JPH02243994A - Core supporting device of gas-cooled reactor - Google Patents

Core supporting device of gas-cooled reactor

Info

Publication number
JPH02243994A
JPH02243994A JP2003072A JP307290A JPH02243994A JP H02243994 A JPH02243994 A JP H02243994A JP 2003072 A JP2003072 A JP 2003072A JP 307290 A JP307290 A JP 307290A JP H02243994 A JPH02243994 A JP H02243994A
Authority
JP
Japan
Prior art keywords
support
core
plate
supporting
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003072A
Other languages
Japanese (ja)
Other versions
JPH0456278B2 (en
Inventor
Osamu Kobayashi
修 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2003072A priority Critical patent/JPH02243994A/en
Publication of JPH02243994A publication Critical patent/JPH02243994A/en
Publication of JPH0456278B2 publication Critical patent/JPH0456278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent the generation of an excessive thermal stress by a temp. difference by supporting a supporting plate atop the head part of the supporting bolts implanted on supporting posts and a sealing plate atop the supporting posts, respectively slidably. CONSTITUTION:Key grooves 12 of a hollow groove shape facing the radial direction R of the core are formed on the rear surface of the plate 7 in correspondence to the installation position of the supporting posts 9 to the blocks arraying on the outermost periphery among the respective blocks 7a constituting the disk-shaped supporting plate 7. Key members 13 fitting into the grooves 12 are fitted on the outer periphery of the head part of the supporting bolts 11 screwed and implanted atop the post 9 side thereof as against the above grooves and are fixed by means of pins 14 to the head part of the bolts 11. The upper surfaces in the head part of the bolts 11 are spot-faced with seat surfaces. Projecting parts 15 are bulged downward and formed at the center in the grooves 12 so as to come into slidable contact with the seat surfaces. Oblong-hole-shaped through-holes 16 for the supporting bolts facing the direction R are bored at the points of the sealing plate 8 where the posts 9 are to be installed so that the sealing plate is carried atop the posts 9 slidably in tight contact therewith.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はガス冷却型原子炉の炉心構成物を炉容器に据
付けたダイヤグリッド上Iこ支持する炉心支持装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a core support device for supporting core components of a gas-cooled nuclear reactor on a diagonal grid installed in a reactor vessel.

〔従来の技術〕[Conventional technology]

まずこの種の炉心支持装置の従来構造を第1図ないし第
3図により説明する。図において、1は炉心を構成する
可動反射体ブロック、2は高温プレナムブロック、3は
断熱ブロック、4は前記各ブロックの外周を包囲する固
定反射体であり、これ等で炉心を構成している。一方、
図示されてない炉容器の底部にはダイヤグリッド5が据
付けてあり、前記炉心構成物は次記の炉心支持装置を介
してグリッドの上に支持されている。なお6はコアバレ
ルである。すなわち前記炉心支持装置は炉心の各分割領
域に対応して分割された同一平面上に並ぶブロック7a
の集合体としてなるサポートブレー廂17と、サポート
プレート7の下面を覆うシールプレート8と、およびこ
れ等部材をグリッド5の上面との間にガス通路間隙を残
してグリッド5へ担持させるための支持ポスト9などか
ら構成されている。ここで支持ポスト部分の詳細な従来
構造は第2図1こ示すように、サポートプレート7はス
ペーサ10を介して支持ポスト9の上面に載置され、ボ
ルト11で支持ポスト9へ締付は固定されている。一方
、シールプレート8は支持ポスト9との対応箇所にスペ
ーサ10およびボルト11の貫通する穴があけてあり、
かつ支持ポスト9の上面に担持させた状態で前記の穴の
周縁と支持ポスト9との間を溶接してシールされている
First, the conventional structure of this type of core support device will be explained with reference to FIGS. 1 to 3. In the figure, 1 is a movable reflector block that constitutes the reactor core, 2 is a high-temperature plenum block, 3 is a heat insulation block, and 4 is a fixed reflector that surrounds the outer periphery of each block, and these constitute the reactor core. . on the other hand,
A diagonal grid 5 is installed at the bottom of the reactor vessel (not shown), and the core components are supported on the grid via a core support device described below. Note that 6 is a core barrel. That is, the core support device is divided into blocks 7a arranged on the same plane corresponding to each divided region of the core.
a support bra ridge 17 which is an assembly of support plates 17, a seal plate 8 that covers the lower surface of the support plate 7, and a support for supporting these members on the grid 5 while leaving a gas passage gap between them and the upper surface of the grid 5. It consists of post 9, etc. Here, the detailed conventional structure of the support post part is shown in FIG. 2. As shown in FIG. has been done. On the other hand, the seal plate 8 has a hole through which a spacer 10 and a bolt 11 pass through at a location corresponding to the support post 9.
While supported on the upper surface of the support post 9, the peripheral edge of the hole and the support post 9 are welded and sealed.

