脂粉末と物理的に混合したり、有機溶媒中において相溶させたり、溶融(軟化)状態で混練させたり、複合材料の成形時に添加されるものであってもよい。   The method of mixing the vinyl chloride resin and the above-mentioned stabilizer or the like is not particularly limited. For example, the vinyl chloride resin is physically mixed with the vinyl chloride resin powder, dissolved in an organic solvent, or melted. It may be kneaded in a (softened) state or added at the time of molding the composite material.

上記のガラス繊維とマトリックス樹脂との複合材料の作製方法としては、特に限定されるものではない。   The method for producing the composite material of the glass fiber and the matrix resin is not particularly limited.

作製方法の例としては、まず、あらかじめマトリックス樹脂を有機溶媒に溶解させた溶液中に、1枚あるいは複数枚のガラス繊維織物を含浸させ、取り出した後に、常圧もしくは減圧下、室温もしくは加熱しながら乾燥させることで、ガラス繊維束内に樹脂を付着させたドライプリプレグを作製する。さらにドライプリプレグ表面に樹脂を付着させる必要があれば、同樹脂濃度もしくは樹脂濃度の異なる有機溶剤中に再び含浸、乾燥させる操作を繰り返し行ったり、層間に粉末状、フィルム形状などのマトリックス樹脂を挿入するなどしてドライプリプレグを積層し、プレス機、ラミネーター成形機などを使用して、高温条件下においてドライプリプレグに付着した樹脂を軟化させ、加圧して一体化した後、冷却、硬化させる方法により行うことができる。   As an example of the production method, first, one or a plurality of glass fiber fabrics are impregnated in a solution in which a matrix resin is dissolved in an organic solvent in advance, and then taken out and then heated at room temperature or under normal pressure or reduced pressure. While drying, a dry prepreg having a resin adhered in the glass fiber bundle is produced. If it is necessary to attach the resin to the surface of the dry prepreg, repeat the operation of re-impregnation and drying in an organic solvent with the same resin concentration or a different resin concentration, or insert a matrix resin such as powder or film between layers By laminating dry prepregs, etc., using a press machine, laminator molding machine, etc., softening the resin adhering to the dry prepregs under high temperature conditions, integrating by pressurization, cooling and curing by a method It can be carried out.

ガラス繊維織物を樹脂溶液に含浸させる際の樹脂溶液の濃度は、特に限定されるものではないが、繊維束内部に存在する空気と樹脂溶液が十分に置換できる溶液粘度が低い濃度が望ましい。また、この得られたドライプリプレグを再度樹脂溶液に含浸して、ドライプリプレグの表面に樹脂を付着させる際の樹脂溶液濃度は、特に限定されるものではなく、乾燥後のドライプリプレグの樹脂量を適切に調節するために調整すれば良く、繰り返し含浸および乾燥操作を行うことも可能である。   The concentration of the resin solution when the glass fiber fabric is impregnated with the resin solution is not particularly limited, but a concentration with a low solution viscosity that can sufficiently replace the air present in the fiber bundle with the resin solution is desirable. In addition, the resin solution concentration when the obtained dry prepreg is impregnated with the resin solution again and the resin is adhered to the surface of the dry prepreg is not particularly limited, and the amount of resin in the dried prepreg after drying is not limited. Adjustment may be made for appropriate adjustment, and repeated impregnation and drying operations may be performed.

ドライプリプレグを作製する際に用いられる有機溶媒の種類としては、塩化ビニル樹脂を溶解させるものであれば、特に限定されるものではないが、例えば、テトラヒドロフランや、シクロヘキサノン、ジオキサン、ジメチルホルムアミドなどが挙げられる。   The type of organic solvent used in preparing the dry prepreg is not particularly limited as long as it dissolves the vinyl chloride resin, and examples thereof include tetrahydrofuran, cyclohexanone, dioxane, dimethylformamide, and the like. It is done.

