JPH02245617A - Heating element of sensor - Google Patents

Heating element of sensor

Info

Publication number
JPH02245617A
JPH02245617A JP1067180A JP6718089A JPH02245617A JP H02245617 A JPH02245617 A JP H02245617A JP 1067180 A JP1067180 A JP 1067180A JP 6718089 A JP6718089 A JP 6718089A JP H02245617 A JPH02245617 A JP H02245617A
Authority
JP
Japan
Prior art keywords
sensor
heating element
protruding
sections
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1067180A
Other languages
Japanese (ja)
Inventor
Shigeru Miyata
繁 宮田
Kanehisa Kitsukawa
橘川 兼久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1067180A priority Critical patent/JPH02245617A/en
Publication of JPH02245617A publication Critical patent/JPH02245617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable detection suited to mass production and accurate by providing each of a plurality of base bodies having protruding shapes while protruding sections thereof are not connected to each other with one or a plurality of heating elements. CONSTITUTION:A square sensor substrate 1 has two notch sections formed parallel with a long side from a short side thereof so that it 1 is forked in shape and three protruding sections 3a-3c are formed. The protruding sections 3a-3c are not connected together and separated from one another with the notches 2. Therefore, a temperature compensation resistance 7 provided at the protruding section 3a, heating film bodies 6a and 6b provided at the protruding section 3b and a detection resistance 11 provided at the protruding section 3c are insulated thermally from one another to prevent thermal effect thereamong. In addition, elements of the resistance 11, the heating film bodies 6a and 6b and the compensation resistance 7 are provided at the protruding sections 3a-3c of the substrate 1 the same in material and shape and hence, they can be formed by the same process such as print baking thereby achieving a higher mass productivity.

Description

【発明の詳細な説明】 C産業上の利用分野] 本発明は、各種物理量を検出するセンサの発熱体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application] The present invention relates to a heating element for a sensor that detects various physical quantities.

[従来技術] 従来、このようなセンサは、センサ部分以外に、電圧や
電流を検出する抵抗や、補償抵抗、分圧抵抗等々、流量
や温度を検出するのに様々な抵抗が必要となる。
[Prior Art] Conventionally, such a sensor requires various resistances in addition to the sensor portion to detect flow rate and temperature, such as a resistor for detecting voltage and current, a compensation resistor, a voltage dividing resistor, and the like.

第7図は、従来の流量測定センサを示すもので、このセ
ンサは、センサ部分の発熱体素子51と温度補償抵抗素
子52とをセンサホルダ53の内側に設け、このセンサ
ホルダ53を、?LR壁5壁内4内設させている。そし
て、発熱体素子51に流れる電流量を検出するための抵
抗が、発熱体素子51に接続されており、この検出抵抗
は流体の流量が多くなるにつれて発熱体に流れる電流が
増加するため、上記検出抵抗の発熱量も増えて、冷却の
必要がある。このため、この検出抵抗を金属ワイヤ55
とし、この金属ワイヤ55をセンサホルダ53の基端部
の外側面に巻き付けて、流体中、にさらして冷却するよ
うにしていた。
FIG. 7 shows a conventional flow rate measurement sensor, in which a heating element 51 and a temperature compensation resistance element 52 of the sensor part are provided inside a sensor holder 53, and this sensor holder 53 is connected to a ? There are 5 LR walls and 4 internal walls. A resistor for detecting the amount of current flowing through the heating element 51 is connected to the heating element 51, and this detection resistor detects the amount of current flowing through the heating element 51 because the current flowing through the heating element increases as the flow rate of the fluid increases. The amount of heat generated by the detection resistor also increases, requiring cooling. Therefore, this detection resistor is connected to the metal wire 55.
The metal wire 55 was wound around the outer surface of the proximal end of the sensor holder 53 and exposed to a fluid to be cooled.

[発明が解決しようとする課題] しかしながち、金属ワイヤをセンサホルダに巻き付ける
のは、非常に手間がかかり、コスト的にも高価となって
いたし、量産するのにも適していなかった。
[Problems to be Solved by the Invention] However, winding the metal wire around the sensor holder is extremely time-consuming and expensive, and is not suitable for mass production.

