JPH02246368A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02246368A
JPH02246368A JP1068642A JP6864289A JPH02246368A JP H02246368 A JPH02246368 A JP H02246368A JP 1068642 A JP1068642 A JP 1068642A JP 6864289 A JP6864289 A JP 6864289A JP H02246368 A JPH02246368 A JP H02246368A
Authority
JP
Japan
Prior art keywords
impurity
semiconductor wafer
substrate
layer
impurity layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068642A
Other languages
Japanese (ja)
Inventor
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1068642A priority Critical patent/JPH02246368A/en
Publication of JPH02246368A publication Critical patent/JPH02246368A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit crystal defects, and to lower the impurity concentration of the surface by laminating first main surfaces of a first semiconductor wafer and a second semiconductor wafer to form a substrate, performing etching and removal of the first semiconductor wafer until its impurity layer is exposed and forming an impurity region having a conductivity type different from that of the impurity layer. CONSTITUTION:A conductivity type impurity 4 is added to a surface opposite to the first main surface of a first semiconductor wafer 1 to form an impurity layer 41, and the surface oppositely faced to the first main surface of the first semiconductor wafer 1 and the first main surface of a second semiconductor wafer 2 are laminated, thus manufacturing a substrate 10. The first semiconductor wafer 1 of the substrate 10 is etched and removed until the impurity layer 41 is exposed, and an impurity region 42 having a conductivity type different from the impurity layer 41 is formed into the exposed impurity layer 41. Consequently, heating for a prolonged time can be eliminated from a manufacturing process after the laminating of the wafers for reducing crystal defects in a silicon crystal. Accordingly, the crystal defects are inhibited, and the impurity concentration of the surface of the substrate can be lowered easily.

Description

【発明の詳細な説明】 〔概要〕 CMOSデバイス等をSO■基板に形成する半導体装置
の製造方法に関し、 ■SOI基板を使ったデバイスの製造工程中で生じる結
晶欠陥を抑え、かつ■SOI基板の表面不純物濃度を容
易に低くできる半導体装置の製造方法の提供を目的とし
、 第1半導体ウェハの第1の主面、及び第2半導体ウェハ
の第1の主面の少なくとも一方に、絶縁層を形成する工
程と、 該第1半導体ウェハの第1の主面とは対向する面に導電
型不純物を添加して、不純物層を形成する工程と、 該第1半導体ウェハの第1の主面とは対向する面と、該
第2半導体ウェハの第1の主面とを張り合わせて基板を
作る工程と、 該基板の該第1半導体ウェハを、前記不純物層が露出す
るまで食刻除去する工程と、 露出した不純物層中に、該不純物層とは相異なる導電型
の不純物領域を形成する工程とを有して構成される。
[Detailed Description of the Invention] [Summary] A method for manufacturing a semiconductor device in which a CMOS device or the like is formed on an SOI substrate. An insulating layer is formed on at least one of a first main surface of a first semiconductor wafer and a first main surface of a second semiconductor wafer, with the aim of providing a method for manufacturing a semiconductor device that can easily reduce surface impurity concentration. a step of adding a conductivity type impurity to a surface opposite to the first main surface of the first semiconductor wafer to form an impurity layer; and a step of forming an impurity layer on the first main surface of the first semiconductor wafer. forming a substrate by bonding opposing surfaces and a first main surface of the second semiconductor wafer; etching away the first semiconductor wafer of the substrate until the impurity layer is exposed; forming an impurity region of a conductivity type different from that of the impurity layer in the exposed impurity layer.

3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、CMOSデバイス等をsor基板に形成する
半導体装置の製造方法に関する。
3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device in which a CMOS device or the like is formed on a SOR substrate.

近年、電子機器に求められる多機能化、小型化を背景に
して、半導体デバイスには高速化、高密度化が求められ
ている。しかし、さらに高速化。
In recent years, as electronic devices have become more multifunctional and smaller, semiconductor devices have been required to have higher speeds and higher densities. But even faster.

高密度化を推進しようとすると、克服せねばならない課
題が現れた0例えばCMOSデバイスを高速化しようと
すると、pチャネルMOSFETとnチャネルMO5F
II!Tとを近づけねばならないが、両者を近づけると
半導体基板に入るわずかなノイズが原因して、両PET
間に電流が流れ続ける、いわゆるラフチアツブ現象が発
生する。
In order to promote higher density, there are issues that must be overcome.For example, in order to increase the speed of CMOS devices, p-channel MOSFET and n-channel MOSFET
II! However, if the two are brought close together, a small amount of noise entering the semiconductor substrate will cause the two PET
A so-called rough stub phenomenon occurs in which current continues to flow between the two.