作製したドライプリプレグ中に含まれる溶媒量は、特に限定されるものではないが、ドライプリプレグを用いて加圧成形して得られた複合材料中にボイドを発生し機械的強度を低下させない程度の量であれば良いが、可能な限り溶媒を含まないことが好ましい。   The amount of the solvent contained in the prepared dry prepreg is not particularly limited, but it does not generate voids in the composite material obtained by pressure molding using the dry prepreg and does not reduce the mechanical strength. The amount may be sufficient, but it is preferable to contain no solvent as much as possible.

また、複合材料の作製方法として、溶媒を用いなくても、ガラス繊維平織材と塩化ビニル樹脂を交互に積層した上でプレス機、ラミネーター成形機などを使用して、高温条件下において樹脂を軟化させ、加圧して一体化した後、冷却、硬化させる方法も挙げられる。得られた複合材料をさらに積層して高温加圧条件下で一体化させることも出来る。   In addition, as a composite material production method, the resin is softened under high temperature conditions using a press machine, laminator molding machine, etc. after alternately laminating glass fiber plain weave and vinyl chloride resin without using a solvent. And a method of cooling and curing after pressurizing and integrating. The obtained composite material can be further laminated and integrated under high temperature and pressure conditions.

本発明のガラス繊維強化複合材料を作製する際に、積層するドライプリプレグの枚数は、特に限定されるものではないが、好ましくは5枚以上であり、さらに好ましくは10枚以上である。ドライプリプレグの枚数は、通常、100枚以下である。   In producing the glass fiber reinforced composite material of the present invention, the number of dry prepregs to be laminated is not particularly limited, but is preferably 5 or more, and more preferably 10 or more. The number of dry prepregs is usually 100 or less.

本発明のガラス繊維強化複合材料を作製する際に、上記軟化したマトリックス樹脂をガラス繊維に含浸させ、ドライプリプレグ同士を一体化せしめる際の温度は、マトリックス樹脂の融点以上の温度であれば特に限定されるものではないが、好ましくは160℃以上であり、さらに好ましくは180℃以上である。ドライプリプレグ同士を一体化せしめる際の温度は、通常、500℃以下である。   When producing the glass fiber reinforced composite material of the present invention, the temperature at which the softened matrix resin is impregnated into the glass fiber and the dry prepregs are integrated is particularly limited as long as the temperature is equal to or higher than the melting point of the matrix resin. However, it is preferably 160 ° C. or higher, more preferably 180 ° C. or higher. The temperature at which the dry prepregs are integrated is usually 500 ° C. or lower.

本発明の繊維強化複合材料を作製する際に、上記軟化したマトリックス樹脂をガラス繊維に含浸させ、ドライプリプレグ間を一体化せしめる際の加圧条件は、好ましくは1MPa以上の圧力であり、より好ましくは10MPa以上であり、さらに好ましくは20MPa以上である。加圧条件は、通常、500MPa以下である。   When the fiber reinforced composite material of the present invention is produced, the pressure condition when the softened matrix resin is impregnated into glass fibers and the dry prepregs are integrated is preferably a pressure of 1 MPa or more, more preferably Is 10 MPa or more, more preferably 20 MPa or more. The pressure condition is usually 500 MPa or less.

本発明で得られたガラス繊維複合材料の形状は、特に限定されるものではないが、金型によって種々の形状に成形され、例えば、平板形状、凸型形状、凹型形状、T型形状、Z型形状、I型形状などが挙げられ、また、ボルトやリベットなどを用いて機械的結合させるために、穴のあいた形状も挙げられる。   The shape of the glass fiber composite material obtained in the present invention is not particularly limited, but is formed into various shapes by a mold, for example, flat plate shape, convex shape, concave shape, T shape, Z Examples of the shape include a mold shape and an I shape, and examples of the shape include a hole in order to perform mechanical coupling using a bolt or a rivet.