また、検出抵抗を発熱体素子や温度補償抵抗素子の近く
に設けたり、発熱体素子を温度補償抵抗素子の近くに設
けることは、発熱体素子の流量検出や温度補償抵抗素子
の温度検出に熱的に悪影響を及ぼして、正確な検出の妨
げとなっていた。
In addition, installing a detection resistor near a heating element or a temperature-compensating resistance element, or installing a heating element near a temperature-compensating resistance element, is useful for detecting the flow rate of the heating element and the temperature of the temperature-compensating resistance element. This had a negative impact on the environment and hindered accurate detection.

本発明は、上述した課題を解決するためになされたもの
であり、量産に適し、製造コストが安く、しかも発熱体
が複数ある場合には、各発熱体の間を確実に断熱できて
、正確な検出を行うことのできるセンサの発熱体を提供
することを目的としている。
The present invention was made to solve the above-mentioned problems, and is suitable for mass production, has low manufacturing costs, and, when there are multiple heating elements, can reliably insulate between each heating element and accurately The object of the present invention is to provide a heating element for a sensor that can perform accurate detection.

[課題を解決するための手段] 上記目的を達成するため本発明においては、突出形状で
、この突出部分が互に連結していない複数の基体夫々に
対して、1又は複数の発熱体を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, one or more heating elements are provided for each of a plurality of bases having a protruding shape and whose protruding portions are not connected to each other. It is something that

[作用] これにより、各基体の突出部分は互いに連結していない
ので、各基体夫々の発熱体からの熱が基体を介して他の
発熱体に伝わることがなくなり、正確な検出を行うこと
ができる。また、各発熱体を同じ様な基体上に設けてい
るから、各基体上に各発熱体を設ける作業を、同じパタ
ーンで行うことができ、量産に適することになる。
[Function] As a result, the protruding parts of each base are not connected to each other, so the heat from each heat generating element of each base is not transmitted to other heat generating elements via the base, making it difficult to perform accurate detection. can. Furthermore, since each heating element is provided on the same base, the work of providing each heating element on each base can be performed in the same pattern, making it suitable for mass production.

ここで、発熱体とは、検出抵抗、流量検出用の発熱体、
温度補償抵抗等、センサにおいて発熱するものすべてを
含む。
Here, the heating element refers to a detection resistor, a heating element for flow rate detection,
Includes everything that generates heat in the sensor, such as temperature compensation resistors.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

第1図は、熱式流量測定センサのセンサ基板1の表面及
び裏面を示し、第2図は、この熱式流量測定センサの製
造工程を示す図である。センサ基板1は、数センチメー
トルの長さ、数ミリメートルの幅、0.3〜1.5ミリ
メートルの厚さの方形状の板で、材質はアルミナ、ジル
コニア、ステアタイト、コープイネイト又はガラスが用
いられる。センサ基板1の寸法は上述のもの以外でもよ
く、材質も上述したちの以外のセラミックスやセラミッ
クス以外のものでもよい。
FIG. 1 shows the front and back surfaces of a sensor substrate 1 of a thermal flow rate measurement sensor, and FIG. 2 is a diagram showing the manufacturing process of this thermal flow rate measurement sensor. The sensor substrate 1 is a rectangular plate with a length of several centimeters, a width of several millimeters, and a thickness of 0.3 to 1.5 mm, and is made of alumina, zirconia, steatite, copinate, or glass. It will be done. The dimensions of the sensor substrate 1 may be other than those described above, and the material may be ceramics other than those described above or materials other than ceramics.

この方形状のセンサ基板1の短辺より長辺に平行に、2
本の切欠部2.2が形成されて、センサ基板1はフォー
ク状となり、3本の突出部3a、3b、3cが形成され
る。この突出部の3a、3b、3cの順番は、流体の流
れの上流側からの順番である。このうち、真中の突出部
3bは他の突出部3a、3cより細く、その先端よりや
や基端側寄りの位置に、小さいスルーホール4が穿設さ
れている。
2 parallel to the long side from the short side of this rectangular sensor board 1.
A book notch 2.2 is formed, so that the sensor substrate 1 becomes fork-shaped and three protrusions 3a, 3b, 3c are formed. The order of the protrusions 3a, 3b, and 3c is from the upstream side of the fluid flow. Among these, the middle protrusion 3b is thinner than the other protrusions 3a and 3c, and a small through hole 4 is bored at a position slightly closer to the proximal end than its tip.