なお支持ポスト9はグリッド5の上に溶接して強固に結
合されている。
Note that the support post 9 is welded onto the grid 5 and is firmly connected thereto.

上記の構成で、炉心構成物の重量荷重はサポートプレー
ト7、スペーサ10、および支持ポスト9を介してグリ
ッド5に伝達される。一方、図示されてない冷却ガス入
口管を経由して炉容器内に送り込まれた約400℃の低
温冷却ガスは、矢印Aのようにシールプレート8とグリ
ッド5の間の間隙通路を流れ固定反射体4の外周に沿っ
てコアバレル6との間を上昇し、炉心の上部から炉心内
へ流れ込む。そして炉心内の燃料チャンネルを通って温
度800へ1000℃に昇温した冷却ガスは高温プレナ
ムに集められここから図示されてない冷却ガス出口管を
経て炉外の熱交換設備へ送り出される。この場合にシー
ルプレート8が高温ガスの低温側への漏出を防いでいる
With the above configuration, the weight load of the core components is transmitted to the grid 5 via the support plate 7, the spacer 10, and the support post 9. On the other hand, low-temperature cooling gas of approximately 400°C, which is sent into the furnace vessel via a cooling gas inlet pipe (not shown), flows through the gap passage between the seal plate 8 and the grid 5 as shown by arrow A, and is fixedly reflected. It rises along the outer periphery of the body 4 between the core barrel 6 and flows into the core from the upper part of the core. The cooling gas, which has been heated to a temperature of 800 to 1000° C. through the fuel channels in the core, is collected in a high-temperature plenum and sent from there to a heat exchange facility outside the reactor via a cooling gas outlet pipe (not shown). In this case, the seal plate 8 prevents the high temperature gas from leaking to the low temperature side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上記した従来の炉心支持装置の構造には次記の
ような問題点がある。すなわち、原子炉の定常運転時に
おけるサポートプレート7、シールプレート8、グリッ
ド5の相互間には温度差があり、これに伴って水平方向
での熱膨張差が生じるが、完配のように従来では炉心支
持装置を構成している各部材がボルト11、溶接等によ
って一4体結合されているために、熱膨張差を自由に逃
すことができず、この結果随所に大きな熱応力が発生す
る。また原子炉の緊急停止時には冷却ガス流量が減少し
、かつ断熱ブロック31こ蓄積されていた熱が放散され
るために前記した温度差が一層増大し、この結果最悪の
場合には熱応力によってシールプレート8と支持ポスト
9のシール溶接部、あるいは支持ポスト9とグリッド5
の溶接接合部が破損に至るおそれがある。さらに本来垂
直荷重の支持部であるべき格子状梁板構造のグリッド5
Iこ水平方向荷重に対する強度を持たせることは設計面
からも合理的でない。
However, the structure of the conventional core support device described above has the following problems. In other words, during steady operation of a nuclear reactor, there is a temperature difference between the support plate 7, seal plate 8, and grid 5, and this causes a difference in thermal expansion in the horizontal direction. In this case, since each member making up the core support device is connected together by bolts 11, welding, etc., the difference in thermal expansion cannot be freely released, and as a result, large thermal stress is generated everywhere. . In addition, during an emergency shutdown of a nuclear reactor, the cooling gas flow rate decreases and the heat accumulated in the insulation block 31 is dissipated, further increasing the temperature difference described above. Seal weld between plate 8 and support post 9, or support post 9 and grid 5
There is a risk of damage to the welded joints. Furthermore, a grid 5 of a lattice-like beam plate structure that should originally be a support for vertical loads.
It is not reasonable from a design standpoint to provide strength against horizontal loads.

この発明は上記の点にかんがみなされたものであり、炉
心支持に必要な機能を満足しつつ、かつ温度差による過
大な熱応力の発生のおそれのない炉心支持装置を提供す
ることを目的とする。
This invention has been made in consideration of the above points, and aims to provide a core support device that satisfies the functions necessary for core support and is free from the risk of generating excessive thermal stress due to temperature differences. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する。ために、この発明は支持ポスト上
に植設された支持ボルトの頭部上面にサポートフレート
を、支持ポストの上面にシールプレートをそれぞれ炉心
の中心に対して半径方向へ摺動可能に支持し、各部材相
互間の熱膨張差を拘束せずに炉心の重量荷重をグリッド
に支持させるとともに、シールプレートにおける支持ボ
ルト貫通穴部のシールを、シールプレートと支持ポスト
との間およびシールプレートと支持ボルトの頭部との間
の重なりによって得るようにしたものである。
Achieve the above objectives. To achieve this, the present invention supports a support plate on the top surface of the head of a support bolt implanted on a support post, and a seal plate on the top surface of the support post so as to be slidable in the radial direction with respect to the center of the reactor core. The heavy load of the reactor core is supported by the grid without restricting the thermal expansion difference between each member, and the support bolt through hole in the seal plate is sealed between the seal plate and the support post and between the seal plate and the support bolt. This is obtained by overlapping the head of the

〔実施例〕〔Example〕

以下この発明を図示実施例に基づいて説明する。 The present invention will be explained below based on illustrated embodiments.