ガラス繊維強化複合材料中に含まれる樹脂含有量は、好ましくは10〜60重量%、より好ましくは、20〜60重量%、さらに好ましくは20〜50重量%とするのがよい。樹脂含有量が60重量%を越えると、軽量化に適さない場合があり、10重量%未満の場合では樹脂量が少ないため複合材料中にボイドが残存し、機械特性が低下する場合がある。   The resin content contained in the glass fiber reinforced composite material is preferably 10 to 60% by weight, more preferably 20 to 60% by weight, and still more preferably 20 to 50% by weight. When the resin content exceeds 60% by weight, it may not be suitable for weight reduction. When the resin content is less than 10% by weight, voids may remain in the composite material because the amount of the resin is small, and mechanical properties may deteriorate.

本発明で得られたガラス繊維複合材料の見かけの層間せん断強度は、ASTM−D2344に基づく複合材料の3点曲げによるショートビームシェア試験法に準拠して、作製した積層板の中心部付近を裁断して測定された結果、界面での層間せん断破壊と共に、樹脂の圧縮破壊や引張り破壊などの他の破壊様式を伴って起こる可能性があるため、見かけの層間せん断強度として定義されるものであるが、その見かけの層間せん断強度は、実用上での使用に耐えうるために、20MPa以上であることが好ましく、25MPa以上であることがさらに好ましい。見かけの層間せん断強度は、通常、300MPa以下である。   The apparent interlaminar shear strength of the glass fiber composite material obtained in the present invention is determined by cutting the vicinity of the center of the produced laminate in accordance with the short beam shear test method by three-point bending of the composite material based on ASTM-D2344. As a result, it is defined as the apparent interlaminar shear strength because it may occur along with the interlaminar shear fracture at the interface as well as other fracture modes such as compression fracture and tensile fracture of the resin. However, the apparent interlaminar shear strength is preferably 20 MPa or more, and more preferably 25 MPa or more in order to withstand practical use. The apparent interlayer shear strength is usually 300 MPa or less.

以下に、本発明を説明するためにいくつかの実施例を示すが、これによって本発明を限定するものではない。また、用いた原材料、各特性の測定条件は次の通りとした。
<マトリックス樹脂>
カネカ製ポリ塩化ビニル樹脂(商品名:カネビニールS−400(平均重合度:480)
<安定化剤>
日東化成製メチルスズ系液体状安定化剤 商品名:AT−1500
<ガラス繊維>
Hanguk Fiber社製ガラス繊維平織材(商品名:G618、繊維目付:200g/m2
<ガラス繊維複合材料の層間せん断強度測定>
ASTM−D2344に準拠して行った。
<ガラス繊維複合材料の作製方法>
The following examples are provided to illustrate the invention, but are not intended to limit the invention. The raw materials used and the measurement conditions for each characteristic were as follows.
<Matrix resin>
Kaneka Polyvinyl Chloride Resin (trade name: Kane Vinyl S-400 (average polymerization degree: 480)
<Stabilizer>
Nitto Kasei Methyl Tin Liquid Stabilizer Product Name: AT-1500
<Glass fiber>
Hanguk Fiber glass fiber plain weave material (trade name: G618, fiber basis weight: 200 g / m 2 )
<Measurement of interlaminar shear strength of glass fiber composites>
This was performed according to ASTM-D2344.
<Method for producing glass fiber composite material>

(実施例1)
カネビニールS−400 100部とAT−1500 3部を粉末攪拌機にて均一混合した後に、カレンダー成形機にて165℃で軟化させながら均一に混練し、厚さ約700μmのシートを作製した。これをTHFに均一溶解させ、15〜20wt%のTHF溶液を作製し、ステンレス製容器に移した。予めガラス繊維平織材(約10cm角)の表面をTHFにて洗浄し、乾燥させたものを、上記ポリ塩化ビニル樹脂のTHF溶液に浸して取り出し、常圧下、エアードライヤーにて30分乾燥させ、ドライプリプレグを作製した。上記操作をガラス繊維平織材12枚に対し行い、得られたドライプリプレグ中の平均樹脂量は、約27%であった。さらに作製した12枚のドライプリプレグを再度、同樹脂溶液中に浸し、取り出した後に乾燥させた。上記操作により、さらに樹脂を付着させて得られたドライプリプレグの平均樹脂量は、約42重量%であった。
Example 1
After 100 parts of Kane Vinyl S-400 and 3 parts of AT-1500 were uniformly mixed with a powder stirrer, they were uniformly kneaded while being softened at 165 ° C. with a calendering machine to prepare a sheet having a thickness of about 700 μm. This was uniformly dissolved in THF to prepare a 15 to 20 wt% THF solution, which was transferred to a stainless steel container. The surface of a glass fiber plain weave material (about 10 cm square) was previously washed with THF and dried, soaked in a THF solution of the above polyvinyl chloride resin, taken out for 30 minutes with an air dryer under normal pressure, A dry prepreg was prepared. The above operation was performed on 12 sheets of plain glass fiber material, and the average amount of resin in the obtained dry prepreg was about 27%. Further, the 12 produced dry prepregs were again immersed in the resin solution, taken out and dried. The average resin amount of the dry prepreg obtained by further attaching the resin by the above operation was about 42% by weight.