上記切欠部2.2は、センサ基板1を打ち抜きプレスす
るときに同時に形成され、この後スルーホール4はレー
ザーカッティング又はドリル等により穿設される。しか
し、切欠部2.2をセンサ基板1と別工程で形成しても
よいし、反対にセンサ基板1、切欠部2.2、スルーホ
ール4を同時に打ち抜きプレス、レーザーカッティング
等で形成してもよい。
The cutout portion 2.2 is formed at the same time as the sensor substrate 1 is punched and pressed, and then the through hole 4 is formed by laser cutting, drilling, or the like. However, the notch 2.2 may be formed in a separate process from the sensor substrate 1, or conversely, the sensor substrate 1, the notch 2.2, and the through hole 4 may be formed simultaneously by punching press, laser cutting, etc. good.

また、切欠部2.2の奥は湾曲していて、応力の集中を
緩和して、ひび割れ等が防止される。突出部3a、3b
、3cの先端も湾曲させてもよい。
Furthermore, the inner part of the notch 2.2 is curved, which alleviates stress concentration and prevents cracks and the like. Projections 3a, 3b
, 3c may also be curved.

センサ基板1の焼成後、第2図(1)に示すように、斜
線で示す突出部3aの・表面、突出部3bのスルーホー
ル4から中央寄りの表面及び裏面には、高融点のガラス
が印刷焼成され、アンダコートガラス5が積層される。
After firing the sensor substrate 1, as shown in FIG. 2 (1), high melting point glass is formed on the front surface of the protrusion 3a shown by diagonal lines, and on the front and back surfaces of the protrusion 3b near the center from the through hole 4. Printing and baking are performed, and undercoat glass 5 is laminated.

この斜線部分には次述する、発熱膜体6a、6b、温度
補償抵抗7が形成される。
Heat generating film bodies 6a, 6b and a temperature compensation resistor 7, which will be described below, are formed in this shaded area.

次いで、第2図(2)に示すように、真中の突出部3b
の表面及び裏面のアンプコートガラス5上全面にわたっ
て、有機白金ペーストが薄膜状又は厚膜状に印刷される
とともに、突出部3aの表面のアンデコートガラス5上
にも、有機白金ペーストが厚膜状で、細長く3個所で反
転折曲した状態で印刷される。この印刷された、有機白
金ペーストは焼成されることにより、白金が析出され、
発熱膜体6a、6b、温度補償抵抗7が形成される。
Next, as shown in FIG. 2 (2), the central protrusion 3b
The organic platinum paste is printed in a thin or thick film over the entire surface of the amplifier coated glass 5 on the front and back surfaces of the amp coated glass 5, and the organic platinum paste is also printed in a thick film on the undecoated glass 5 on the surface of the protrusion 3a. The paper is printed in a long, thin, inverted and folded state at three points. This printed organic platinum paste is fired to precipitate platinum,
Heat generating film bodies 6a, 6b and temperature compensation resistor 7 are formed.

そして、第2図(3)に示すように、斜線で示す、突出
部3a、3bの表面と、突出部3b、3Cの裏面とに銀
白金又は銀パラジウムが印刷焼成され、導を膜体8が形
成される。
Then, as shown in FIG. 2(3), silver platinum or silver palladium is printed and fired on the surfaces of the protrusions 3a and 3b and the back surfaces of the protrusions 3b and 3C, which are shown with diagonal lines, to conduct the conductivity to the film body 8. is formed.

導電膜体8の形成位置は、センサ基板1の表面では、上
記温度補償抵抗7の両端から突出部3aの基端縁に向っ
て延びて、取出を極部9a、9bが形成され、このうち
内側の導電膜体8は、さらに切欠部2に沿って反転カー
ブし、突出部3b内にはいり、発熱膜体6aに連結され
る。これにより、発熱膜体6aと温度補償抵抗7とが電
気的に接続される。
The conductive film body 8 is formed on the surface of the sensor substrate 1, extending from both ends of the temperature compensation resistor 7 toward the proximal edge of the protruding portion 3a, and forming pole portions 9a and 9b. The inner conductive film 8 further curves inverted along the notch 2, enters the protrusion 3b, and is connected to the heat generating film 6a. Thereby, the heat generating film body 6a and the temperature compensation resistor 7 are electrically connected.