前記課題を解決する有効な製造方法として、S0!(S
ilicon On In5ulator)基板を用い
た技術がある。このS別基板は、シリコン層中にSiO
2等の絶縁膜がサンドインチされた構造をしており、例
えばCMOSデバイスに用いた場合、素子領域となるシ
リコン層の下部に既に−様なSiO□層が形成されてい
るので、pチャネルMOSFETとnチャネルMOSI
’ETの間をトレンチ溝などで素子分離するだけで、確
実にpチャネルMOSFETとnチャネルMOSFET
とを絶縁分離できる。PチャネルMOSFETとnチャ
ネル問5PETとが完全に絶縁分離されるから、両者を
接近させてもラッチアップ現象の発生はない。従って積
極的にpチャネルMOSFETとnチャネルMOSFI
!Tとを近づけることができ、CMOSデバイスのより
高速化、より高密度化を実現できる。以上のようにSO
■基板は、ラッチアップ等の問題を解決する有効な手段
となる。しかしSOIは、SiO□とシリコンという熱
膨張係数の違う二つの材質からなるがゆえに、SOI形
成後の工程から熱ストレスのかかる長時間高温加熱をな
くしたい。
As an effective manufacturing method to solve the above problem, S0! (S
There is a technology using an ilicon (on inverter) substrate. This S-separated substrate has SiO in the silicon layer.
It has a structure in which the second insulating film is sandwiched, and when used in a CMOS device, for example, a --like SiO□ layer is already formed under the silicon layer that becomes the element region, so the p-channel MOSFET and n-channel MOSI
'By simply isolating the elements between the ETs with a trench, etc., you can reliably separate the p-channel MOSFET and n-channel MOSFET.
Can be insulated and separated. Since the P-channel MOSFET and the n-channel MOSFET are completely insulated and separated, no latch-up phenomenon occurs even if they are brought close to each other. Therefore, we actively use p-channel MOSFET and n-channel MOSFET.
! T can be brought closer to CMOS devices, and higher speed and higher density CMOS devices can be achieved. As above, SO
■The board is an effective means to solve problems such as latch-up. However, since SOI is made of two materials, SiO□ and silicon, which have different coefficients of thermal expansion, it is desirable to eliminate long-term high-temperature heating that causes thermal stress from the process after SOI formation.

〔従来の技術〕[Conventional technology]

それではこのSOIについて、最近多用される張り合わ
せSOI技術をCMOSデバイスに適用した場合を例に
説明する。この張り合わせSQI技術は、二枚のシリコ
ンウェハの少なくとも一方のウェハの表面を熱酸化する
などして酸化膜を形成後、この表面酸化したウェハ同志
を重ねて接着する手順によってSO■構造を作る技術で
ある。
Next, this SOI will be explained using an example in which the bonded SOI technology, which has been frequently used recently, is applied to a CMOS device. This bonding SQI technology is a technology that creates an SO structure by forming an oxide film by thermally oxidizing the surface of at least one of two silicon wafers, and then stacking and bonding the surface-oxidized wafers together. It is.

第3図は、従来の張り合わせSot基板の製造工程図で
ある0図中、1は第1半導体ウェハ、2は第2半導体ウ
ェハであり、3は酸化層である。また10は基板であり
、第1半導体ウェハ1と第2半導体ウェハ2とを張り合
わせた後、研磨してできる。この基板lOに対して不純
物4を添加して、不純物層41中の浅い部分では高濃度
領域45ができる。
FIG. 3 is a manufacturing process diagram of a conventional bonded Sot substrate. In FIG. 0, 1 is a first semiconductor wafer, 2 is a second semiconductor wafer, and 3 is an oxide layer. Further, 10 is a substrate, which is formed by bonding the first semiconductor wafer 1 and the second semiconductor wafer 2 together and then polishing them. Impurity 4 is added to this substrate IO, and a high concentration region 45 is formed in a shallow portion of impurity layer 41.