凸型(厚さ2mm、6.5cm角)形状を有するステンレス板(厚さ1cm、10cm角)に、中心部に孔(厚さ1cm、6.5cm角)があいたステンレス製スペーサー(厚さ1cm、10cm角)を噛み合わせた。孔の中に剥離フィルムとしてテトラフルオロエチレン製シートを置き、その上から上記で作製した平均樹脂量が約42重量%のドライプリプレグを12枚積層した。   Stainless steel spacer (thickness 1 cm, thickness 2 cm, 6.5 cm square) with a hole (thickness 1 cm, 6.5 cm square) in the center on a stainless steel plate (thickness 1 cm, 10 cm square) having a convex shape (thickness 2 cm, 6.5 cm square) 10 cm square). A tetrafluoroethylene sheet was placed in the hole as a release film, and 12 sheets of dry prepreg having an average resin amount of about 42% by weight produced above were laminated thereon.

さらに上部にテトラフルオロエチレン製シートを積層し、凸型(厚さ6mm、6.5cm角)形状を有するステンレス板(厚さ1cm、10cm角)をかみ合わせ、予め加熱しておいたプレス成形機(成形温度180℃)内にセットし、金型温度が180℃に達した後に、圧力20MPa、時間5分で圧縮成形し、冷却硬化させることで、繊維織物の目崩れがない厚さが約2−3mmの板状のガラス繊維複合材料を得た。結果を表1に示す。   Furthermore, a tetrafluoroethylene sheet is laminated on the upper part, and a press plate machine (1 mm thick, 10 cm square) having a convex shape (thickness 6 mm, 6.5 cm square) is engaged and heated in advance ( After the mold temperature reaches 180 ° C., compression molding is performed at a pressure of 20 MPa for 5 minutes, and cooling and curing is performed. A -3 mm plate-like glass fiber composite material was obtained. The results are shown in Table 1.

(実施例2)
実施例1において最終的に得られた平均樹脂量が約42重量%のドライプリプレグに対し、さらに樹脂溶液への浸漬と乾燥操作を繰り返し加えた他は、実施例1と全く同様にして行った。最終的に得られたドライプリプレグ中の平均樹脂量は57重量%であった。結果を表1に示す。
(Example 2)
The same procedure as in Example 1 was performed, except that the dry prepreg having an average resin amount of about 42% by weight finally obtained in Example 1 was further subjected to immersion and drying operations in the resin solution. . The average amount of resin in the finally obtained dry prepreg was 57% by weight. The results are shown in Table 1.

(実施例3)
実施例1と同様にして作製した15〜20wt%のPVC樹脂濃度のTHF溶液を、ステンレス製容器に移した。予めガラス繊維平織材(約10cm角)の表面をTHFにて洗浄し、乾燥させたものを、上記ポリ塩化ビニル樹脂のTHF溶液に浸して取り出し、常圧下、エアードライヤーにて30分乾燥させ、ドライプリプレグを作製した。上記操作をガラス繊維平織材12枚に対して行った。得られたドライプリプレグ中の平均樹脂量は、約32%であった。
(Example 3)
A THF solution having a PVC resin concentration of 15 to 20 wt% produced in the same manner as in Example 1 was transferred to a stainless steel container. The surface of a glass fiber plain weave material (about 10 cm square) was previously washed with THF and dried, soaked in a THF solution of the above polyvinyl chloride resin, taken out for 30 minutes with an air dryer under normal pressure, A dry prepreg was prepared. The above operation was performed on 12 sheets of plain glass fiber material. The average resin amount in the obtained dry prepreg was about 32%.