また、センサ基板1の裏面では、突出部3cの先端より
2列の導電膜体8が、突出部3Cの基端縁に向って延び
て、取出@極部9C19dが形成され、このうち内側の
導電膜体8は、さらに切欠部2に沿って反転カーブし、
突出部3b内にはいり、発熱膜体6bに連結される。
Furthermore, on the back surface of the sensor substrate 1, two rows of conductive film bodies 8 extend from the tip of the protrusion 3c toward the proximal edge of the protrusion 3C to form a lead-out@pole part 9C19d. The conductive film body 8 further curves inverted along the notch 2,
It enters into the protrusion 3b and is connected to the heat generating film body 6b.

さらに、スルーホール4の内部からスルーホール4の表
裏付近、そして表裏の発熱膜体6a、6bにかけても導
tWA体8が形成され、両売熱膜体6a、6bも電気的
に接続される。
Further, a conductive tWA body 8 is formed from inside the through hole 4 to near the front and back of the through hole 4, and also to the front and back heat generating film bodies 6a and 6b, and both heat generating film bodies 6a and 6b are also electrically connected.

この後、第2図(4)に示すように、発熱膜体6a、6
b、温度補償抵抗7の上には、ガラスが印刷焼成され、
オーバコートガラス10が形成される。このオーバコー
トガラス10は、発熱膜体6a、6b、温度補償抵抗7
を塵芥から保護するものである。
After this, as shown in FIG. 2(4), the heating film bodies 6a, 6
b. Glass is printed and fired on the temperature compensation resistor 7,
Overcoat glass 10 is formed. This overcoat glass 10 includes heating film bodies 6a, 6b, a temperature compensation resistor 7
to protect it from dust.

次いで、第2図(5)に示すように、突出部3C先端の
裏面側の導電膜体8.8の間には、酸化ルテニウムが印
刷焼成され、検出抵抗11が形成される。この検出抵抗
11は、上記導電膜体8・・・により、発熱WA体6a
、6bと電気的に接続され、上記発熱膜体6a、6bに
流れる電流量を検出するためのらのである。この検出抵
抗11の厚さは、数十ミクロンが望ましいが、これに限
られるものではないし、材質も酸化ルテニウム以外でも
よい。
Next, as shown in FIG. 2(5), ruthenium oxide is printed and fired between the conductive film bodies 8.8 on the back side of the tip of the protrusion 3C, thereby forming the detection resistor 11. This detection resistor 11 is connected to the heat generating WA body 6a by the conductive film body 8...
, 6b, and is used to detect the amount of current flowing through the heat generating film bodies 6a, 6b. The thickness of the detection resistor 11 is preferably several tens of microns, but is not limited to this, and the material may be other than ruthenium oxide.

最後に、第2図(6)に示すように、検出抵抗11の上
には、ポリイミドが印刷されて熱処理さ′れて、オーバ
コートポリイミド12が形成される。
Finally, as shown in FIG. 2(6), polyimide is printed on the detection resistor 11 and heat treated to form an overcoat polyimide 12.

このオーバコートポリイミド12は、検出抵抗11を塵
芥から保護するものであり、厚さは10ミクロン以下が
望ましいが、これに限られるものではないし、材質もポ
リイミド以外でもよい。
This overcoat polyimide 12 protects the detection resistor 11 from dust, and preferably has a thickness of 10 microns or less, but is not limited to this, and may be made of a material other than polyimide.

このようにして製作されたセンサ基板1につき、センサ
基板1の基端の上記取出を極部9a、9b、9c、9d
各々に対し、金属製の電極ビン13・・・が取り付けら
れる。こめt極ビン13は、第3図(1)に示すように
、基端の取付部13aが「コ」字状で、この「コ」字0
分の中央より外方に1本の棒状の接a部13bが延びた
形をしており、「コ」字状の取付部13aの中に、第3
図(2)に示すように、センサ基板1の基端縁が挿入さ
れてハンダ付けされる。
For the sensor substrate 1 manufactured in this way, the above-mentioned extraction of the base end of the sensor substrate 1 is performed at the pole portions 9a, 9b, 9c, 9d.
Metal electrode bins 13 are attached to each of them. As shown in FIG. 3 (1), the attachment part 13a of the base end of the t-pole bin 13 has a "U" shape, and this "U" shape
It has a shape in which one rod-shaped contact part 13b extends outward from the center of the section, and a third
As shown in Figure (2), the proximal edge of the sensor board 1 is inserted and soldered.