工程(a)で、400〜600t1m厚の二枚のシリコ
ンウェハ(第1半導体ウェハ1.第2半導体ウェハ2)
の表面を酸化して、それぞれの表面に厚さlum程度の
酸化層3を形成する0次いで工程(b)で、この二枚の
シリコンウェハの酸化表面を互いに重ね合わせた後、ウ
ェハ表面に直接電界を印加してこの二枚を仮接着させる
。この後、例えば1100°C230分間の条件でウェ
ハを完全に接着させて、シリコン層中に酸化層がサンド
インチされた構造の基板10が形成される。工程(C)
で、素子領域として厚さ約3μmだけ残し、前記基板の
片面を研磨除去する。工程(d)では、素子領域となる
p型不純物層41.n型不純物層42を形成する。前記
基板10の表面研磨した片面のうち、p−Wallとな
る部分にはB”  (ボロン)イオンを注入する。また
p−Wellとなる部分に隣接したn−Wellとなる
部分にはP”  (リン)イオンを注入する。この後、
1200°C,3〜6時間加熱して、不純物層41を拡
散させる。この不純物拡散によって、p型不純物層41
.n型不純物層42中に不純物濃度の濃淡ができ、図示
した高濃度813tj、45ができる。以上の工程によ
り、第3図(d)に示す構造の張り合わせSo1基板に
ウェルが形成され、これに続いて、素子形成のための通
常工程を経て、所望の張り合わせSOI技術を利用した
CMOSデバイスは完成する。
In step (a), two silicon wafers (first semiconductor wafer 1, second semiconductor wafer 2) with a thickness of 400 to 600 t1m are prepared.
The oxidized surfaces of the two silicon wafers are oxidized to form an oxide layer 3 with a thickness of about lum on each surface.Next, in step (b), after the oxidized surfaces of the two silicon wafers are superimposed on each other, an oxidized layer 3 is formed on each surface. An electric field is applied to temporarily bond the two pieces together. Thereafter, the wafers are completely bonded at 1100° C. for 230 minutes, for example, to form a substrate 10 having a structure in which an oxide layer is sandwiched in the silicon layer. Process (C)
Then, one side of the substrate is removed by polishing, leaving only a thickness of about 3 μm as an element region. In step (d), a p-type impurity layer 41. which becomes an element region is formed. An n-type impurity layer 42 is formed. Of the surface-polished surface of the substrate 10, B" (boron) ions are implanted into the part that will become a p-Wall. Also, P" (boron) ions are implanted into the part that will become an n-Well adjacent to the part that will become a p-Well. (phosphorus) ions are implanted. After this,
The impurity layer 41 is diffused by heating at 1200° C. for 3 to 6 hours. By this impurity diffusion, the p-type impurity layer 41
.. The impurity concentration is varied in the n-type impurity layer 42, and the high concentration 813tj, 45 shown in the figure is formed. Through the above steps, a well is formed in the bonded SO1 substrate having the structure shown in FIG. Complete.

ところで、一般に、イオン注入で形成した不純物層の深
さを3μm程度にまで深めるためには、上記の要領で長
時間高温加熱して不純物拡散する必要がある。従来は、
この不純物拡散を酸化層をシリコンで挟んだ、いわゆる
Sol構造ができた後に行っている。しかし、SOI構
造完成後に長時間の高温加熱工程を含むと、シリコンと
酸化層との熱膨張率の違いから基板にバイメタル同様の
作用が起き、シリコン結晶中にストレスが蓄積され結晶
欠陥の発生を免れない0例えば、小電力で動作すること
を特徴としているCMOS (相補型MO9)集積回路
の場合、このような結晶欠陥の発生が接合リーク電流を
増大させ、素子の劣化につながる。
Generally, in order to increase the depth of an impurity layer formed by ion implantation to about 3 μm, it is necessary to diffuse impurities by heating at a high temperature for a long time as described above. conventionally,
This impurity diffusion is performed after a so-called Sol structure in which an oxide layer is sandwiched between silicon layers is formed. However, if a long-time high-temperature heating process is included after the SOI structure is completed, the difference in thermal expansion coefficient between silicon and oxide layer will cause a similar effect on the substrate to occur on a bimetallic layer, causing stress to accumulate in the silicon crystal and causing crystal defects. For example, in the case of a CMOS (complementary MO9) integrated circuit, which is characterized by its ability to operate with low power, the occurrence of such crystal defects increases junction leakage current, leading to device deterioration.

一方、従来技術には不純物拡散の点でも問題がある。従
来のSOI技術では、Sol構造完成後にSO■基板の
表面側から不純物を拡散するので、SOI基板の表面付
近で特に不純物濃度が高くなる。−例として、第2図に
不純物拡散したシリコン層の濃度プロファイルを、横軸
に基板表面からの深さ。
On the other hand, the conventional technology also has problems in terms of impurity diffusion. In the conventional SOI technology, impurities are diffused from the surface side of the SOI substrate after the Sol structure is completed, so that the impurity concentration becomes particularly high near the surface of the SOI substrate. - As an example, FIG. 2 shows the concentration profile of a silicon layer into which impurities have been diffused, and the horizontal axis represents the depth from the substrate surface.

縦軸に各深さにおける不純物濃度をとって示す。The impurity concentration at each depth is plotted on the vertical axis.