上記で作製した15〜20wt%の樹脂濃度のカネビニールS−400のTHF溶液を、ガラス基板上に流延し、空気循環式オーブン中にて30分乾燥させることで、厚さ約30μmのPVCフィルムを得た。   The above-prepared THF solution of Kanevinyl S-400 having a resin concentration of 15 to 20 wt% is cast on a glass substrate and dried in an air circulation oven for 30 minutes, whereby a PVC having a thickness of about 30 μm is obtained. A film was obtained.

実施例1と同じ金型を使用して、孔の中にテトラフルオロエチレン製シートを置き、その上から上記で作製したカネビニールS−400の樹脂フィルム(6.5cm角)と上記で作製したドライプリプレグ(6.5cm角)を交互に重ね、ポリ塩化ビニル樹脂のフィルム層は合計13層、ドライプリプレグ層は12層となるように積層した。ポリ塩化ビニルの重量は、ドライプリプレグ中に含まれる重量とフィルムの重量を含め、全重量に対して、40重量%となるようにした。   Using the same mold as in Example 1, a sheet made of tetrafluoroethylene was placed in the hole, and the resin film (6.5 cm square) of Kane Vinyl S-400 prepared above was prepared from above. Dry prepregs (6.5 cm square) were alternately stacked, and the film layers of the polyvinyl chloride resin were laminated so that a total of 13 layers and 12 dry prepreg layers were formed. The weight of polyvinyl chloride was 40% by weight based on the total weight including the weight contained in the dry prepreg and the weight of the film.

その後、さらにテトラフルオロエチレン製シートと実施例1と同じ凸型形状を有するステンレス板をかみ合わせ、プレス成形機(成形温度180℃、圧力20MPa、時間5分)で高温圧縮一体化成形し、冷却硬化させることで、繊維織物の目崩れがない厚さが約2−3mmの板状のガラス繊維複合材料を得た。結果を表1に示す。   Thereafter, a tetrafluoroethylene sheet and a stainless steel plate having the same convex shape as in Example 1 were further engaged, and high-temperature compression integrated molding was performed with a press molding machine (molding temperature 180 ° C., pressure 20 MPa, time 5 minutes), followed by cooling and curing. By doing so, a plate-like glass fiber composite material having a thickness of about 2-3 mm with no disruption of the fiber fabric was obtained. The results are shown in Table 1.

(比較例1)
実施例1と同様にして得られたシート形状を有する厚さ約700μmのカネビニールS−400を用いて、温度180℃、圧力20MPaの条件下にて5分間プレス成形し、厚さ約200μmのカネビニールS−400のフィルムを作製した。実施例1と同じ金型を用いて、金型内にテフロンシート(テフロンは登録商標)を置き、その上から上記で作製した厚さ約200μmのポリ塩化ビニルフィルムとガラス繊維平織材とを交互に重ね、ポリ塩化ビニル樹脂のフィルム層は合計13層、ガラス繊維平織材層は12層となるように積層した。ポリ塩化ビニルの重量は、全重量に対して、40重量%となるようにした。
(Comparative Example 1)
Using Kane Vinyl S-400 having a sheet shape obtained in the same manner as in Example 1 and having a thickness of about 700 μm, press molding was performed for 5 minutes under the conditions of a temperature of 180 ° C. and a pressure of 20 MPa, and a thickness of about 200 μm. Kane Vinyl S-400 film was produced. Using the same mold as in Example 1, a Teflon sheet (Teflon is a registered trademark) is placed in the mold, and a polyvinyl chloride film having a thickness of about 200 μm and a glass fiber plain weave are alternately formed thereon. The film layers of the polyvinyl chloride resin were laminated so that a total of 13 layers and a glass fiber plain weave layer had 12 layers. The weight of polyvinyl chloride was 40% by weight based on the total weight.