センサ基板1に電極ビン13・・・が取り付けられた後
、センサ基板1は、第4図に示すような、センサホルダ
14内に差し込み固定される。
After the electrode bins 13 are attached to the sensor board 1, the sensor board 1 is inserted and fixed into a sensor holder 14 as shown in FIG.

このセンサホルダ14は、厚みのある方形状で角は丸く
なっており、各突出部3a、3b、3cの表と真の対応
部分は、長孔15・・・が形成されていて、流体が各突
出部3a、3b、3cに当たるようになっている。セン
サホルダ14の基端は厚みのある円板状になっていて、
この円板部分が流路壁(図示せず)にOリングを介して
固定される。
This sensor holder 14 has a thick rectangular shape with rounded corners, and long holes 15 are formed in the surfaces of each of the protrusions 3a, 3b, and 3c to allow fluid to flow through the sensor holder 14. It comes into contact with each of the protrusions 3a, 3b, and 3c. The base end of the sensor holder 14 has a thick disk shape,
This disk portion is fixed to a channel wall (not shown) via an O-ring.

上記電極ビン13・・・の接続部1・3b・・・は、セ
ンサホルダ14の円板部分の挿入口16より突出して、
外部回路との接続に使われる。
The connecting portions 1, 3b, etc. of the electrode bins 13, etc. protrude from the insertion opening 16 of the disk portion of the sensor holder 14, and
Used for connection with external circuits.

このように、センサ基板1の各突出部3a、3b、3c
は互に連結されず、切欠部2で分離されているので、突
出部3aに設けられた温度補償抵抗7、突出部3bに設
けられた発熱膜体6a、6b、突出部3cに設けられた
検出抵抗11は、互に断熱されて熱的な影響を防止でき
て、正確な流量測定を行うことができる。
In this way, each protrusion 3a, 3b, 3c of the sensor board 1
are not connected to each other and are separated by the cutout 2, so that the temperature compensating resistor 7 provided on the protrusion 3a, the heat generating film bodies 6a and 6b provided on the protrusion 3b, and the heat generating film bodies 6a and 6b provided on the protrusion 3c are connected to each other. The detection resistors 11 are thermally insulated from each other to prevent thermal influences, allowing accurate flow rate measurement.

また、検出抵抗11、発熱膜体6a、6b、温度補償抵
抗7の各エレメントは、同じ材質、形状のセンサ基板1
の突出部3a、3b、3Cに設けているから、例えば印
刷焼成といった、同じような工程で形成することができ
、量産性が良くなる。
Further, each element of the detection resistor 11, heat generating film bodies 6a, 6b, and temperature compensation resistor 7 is made of the same material and shape as the sensor substrate 1.
Since they are provided on the protrusions 3a, 3b, and 3C, they can be formed in the same process, such as printing and firing, which improves mass productivity.

特に、本実施例では、検出抵抗11、発熱膜体6a、6
b、温度補償抵抗7の各エレメントを、厚膜状に印刷焼
成しているので、量産性が良くなるという点が特に顕著
である。
In particular, in this embodiment, the detection resistor 11, the heat generating film bodies 6a, 6
(b) Since each element of the temperature compensation resistor 7 is printed and fired in the form of a thick film, it is particularly remarkable that mass production is improved.

第5図及び第6図は、別の実施例を示すもので、本実施
例では、センサ基板1を各突出部3a、3b、3cごと
に完全に分割分離したものである。
FIGS. 5 and 6 show another embodiment, in which the sensor substrate 1 is completely divided into protrusions 3a, 3b, and 3c.

この場合、電極ビン13・・・は各突出部3a、3b、
3Cごとに2本ずつ取り付けられ、これに応じてセンサ
基板1が差し込まれるセンサホルダ14の挿入口16も
3個所となる。fl!1の構成や製造工程は上述した実
施例と同じである。
In this case, the electrode bins 13... each have protrusions 3a, 3b,
Two inserts are attached for each 3C, and accordingly there are three insertion openings 16 of the sensor holder 14 into which the sensor substrates 1 are inserted. Fl! The configuration and manufacturing process of Embodiment 1 are the same as those of the embodiment described above.