第2図によれば、基板の拡散面付近の不純物濃度が特に
高いことが明瞭である。 SOIに限らず、−般に素子
形成基板の表面濃度が高いと、エピタキシャル成長時に
オートドーピングが多くなって、デバイスの動作を鈍ら
せる原因になる。不純物拡散面から深い部分の不純物濃
度を高める方法は他にも知られているが、大規模な装置
が必要な上、工程が複雑である。
According to FIG. 2, it is clear that the impurity concentration near the diffusion surface of the substrate is particularly high. Not limited to SOI, but in general, when the surface concentration of an element forming substrate is high, autodoping increases during epitaxial growth, which causes a slowdown in device operation. Other methods are known for increasing the impurity concentration deep from the impurity diffusion surface, but they require large-scale equipment and are complicated processes.

以上述べた■Sol構造の半導体デバイスの製造工程中
で生じる結晶欠陥を抑え、かつ■Sol基板の表面不純
物濃度を容易に低くできる半導体装置の製造方法が待望
されていた。
There has been a long-awaited method for manufacturing a semiconductor device that can suppress crystal defects that occur during the manufacturing process of the semiconductor device having the ■Sol structure as described above, and can easily reduce the surface impurity concentration of the ■Sol substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

問題となっていることは、従来のSol技術では、ウェ
ハを張り合わせた後に不純物拡散のための高温長時間熱
処理が必要となり、この熱によってシリコン結晶中に結
晶欠陥が発生するために素子の劣化を惹起しがちである
ことと、soy基板表面付近での不純物濃度が高くなる
ためにエビ成長時にオートドーピングが生じてデバイス
の動作を鈍らせてしまうことの二点である。
The problem with conventional Sol technology is that after the wafers are bonded together, high-temperature, long-term heat treatment is required to diffuse impurities, and this heat generates crystal defects in the silicon crystal, which can lead to device deterioration. The two problems are that autodoping occurs during shrimp growth due to the high impurity concentration near the surface of the soy substrate, which slows down the operation of the device.

本発明は、従来技術が抱えるこれら二つの課題を一気に
解決しようとなされたものであり、■SOI基板を使っ
たデバイスの製造工程中で生じる結晶欠陥を抑え、かつ
■SOt基板の表面不純物濃度を容易に低くできる半導
体装置の製造方法の提供を目的としている。
The present invention is an attempt to solve these two problems faced by the conventional technology at once, and it aims to: 1) suppress crystal defects that occur during the manufacturing process of devices using SOI substrates, and 2) reduce the surface impurity concentration of SOI substrates. The purpose of the present invention is to provide a method for manufacturing a semiconductor device that can be easily manufactured in low cost.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために、本発明では、第1半導体ウ
ェハの第1の主面、及び第2半導体ウェハの第1の主面
の少なくとも一方に、絶縁層を形成する工程と、該第1
半導体ウェハの第1の主面とは対向する面に導電型不純
物を添加して、不純物層を形成する工程と、該第1半導
体ウェハの第1の主面とは対向する面と、該第2半導体
ウェハの第1の主面とを張り合わせて基板を作る工程と
、該基板の該第1半導体ウェハを、前記不純物層が露出
するまで食刻除去する工程と、露出した不純物層中に、
該不純物層とは相異なる導電型の不純物領域を形成する
工程とを手段として有する。
In order to achieve this object, the present invention includes the steps of forming an insulating layer on at least one of the first main surface of the first semiconductor wafer and the first main surface of the second semiconductor wafer;
a step of adding a conductivity type impurity to a surface opposite to the first main surface of the semiconductor wafer to form an impurity layer; a step of bonding together the first main surfaces of two semiconductor wafers to form a substrate; a step of etching away the first semiconductor wafer of the substrate until the impurity layer is exposed;
The method includes a step of forming an impurity region having a conductivity type different from that of the impurity layer.

〔作用〕[Effect]

sor製造技術にまつわる結晶欠陥の発生は、製造工程
中の加熱によるシリコン結晶のストレスに起因するもの
である。従って、シリコン結晶中の結晶欠陥を減らすた
めには、ウェハを張り合わせた後の製造工程から長時間
の加熱をなくせばよい。
The occurrence of crystal defects associated with SOR manufacturing technology is caused by stress in silicon crystals due to heating during the manufacturing process. Therefore, in order to reduce crystal defects in silicon crystals, long-term heating can be eliminated from the manufacturing process after wafers are bonded together.

またシリコン基板に不純物を拡散させると、第2図のよ
うに、拡散面から浅い位置で不純物濃度は最も高くなる
。従って拡散面上は反対側の面をおもてにすれば、so
y基板表面付近の不純物濃度は低くできる。
Furthermore, when impurities are diffused into a silicon substrate, the impurity concentration becomes highest at a shallow position from the diffusion surface, as shown in FIG. Therefore, if you face the opposite side of the diffusion surface, so
The impurity concentration near the y-substrate surface can be lowered.