さらに上部にテトラフルオロエチレン製シートと、実施例1と同じ凸型形状を有するステンレス板をかみ合わせ、さらに同条件下で高温加圧成形することで一体化してガラス繊維強化複合材料を得た。得られた複合材料は、樹脂の流動に伴い、織物繊維の一部が端部方向に目崩れしていた。   Further, a tetrafluoroethylene sheet and a stainless steel plate having the same convex shape as in Example 1 were engaged with each other and further integrated by high-temperature pressure molding under the same conditions to obtain a glass fiber reinforced composite material. In the obtained composite material, part of the woven fiber was broken in the end direction along with the flow of the resin.

実施例1〜3および比較例1の、ドライプリプレグの樹脂量、ガラス繊維複合材料の樹脂量、繊維体積含有率、見かけの層間せん断強度を、表1にまとめた。   Table 1 summarizes the resin amount of the dry prepreg, the resin amount of the glass fiber composite material, the fiber volume content, and the apparent interlayer shear strength in Examples 1 to 3 and Comparative Example 1.

Figure 2011246595
Figure 2011246595

実施例1〜3で得られたガラス繊維強化複合材料の積層板は、実用上十分な層間せん断強度を備えていた。一方、比較例1により得られた積層板は、十分な強度、層間せん断強度を有していなかった。従い、これらの比較から、本発明により得られるガラス強化複合材料は、接着性および機械的強度に優れていることが明らかである。   The laminated sheets of glass fiber reinforced composite materials obtained in Examples 1 to 3 had practically sufficient interlayer shear strength. On the other hand, the laminate obtained by Comparative Example 1 did not have sufficient strength and interlayer shear strength. Therefore, from these comparisons, it is clear that the glass-reinforced composite material obtained by the present invention is excellent in adhesiveness and mechanical strength.

Claims (4)

ポリ塩化ビニル系樹脂をマトリックス樹脂と、モノフィラメント束からなる織布形状を有するガラス繊維を強化繊維とする、ASTM−D2344に基づく複合材料の3点曲げによるショートビームシェア試験法により測定した見かけの層間せん断強度が25℃で20MPa以上であるガラス繊維強化複合材料。 Apparent interlayer measured by a short beam shear test method by a three-point bending of a composite material based on ASTM-D2344 using a polyvinyl chloride resin as a matrix resin and a glass fiber having a woven fabric shape made of a monofilament bundle as a reinforcing fiber. A glass fiber reinforced composite material having a shear strength of 20 MPa or more at 25 ° C. あらかじめマトリックス樹脂を有機溶媒に溶解させた樹脂溶液に、ガラス繊維織物を含浸させ、乾燥することにより、モノフィラメント束内および束表面にマトリックス樹脂を含浸させたドライプリプレグを作製し、これを再度樹脂溶液中に含浸させてドライプリプレグ表面に樹脂溶液を付着させ、乾燥させることにより得られたものを、複数枚積層した状態で、マトリックス樹脂の軟化点以上の温度条件下で加圧した後に、冷却、硬化させることにより作製される請求項1に記載のガラス繊維強化複合材料。 A glass fiber fabric is impregnated in a resin solution in which a matrix resin is dissolved in an organic solvent in advance, and dried to prepare a dry prepreg in which the matrix resin is impregnated in the monofilament bundle and on the bundle surface. The resin solution obtained by impregnating inside and adhering the resin solution to the surface of the dry prepreg, and drying, after being pressed under a temperature condition equal to or higher than the softening point of the matrix resin in a stacked state, cooling, The glass fiber reinforced composite material according to claim 1, which is produced by curing. あらかじめマトリックス樹脂を有機溶媒に溶解させた樹脂溶液に、ガラス繊維織物を含浸させ、乾燥することにより、モノフィラメント束内および束表面にマトリックス樹脂を含浸させたドライプリプレグを作製し、これとマトリックス樹脂とを、交互に複数枚積層した状態で、マトリックス樹脂の軟化点以上の温度条件下で加圧した後に、冷却、硬化させることにより作製される請求項1に記載のガラス繊維強化複合材料。 A glass fiber fabric is impregnated in a resin solution in which a matrix resin is dissolved in an organic solvent in advance and dried to prepare a dry prepreg in which the matrix resin is impregnated in the monofilament bundle and on the bundle surface. 2. The glass fiber reinforced composite material according to claim 1, wherein the glass fiber reinforced composite material is produced by pressurizing under a temperature condition equal to or higher than the softening point of the matrix resin in a state where a plurality of layers are alternately laminated, and then cooling and curing. マトリックス樹脂の重量含有率が20%〜60%である請求項1〜3いずれか一項に記載のガラス繊維強化複合材料。 The glass fiber reinforced composite material according to any one of claims 1 to 3, wherein a weight content of the matrix resin is 20% to 60%.
JP2010120859A 2010-05-26 2010-05-26 Glass fiber-reinforced composite material and production method therefor Pending JP2011246595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120859A JP2011246595A (en) 2010-05-26 2010-05-26 Glass fiber-reinforced composite material and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120859A JP2011246595A (en) 2010-05-26 2010-05-26 Glass fiber-reinforced composite material and production method therefor