本実施例では、センサ基板1の各突出部3a、3b、3
Cが完全に分割分離されているので、検出抵抗11、発
熱膜体6a、6b、温度補償抵抗7の各エレメントを完
全に熱的に分離することができる。
In this embodiment, each protrusion 3a, 3b, 3 of the sensor board 1
Since C is completely divided and separated, each element of the detection resistor 11, heat generating film bodies 6a, 6b, and temperature compensation resistor 7 can be completely thermally isolated.

本発明は上記実施例に限定されず、本発明の運賃を逸脱
しない範囲で種々変更可能である9例えば、センサ基板
1の突出部3は、板状のほか、棒状、湾曲状、筒状のも
のでもよく、各突出部3は、平行に位置するだけでなく
、直角方向、反対方向等、異なる方向に延びたりしても
よいし、各エレメントは膜状のほか、堤状のもの、盛り
上ったもの等でもよ(、各エレメントの製造方法も印刷
のほか蒸着、エツチング技法等によるものでもよいし、
本発明は熱式流量測定センサ以外の熱式センサ、例えば
熱式°流速測定センサ、レベルセンサ、温度センサ等や
、その他の電子部品に用いることも可能である。
The present invention is not limited to the above-described embodiments, and can be modified in various ways without departing from the scope of the present invention.9 For example, the protrusion 3 of the sensor substrate 1 may have a plate shape, a rod shape, a curved shape, or a cylindrical shape. The protrusions 3 may not only be located parallel to each other, but may also extend in different directions, such as at right angles or in opposite directions. (The manufacturing method for each element may also be by vapor deposition, etching techniques, etc. in addition to printing,
The present invention can also be used in thermal sensors other than thermal flow rate sensors, such as thermal flow rate sensors, level sensors, temperature sensors, and other electronic components.

[発明の効果] 以上詳述したように、本発明によれば、突出形状で、こ
の突出部分が互に連結していない複数の基体夫々に対し
て、1又は複数の発熱体を設けたから、各基体夫々の発
熱体からの熱が基体を介して他の発熱体に伝わることが
なくなり、正確な検出を行うことができるし、各発熱体
を同じ様な基本上に設けているから、各基体上に各発熱
体を設ける作業を同じパターンで行うことができ、量産
に適する等の効果を奏する。
[Effects of the Invention] As described in detail above, according to the present invention, one or more heating elements are provided for each of a plurality of bases that have a protruding shape and whose protruding portions are not connected to each other. Heat from each heating element of each base will not be transmitted to other heating elements via the base, allowing accurate detection, and since each heating element is installed on the same base, each The work of providing each heating element on the base body can be performed in the same pattern, which has the advantage of being suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の実施例を示すもので、第1
図はセンサ基板1の表面図及び裏面図であり、第2図は
センサの製造工程を示す図であり、第3図はセンサ基板
1への電極ピン13の取り付けた状態を示す図であり、
第4図はセンサホルダ14を取り付けた状態を示す図で
あり、第5図及び第6図は別の実施例を示す図であり、
第7図は従来例を示す図である。 1・・・センサ基板、3a、3b、3C・・・突出部、
4・・・スルーホール、5・・・アンダコートガラス、
6a、6b・・・発熱膜体、7・・・温度補償抵抗、8
・・・導電膜体、9a、9b、9c、9d=−・取出電
極部、10・・・オーバコートガラス、11・・・検出
抵抗、12・・・オーバコートポリイミド、13・・・
1!極ピン、14・・・センサホルダ。
1 to 6 show embodiments of the present invention.
The figures are a front view and a back view of the sensor board 1, FIG. 2 is a diagram showing the manufacturing process of the sensor, and FIG. 3 is a diagram showing the state in which the electrode pins 13 are attached to the sensor board 1.
FIG. 4 is a diagram showing a state in which the sensor holder 14 is attached, and FIGS. 5 and 6 are diagrams showing another embodiment,
FIG. 7 is a diagram showing a conventional example. 1...Sensor board, 3a, 3b, 3C...Protrusion part,
4...Through hole, 5...Undercoat glass,
6a, 6b... Heat generating film body, 7... Temperature compensation resistor, 8
... Conductive film body, 9a, 9b, 9c, 9d=--Takeout electrode part, 10... Overcoat glass, 11... Detection resistor, 12... Overcoat polyimide, 13...
1! Pole pin, 14...sensor holder.