第4図と第7図はそれぞれ第3図における符号P、Qで
示した支持部の構造を、また第5図は第4図におけるv
−■断面図、第6図は第4図および第7図におけるシー
ルプレートの部分平面図を示すものであり、第2図と同
一符号は同一部材を示す。まず、第3図に示した円板状
のサポートプレート7を構成する各ブロック7aのうち
最外周に並ぶブロックに対しては、第4図、第5図に示
すように支持ボスト9の設置位置に対応してサポートプ
レート7の下面には炉心の半径方向Rに向く凹溝状のキ
ー溝12が形成され、これに対向して支持ポスト側憂こ
は、その上面に螺合植設された支持ボルト11の頭部外
周に前記キー溝124こ嵌合するキー部材13が嵌着さ
れ、キー溝12の方向に合わせてピン14によりボルト
頭部へ固定されている。さらに支持ボルト11の頭部上
面には座面が座ぐり加工してあり、この座面と摺動可能
に当接するようtこサポートプレート側のキー溝12内
の中央には凸部15が下方へ膨出形成されている。一方
、シールプレート8は支持ボスト9の設置箇所ζこ対応
して第6図のように炉心の半径方向Rに向く長穴形状の
支持ボルト貫通穴16があけてあり、かつ支持ボスト9
の上面に密着して摺動可能に担持されている。一方、第
3図における符号Qで示す支持部の構造は第7図のごと
くであり、1g4図と比べてサポートプレート7と支持
ボルト11との間のキー結合構造を除いては第4図の構
造と同様に構成されている。
4 and 7 show the structures of the support parts indicated by symbols P and Q in FIG. 3, respectively, and FIG.
-■ sectional view and FIG. 6 are partial plan views of the seal plate in FIGS. 4 and 7, and the same reference numerals as in FIG. 2 indicate the same members. First, for the outermost block among the blocks 7a constituting the disk-shaped support plate 7 shown in FIG. 3, the installation positions of the support posts 9 are as shown in FIGS. Correspondingly, a concave key groove 12 facing in the radial direction R of the core is formed on the lower surface of the support plate 7, and opposite to this, the support post side groove is screwed into the upper surface of the key groove 12. A key member 13 that fits into the key groove 124 is fitted onto the outer periphery of the head of the support bolt 11, and is fixed to the bolt head by a pin 14 in the direction of the key groove 12. Furthermore, the upper surface of the head of the support bolt 11 is machined with a seat surface, and a convex portion 15 is provided downward at the center of the keyway 12 on the support plate side so as to be in slidable contact with the seat surface. A bulge is formed. On the other hand, the seal plate 8 has elongated support bolt through holes 16 facing in the radial direction R of the core, as shown in FIG.
It is slidably supported in close contact with the upper surface of. On the other hand, the structure of the support section indicated by the symbol Q in FIG. 3 is as shown in FIG. 7, and compared to FIG. It is structured similarly.

次に上記構成の組立順序について述べる。まず各支持ボ
スト9の上面にまたがり、位置決めを行ってシールプレ
ート8を載置する。次に各支持ポストごとにシールプレ
ート8のボルト貫通穴16を通して支持ポル)11をね
じ込む。この場合にボルト頭部とシールプレート8の上
面との間にガス漏れを制限するための微小なシール間隙
gを設定するようにボルト11の締め込みが行われる。
Next, the assembly order of the above configuration will be described. First, the seal plate 8 is placed on the upper surface of each support post 9 by positioning it. Next, screw the support pole 11 through the bolt through hole 16 of the seal plate 8 for each support post. In this case, the bolt 11 is tightened so as to set a minute seal gap g between the bolt head and the upper surface of the seal plate 8 to limit gas leakage.