Publications (1)

Publication Number Publication Date
JP2011246595A true JP2011246595A (en) 2011-12-08

Family

ID=45412270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120859A Pending JP2011246595A (en) 2010-05-26 2010-05-26 Glass fiber-reinforced composite material and production method therefor

Country Status (1)

Country Link
JP (1) JP2011246595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980024A (en) * 2021-02-23 2021-06-18 吉林大学 Fiber fabric reinforced polyaryletherketone resin-based prepreg, and preparation method and application thereof
CN114937845A (en) * 2022-05-19 2022-08-23 上海芃晟材料技术有限公司 Burning-resistant composite material, preparation method thereof, lithium battery and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980024A (en) * 2021-02-23 2021-06-18 吉林大学 Fiber fabric reinforced polyaryletherketone resin-based prepreg, and preparation method and application thereof
CN112980024B (en) * 2021-02-23 2022-06-21 吉林大学 Fiber fabric reinforced polyaryletherketone resin-based prepreg, and preparation method and application thereof
CN114937845A (en) * 2022-05-19 2022-08-23 上海芃晟材料技术有限公司 Burning-resistant composite material, preparation method thereof, lithium battery and vehicle

Similar Documents

Publication Publication Date Title
US9222202B2 (en) Carbon fiber bundle, method for producing the same, and molded article made thereof
TWI776955B (en) Resin composition, molded article and method for producing the same, prepreg and method for producing the same, and fiber-reinforced molded article and method for producing the same
CN104039873A (en) Carbon fiber-reinforced polypropylene sheet and molded article thereof
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
KR20160040184A (en) Polyimide resin
JP2011006578A (en) Fiber-resin composite sheet and frp molded product
JPH0457699B2 (en)
JP5468964B2 (en) Laminated body
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
US20230017814A1 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
JP2013209629A (en) Polycarbonate resin molding material and molding
KR101482452B1 (en) Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same
JP2014050982A (en) Fiber reinforced plastic molding substrate
CN104177827B (en) A kind of PSA fiber base carbon fibre strengthens composite and preparation method thereof
JP2011246595A (en) Glass fiber-reinforced composite material and production method therefor
JP5525781B2 (en) Laminated body
TW202134029A (en) Sandwich structure and method for manufacturing same
Xu et al. Molding of PBO fabric reinforced thermoplastic composite to achieve high fiber volume fraction
TW201627396A (en) Epoxy-based resin composition for composite materials
JP2013010255A (en) Thermoplastic resin composite material
JP2021175787A (en) Thermoplastic resin film, prepreg, and prepreg laminate
JPS61197238A (en) Laminate
WO2022190669A1 (en) Method for producing molded body
WO2014015801A1 (en) Composite plastic sheet, application of same, and application method therefor
JP2013119684A (en) Opened carbon fiber bundle and method for producing the same