本発明では、高温熱処理による不純物拡散工程をSOI
構造完成前に終えているので、熱ストレスがかからなく
なって、結晶欠陥が生じなくなる。
In the present invention, the impurity diffusion process by high-temperature heat treatment is performed on SOI.
Since the process is completed before the structure is completed, no thermal stress is applied and no crystal defects occur.

またウェハを裏側から削るので、表面不純物濃度は低く
でき、エビ成長時のオートドーピングを避けることがで
きる。
Furthermore, since the wafer is ground from the back side, the surface impurity concentration can be lowered, and autodoping during shrimp growth can be avoided.

〔実施例〕〔Example〕

以下、本発明の一実施例について、第1図を参照して説
明する。第1図は、本発明の一実施例に則した張り合わ
せSOI技術によるCMOSデバイスの製造工程図であ
る。図中、1は第1半導体ウェハ。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a process diagram for manufacturing a CMOS device using bonded SOI technology according to an embodiment of the present invention. In the figure, 1 is the first semiconductor wafer.

2は第2半導体ウェハ、3は酸化層、4は不純物。2 is a second semiconductor wafer, 3 is an oxide layer, and 4 is an impurity.

41はn型不純物層、42はn型不純物層、45は高濃
度領域、10は基板である。
41 is an n-type impurity layer, 42 is an n-type impurity layer, 45 is a high concentration region, and 10 is a substrate.

第1図(a)参照:  625μm厚の面方位(100
)のn型シリコンウェハを2枚用意し、このうち第1半
導体ウェハ1の表面から、p−Wellとなる領域には
B(ボロン)イオンを濃度10”cs+−”程度注入す
る。また、n−Wellとなる領域にはP(リン)イオ
ンを濃度10110l2”程度注入する。詳細に説明す
ると、用意した第1.第2半導体ウェハの表面を、酸化
または気相成長して、ウェハ表面に酸化層3を厚さ約0
.02〜10μmに形成する。その後第1半導体ウェハ
の表面にイオン注入し、次いで1200℃〜1250℃
、N、(窒素)雰囲気中で3時間加熱して不純物を拡散
させ、n−Wel I + p−Wel 1層を形成す
る。こうしてp型不純物層41.  n型不純物層42
は、約3μm〜5μmの深さになる。不純物を拡散後、
ウェハの不純物注入面付近に、不純物濃度の高い高濃度
領域45ができる。なお本実施例では、チャネリング防
止のためにウェハ表面に形成した酸化層を通してイオン
注入する。ただし酸化膜を通してイオン注入する方が好
ましいが、必ずしも必要ではない。
See Figure 1(a): 625 μm thick surface orientation (100
) are prepared, and B (boron) ions are implanted at a concentration of about 10"cs+-" from the surface of the first semiconductor wafer 1 into a region that will become a p-well. In addition, P (phosphorus) ions are implanted at a concentration of about 10110l2'' into the region that will become the n-well.To explain in detail, the surfaces of the prepared first and second semiconductor wafers are oxidized or vapor-phase grown to form a wafer. Oxide layer 3 on the surface with a thickness of approximately 0
.. 02 to 10 μm. After that, ions are implanted into the surface of the first semiconductor wafer, and then the temperature is increased to 1200°C to 1250°C.
, N, (nitrogen) atmosphere for 3 hours to diffuse impurities and form an n-Wel I + p-Wel 1 layer. In this way, the p-type impurity layer 41. n-type impurity layer 42
is approximately 3 μm to 5 μm deep. After diffusing impurities,
A high concentration region 45 with a high impurity concentration is formed near the impurity implantation surface of the wafer. In this embodiment, ions are implanted through an oxide layer formed on the wafer surface to prevent channeling. However, although it is preferable to implant ions through the oxide film, it is not necessary.

第1図(b)参照: 第1半導体ウェハ1の不純物を拡
散した表面にある酸化膜31を例えばHF(フッ酸)を
作用させて除去する。なおこの酸化膜31除去工程は、
必ずしも必要ではない。
Refer to FIG. 1(b): The oxide film 31 on the surface of the first semiconductor wafer 1 on which impurities have been diffused is removed by using, for example, HF (hydrofluoric acid). Note that this oxide film 31 removal process is
Not necessarily necessary.

第1図(C)、(d)参照: 第1半導体ウェハ1の拡
散した面と、第2半導体ウェハ2の表面とを重ね合わせ
、直接±100ν〜±500vのパルスを印加、10−
’Pa程度に減圧して仮接着させる。次いで、N、(窒
素)雰囲気中で1100°C930分間カーボンヒータ
ー等で加熱して両ウェハを完全に接着する。
Refer to FIGS. 1(C) and (d): The diffused surface of the first semiconductor wafer 1 and the surface of the second semiconductor wafer 2 are overlapped, and a pulse of ±100ν to ±500v is directly applied.
Temporarily bond by reducing the pressure to about 'Pa. Next, both wafers are completely bonded together by heating with a carbon heater or the like at 1100° C. for 930 minutes in a nitrogen atmosphere.