Claims (1)

【特許請求の範囲】 1、各種物理量を検出するセンサにおいて、物理量を検
出する位置に設けられる、突出形状で、この突出部分が
互に連結していない複数の基体と、この複数の基体夫々
に対して、1又は複数設けられた熱を発する発熱体とを
備えたことを特徴とするセンサの発熱体。 2、上記発熱体は、各種物理量を検出するための回路の
中のセンサ部分以外の抵抗体であることを特徴とする請
求項1記載のセンサの発熱体。 3、上記発熱体は、基体上に薄膜状または厚膜状に印刷
形成されたものであることを特徴とする請求項1又は2
記載のセンサの発熱体。 4、上記発熱体夫々は、基体上に薄膜状または厚膜状に
印刷形成された導通膜によつて互に又は他の回路と電気
的に接続されていることを特徴とする請求項1、2又は
3記載のセンサの発熱体。
[Claims] 1. In a sensor for detecting various physical quantities, a plurality of protruding base bodies provided at positions for detecting physical quantities, the protruding portions of which are not connected to each other; On the other hand, a heating element for a sensor characterized by comprising one or more heating elements that generate heat. 2. The heating element for a sensor according to claim 1, wherein the heating element is a resistor other than a sensor part in a circuit for detecting various physical quantities. 3. Claim 1 or 2, wherein the heating element is formed by printing on the substrate in the form of a thin film or a thick film.
Heating element of the sensor described. 4. Claim 1, wherein each of the heating elements is electrically connected to each other or to another circuit by a conductive film printed on the base in the form of a thin or thick film. 3. The heating element of the sensor according to 2 or 3.
JP1067180A 1989-03-17 1989-03-17 Heating element of sensor Pending JPH02245617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067180A JPH02245617A (en) 1989-03-17 1989-03-17 Heating element of sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067180A JPH02245617A (en) 1989-03-17 1989-03-17 Heating element of sensor

Publications (1)

Publication Number Publication Date
JPH02245617A true JPH02245617A (en) 1990-10-01

Family

ID=13337435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067180A Pending JPH02245617A (en) 1989-03-17 1989-03-17 Heating element of sensor

Country Status (1)

Country Link
JP (1) JPH02245617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375466A (en) * 1993-03-16 1994-12-27 Robert Bosch Gmbh Measuring element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375466A (en) * 1993-03-16 1994-12-27 Robert Bosch Gmbh Measuring element

Similar Documents

Publication Publication Date Title
KR960011154B1 (en) Sic thin film thermister
US6151771A (en) Resistance temperature detector (RTD) formed with a surface-mount-device (SMD) structure
JPH10189318A (en) Manufacture of network resistor
WO2019075915A1 (en) Ceramic heating piece capable of temperature acquisition, and heat-not-burn smoking set
GB2285138A (en) Temperature sensor
US5548269A (en) Chip resistor and method of adjusting resistance of the same
JPH01109250A (en) Gas sensor
US5332991A (en) Resistor type physical quantity sensor having migration inhibiting pattern
JP2839418B2 (en) Temperature sensor
US4586056A (en) Thermal head
JPH10214675A (en) Ceramic heater
KR101628414B1 (en) Sensor device and method for menufacture
JPH02245617A (en) Heating element of sensor
JPH0212002B2 (en)
JPH10117063A (en) Manufacture of circuit board having at least one metal layer, circuit board and its use method
JPH0248055B2 (en)
US9068913B2 (en) Photolithographic structured thick layer sensor
JP2537919Y2 (en) Ceramic heater
JP3348256B2 (en) Heat removal atmosphere detector
JP2001056257A (en) Temperature sensor element, manufacture thereof and temperature sensor
JPH01209322A (en) Fuel liquid level detecting device
JP2661718B2 (en) Substrate for measuring the temperature coefficient of resistance of thin films
JP2006278786A (en) Temperature detection element
JPH1194667A (en) Pressure sensor
JPH10199703A (en) Manufacture of substrate for chip resistor, and chip resistor