第1図(e)、(f)参照: 次いで、この不純物を拡
散した面とは反対側の面から厚さ0.5〜5μm程度に
なるまで研磨してp型不純物層41.  n型不純物層
42を露出させる。露出した不純物層41゜42は従来
のものより低不純物濃度に形成できる。
See FIGS. 1(e) and 1(f): Next, the p-type impurity layer 41 is polished to a thickness of approximately 0.5 to 5 μm from the surface opposite to the surface on which the impurity is diffused. The n-type impurity layer 42 is exposed. The exposed impurity layers 41 and 42 can be formed with a lower impurity concentration than the conventional ones.

この不純物層41.42が露出した基板10は、第1図
(f)に示される。この後、通常の素子形成工程を経て
CMOSデバイスを製作する。
The substrate 10 with the impurity layers 41 and 42 exposed is shown in FIG. 1(f). Thereafter, a CMOS device is manufactured through a normal element forming process.

第1図(g)参照: この基板10の表面に、酸化膜1
5をCVD形成する。この酸化膜15は、次いで行うト
レンチ分離に用いるもので、トレンチ溝を開ける位置に
合わせた開孔部を有するものである。
Refer to FIG. 1(g): An oxide film 1 is formed on the surface of this substrate 10.
5 is formed by CVD. This oxide film 15 is used for the subsequent trench isolation, and has an opening corresponding to the position where the trench groove is to be opened.

第1図(h)参照: 両不純物層(n−Well 41
1とp−Well 412)間を酸化膜でトレンチ分離
するために、前記形成した酸化膜15をマスクにRIE
 (リアクティブ・イオン・エツチング)で酸化層3が
露出するまで穴開けする。
Refer to FIG. 1(h): Both impurity layers (n-Well 41
1 and p-Well 412) using an oxide film as a mask, RIE is performed using the formed oxide film 15 as a mask.
Drill holes using (reactive ion etching) until the oxide layer 3 is exposed.

第1図(i)参照: この間孔部側面に、n−Wel1
411とp−Well 412を絶縁分離するため、C
VDで酸化膜を形成する。
See Figure 1(i): On the side of this hole, n-Wel1
411 and p-Well 412, C
Form an oxide film using VD.

第1図(j)参照二 基板10の不純物層形成面にCV
D−5i層9を気相成長させる。前記形成した溝をも埋
める。
Refer to FIG. 1 (j) 2 CV on the impurity layer forming surface of the substrate 10
D-5i layer 9 is grown in vapor phase. The grooves formed above are also filled.

第1図(k)参照: 前記形成したCVD−3ii 9
を基板lOの溝内部にのみ残し、他の表面部分のCVD
Si層は、HF(フッ酸)+HNO3(硝酸)の混合溶
液を作用させて除去する。
See FIG. 1(k): CVD-3ii 9 formed above.
is left only inside the groove of the substrate IO, and CVD is performed on other surface parts.
The Si layer is removed by applying a mixed solution of HF (hydrofluoric acid) and HNO3 (nitric acid).

第1図(1)参照: 次いで、不純物層形成面にある酸
化膜15をフッ酸によって除去する。
Refer to FIG. 1(1): Next, the oxide film 15 on the impurity layer forming surface is removed using hydrofluoric acid.

第1図(m)参照二 次いで、酸化膜、窒化膜を全面に
成長させた後、素子分離領域(図面の中央)に開孔部を
形成し、窒化膜16をマスクとして熱酸化でn−Wel
l 411とp−Well 412を絶縁分離するため
の厚い酸化膜を形成する。
Refer to FIG. 1(m) 2. Next, after growing an oxide film and a nitride film over the entire surface, an opening is formed in the element isolation region (center of the drawing), and thermal oxidation is performed using the nitride film 16 as a mask. Wel
A thick oxide film is formed to insulate and isolate the p-well 411 and the p-well 412.

第1図(n)参照: 窒化膜16.酸化膜15を除去し
て後、基板の不純物層形成面全体にCVDで酸化膜を形
成し、この酸化膜表面にゲート電極7となる多結晶シリ
コンを形成する。次いで、ゲート電極7下部の酸化膜を
ゲート酸化膜6として残し、他をHF(フッ酸)で除去
する。
See FIG. 1(n): Nitride film 16. After removing the oxide film 15, an oxide film is formed by CVD over the entire impurity layer formation surface of the substrate, and polycrystalline silicon, which will become the gate electrode 7, is formed on the surface of this oxide film. Next, the oxide film below the gate electrode 7 is left as the gate oxide film 6, and the rest is removed with HF (hydrofluoric acid).

第1図(0)参照二 次いで、このゲート電極7をマス
クとして、n−Well 411にはp型不純物502
(B”イオン)を、またp−Well 412にはn型
不純物501  (As″″イオン)をそれぞれ注入し
、ソース。
Refer to FIG. 1 (0) 2 Next, using this gate electrode 7 as a mask, p-type impurity 502 is added to the n-Well 411.
(B" ions) and n-type impurity 501 (As"" ions) were implanted into the p-well 412, and the source was formed.

ドレイン層を形成する。勿論これらのソース、ドレイン
のイオン注入は酸化膜を通して注入してもよい。
Form a drain layer. Of course, these source and drain ions may be implanted through the oxide film.

以上実施例により説明してきたが、本発明の製造方法に
よれば、ウェハ張り合わせ後には長時間高温加熱による
不純物拡散の工程がないので、SO■基板に熱ストレス
が蓄積されることがな(、基板10に結晶欠陥が生じる
ことは少なくなる。また本発明の構成では、第1半導体
ウェハ1の不純物を注入した面を裏返して他方の第2半
導体ウェハ2表面に接着しているために、Sol基板表
面の不純物濃度を低くでき、素子の高速動作が可能にな
る。
As explained above using the embodiments, according to the manufacturing method of the present invention, there is no step of impurity diffusion by long-term high-temperature heating after wafer bonding, so thermal stress is not accumulated on the SO2 substrate ( Crystal defects are less likely to occur in the substrate 10. Furthermore, in the configuration of the present invention, since the surface of the first semiconductor wafer 1 into which the impurities have been implanted is turned over and bonded to the surface of the second semiconductor wafer 2, the Sol The impurity concentration on the substrate surface can be lowered, and the device can operate at high speed.

なお本発明は、上記実施例に限定されることなく、多数
の変形が可能である0本実施例では、囲OS (相補型
MOS )デバイスの製造工程について説明してきたが
、相補型MOS以外のデバイスにも適用できる。また、
例えば張り合わせる面のどちらか一方のみ絶縁膜があっ
てもよいし、拡散層形成後絶縁膜を除去し、改めて絶縁
膜を形成し張り合わせることも可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and can be modified in many ways. In this embodiment, the manufacturing process of an OS (complementary MOS) device has been described, but It can also be applied to devices. Also,
For example, there may be an insulating film on only one of the surfaces to be bonded, or it is also possible to remove the insulating film after forming the diffusion layer, form a new insulating film, and then bond.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、■SO1の製
造工程中で生じる結晶欠陥を抑え、かつ■SOI基板の
表面不純物濃度を容易に低くできる半導体装置の製造方
法が実現する。
As described above, according to the present invention, it is possible to realize a method for manufacturing a semiconductor device that can suppress crystal defects generated during the SO1 manufacturing process and easily reduce the surface impurity concentration of the SOI substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に則した張り合わせSO■
技術によるCMOSデバイスの製造工程図、第2図は、
不純物を添加した基板面の濃度プロファイルの図、第3
図は、従来の張り合わせSO1基板の製造工程図である
。 図中、 1・・・第1半導体ウェハ、2・・・第2半導体ウェハ
。 3・・・酸化層(絶縁層)、31・・・酸化層、4・・
・不純物241・・・p型不純物層、42・・・n型不
純物層、411・・・n−Well、  412・・・
p−Well、 45−高濃度領域、51・n型層、5
2・・・p型層、6・・・ゲート酸化膜、7・・・ゲー
ト電極、9・・・CVD−5i層、10・・・基板、1
5・・・酸化膜、16・・・窒化膜、501・・・n型
不純物(砒素イオン)、502・・・p型不純物(ボロ
ンイオン)である。 ′#f圀で/Il 囁l fJぞの2 A(褌ト亘珂シー莢塙ら伊j 1=則したC何θSテン
\イスリ稟¥ざニオL(う纂l目 乏Q4 49閾1M#i紗ハJltl〕CMθSテン\°イス乃
裂y艷工1tlコ′gf Q3 不it 物LIEJIrJtだknillfiy’ロア
r4rvty15嶌2 口 庫淳6円の一貢さ吐枦1;則したCMθ3ヲ八゛イスつ
製造工椙、罰’l&を 図 ぞI)5 従A(っ更占りρNつC5θz)k本反つ製メ憲工[薯
〕第3t] 7つ!
FIG. 1 shows a laminated SO according to an embodiment of the present invention.
Figure 2 is a diagram of the manufacturing process of CMOS devices using technology.
Diagram of the concentration profile of the substrate surface doped with impurities, Part 3
The figure is a manufacturing process diagram of a conventional bonded SO1 substrate. In the figure, 1...first semiconductor wafer, 2...second semiconductor wafer. 3... Oxide layer (insulating layer), 31... Oxide layer, 4...
- Impurity 241...p-type impurity layer, 42...n-type impurity layer, 411...n-Well, 412...
p-Well, 45-high concentration region, 51/n-type layer, 5
2... P-type layer, 6... Gate oxide film, 7... Gate electrode, 9... CVD-5i layer, 10... Substrate, 1
5... Oxide film, 16... Nitride film, 501... N-type impurity (arsenic ion), 502... P-type impurity (boron ion). '# f 圀で/Il whisper fJ zono 2 A (loincloth wa ka sea kaban et al. Ij 1 = regular C what θS ten \ isri 稟 ¥zanio L (mistake Q4 49 threshold 1M #iSahaJltl] CMθS ten\°Isu no crack y 艷工 1tl こ'gf Q3 not thing LIEJIrJt da knillfiy' lower r4 rvty15 2 Kugugu Jun 6 yen contribution 1; regular CMθ3 8゛Isu manufacturing engineering, punishment 'l & I) 5 Sub-A (more fortune-telling ρNtsu C5θz) k-piece fabrication engineering [薯] 3rd t] 7!

Claims (1)

【特許請求の範囲】 第1半導体ウェハ(1)の第1の主面、及び第2半導体
ウェハ(2)の第1の主面の少なくとも一方に、絶縁層
(3)を形成する工程と、 該第1半導体ウェハ(1)の第1の主面とは対向する面
に導電型不純物(4)を添加して、不純物層(41)を
形成する工程と、 該第1半導体ウェハ(1)の第1の主面とは対向する面
と、該第2半導体ウェハ(2)の第1の主面とを張り合
わせて基板(10)を作る工程と、該基板(10)の該
第1半導体ウェハ(1)を、前記不純物層(41)が露
出するまで食刻除去する工程と、 露出した不純物層(41)中に、該不純物層(41)と
は相異なる導電型の不純物領域を形成する工程とを有す
る半導体装置の製造方法。
[Scope of Claims] A step of forming an insulating layer (3) on at least one of the first main surface of the first semiconductor wafer (1) and the first main surface of the second semiconductor wafer (2); a step of adding a conductivity type impurity (4) to a surface opposite to the first main surface of the first semiconductor wafer (1) to form an impurity layer (41); forming a substrate (10) by bonding a surface opposite to the first main surface of the second semiconductor wafer (2) to the first main surface of the second semiconductor wafer (2); etching away the wafer (1) until the impurity layer (41) is exposed; and forming an impurity region of a conductivity type different from that of the impurity layer (41) in the exposed impurity layer (41). A method for manufacturing a semiconductor device, comprising the steps of:
JP1068642A 1989-03-20 1989-03-20 Manufacture of semiconductor device Pending JPH02246368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068642A JPH02246368A (en) 1989-03-20 1989-03-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068642A JPH02246368A (en) 1989-03-20 1989-03-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02246368A true JPH02246368A (en) 1990-10-02

Family

ID=13379582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068642A Pending JPH02246368A (en) 1989-03-20 1989-03-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02246368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753536A (en) * 1994-08-29 1998-05-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device and associated fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753536A (en) * 1994-08-29 1998-05-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device and associated fabrication method

Similar Documents

Publication Publication Date Title
JP2806277B2 (en) Semiconductor device and manufacturing method thereof
JP2003347525A (en) Formation method of soi semiconductor substrate and soi semiconductor substrate formed thereby
JPS62219943A (en) Formation of insulated isolation region
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPH0352224B2 (en)
JP2799254B2 (en) Method for manufacturing semiconductor device
JPH11297703A (en) Fabrication of semiconductor device
JPH10189609A (en) Semiconductor device and manufacturing method thereof
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH02246368A (en) Manufacture of semiconductor device
JPH0964319A (en) Soi substrate and its manufacture
JPH11330437A (en) Soi substrate and manufacture thereof
JP3021850B2 (en) Method for manufacturing semiconductor device
JPS61252645A (en) Manufacture of semiconductor device
JPH11214503A (en) Manufacture of semiconductor device
JPH11274501A (en) Semiconductor device
JPH09213916A (en) Manufacture of soi substrate
JPS61219150A (en) Manufacture of semiconductor device
JPS60137037A (en) Manufacture of semiconductor device
JP2001035855A (en) Manufacture of semiconductor device
JPH104147A (en) Method for forming well of semiconductor device
KR100312981B1 (en) A method of fabricating bonding type SOI wafer
JP3333485B2 (en) Method for manufacturing semiconductor device
JPS5940563A (en) Manufacture of semiconductor device
JPH11163125A (en) Soi substrate and its manufacture