またシールプレート8と支持ボスト9の上面との間およ
びシールプレート8と支持ボルトの頭部下面との間には
十分な重なり寸法t、t’が得られるようにあらかじめ
各部材の重なり寸法が定められており、これにより核部
での十分なシール性が確認される。前記作業でシールプ
レート8が組立られた後に、符号Pの支持部については
支持ボルト11の頭部にキー部材13を取付け、所定の
向きに合わせてビン14で支持ボルト11に固定される
。この状態で次憂こ各支持ボルト11のボルト頭部の上
面にまたがってサポートプレート7の各ブロック7aが
ブロック間相互でキー結合を行いながら設置される。こ
の場合に各ブロック7aの相互間で上面のレベルを揃え
るために、完配したサポートプレートの下面凸部15を
レベル調節手段、例えばレベリングスクリュー等に替え
て各ブロック単位で据付レベル調整を行うようにするの
がよい。このよう1こして炉心支持装置が組立られた後
に、この上方に炉心が組立構成される。
In addition, the overlapping dimensions of each member are determined in advance so that sufficient overlapping dimensions t and t' can be obtained between the seal plate 8 and the upper surface of the support post 9 and between the seal plate 8 and the lower surface of the head of the support bolt. This confirms sufficient sealing performance at the core. After the seal plate 8 is assembled in the above operation, the key member 13 is attached to the head of the support bolt 11 for the support portion P, and the key member 13 is fixed to the support bolt 11 with the pin 14 in a predetermined direction. In this state, the blocks 7a of the support plate 7 are installed over the upper surfaces of the bolt heads of the support bolts 11 while keying the blocks to each other. In this case, in order to equalize the level of the upper surface between each block 7a, the lower surface convex part 15 of the complete support plate is replaced with a level adjustment means, such as a leveling screw, and the installation level is adjusted for each block. It is better to After the core support device is assembled in this way, the core is assembled above it.

上記の構成により、炉の運転時にサポートプレート7、
シールプレート8.グリッド5相互間の温度差に基づい
て炉心の半径方向に生じる熱膨張差は、支持ボスト9と
シールプレート8との摺動、および支持ボルトの上面と
サポートプレート7との摺動によって吸収され、互いに
拘束し合うことがないので過大な熱応力の発生すること
がなくなる。しかもサポートプレート7と支持ボルト1
1との間のキー結合、およびシールプレート8の長大に
より、地震発生時のように非軸対称の水平荷重に対して
は、各部材相互の動きを拘束して荷重をグリッド5へ伝
達して支持できるので高い耐震性が得られる。なお前記
した熱膨張差の吸収に伴う摺動の際に加わる水平方向の
荷重に起因して支持ボスト9ないし支持ボルト11の倒
れ、あるいは片当たりによるかじり等の発生の可能性を
小さく抑えるには、支持ボスト、支持ボルトとシールプ
レート、サポートプレートの間の摺動面をシールプレー
ト、サポートプレートの厚さの中心に近いレベルに設定
するのが良い。このためfこ図示実施例ではサポートプ
レート7における凸部15の下面レベルがサポートプレ
ートの板厚のほぼ中心近くに位置するように選定され、
またシールプレート8に関しては、支持ボスト9の上面
Eこ当接する面域を座ぐり加工して摺動面ができるだけ
シールプレートの板厚の中心に近づくような工夫が施さ
れている。
With the above configuration, the support plate 7,
Seal plate 8. The thermal expansion difference that occurs in the radial direction of the core based on the temperature difference between the grids 5 is absorbed by the sliding movement between the support post 9 and the seal plate 8, and the sliding movement between the upper surface of the support bolt and the support plate 7, Since they are not constrained by each other, excessive thermal stress will not occur. Moreover, support plate 7 and support bolt 1
1 and the long seal plate 8, the mutual movement of each member is restrained and the load is transmitted to the grid 5 in response to non-axisymmetric horizontal loads such as in the event of an earthquake. Since it can be supported, high earthquake resistance can be obtained. Furthermore, in order to minimize the possibility of the support post 9 or the support bolt 11 falling due to the horizontal load applied during sliding due to the absorption of the thermal expansion difference mentioned above, or galling due to uneven contact, etc. It is preferable to set the sliding surface between the support bolt, support bolt, seal plate, and support plate at a level close to the center of the thickness of the seal plate and support plate. For this reason, in the illustrated embodiment, the lower surface level of the convex portion 15 in the support plate 7 is selected to be located approximately at the center of the thickness of the support plate,
Further, regarding the seal plate 8, the surface area that contacts the upper surface E of the support post 9 is counterbored so that the sliding surface is as close to the center of the thickness of the seal plate as possible.

〔発明の効果〕〔Effect of the invention〕

上述のようにこの発明によれば、支持ポストに植設され
た支持ボルトの頭部上面とこの上に担持されるサポート
プレートとの間、および支持ポストの上面とこの上に担
持されるシールプレートとの間を相互に摺動可能にし、
互い−こ熱膨張差を拘束し合わない構造にして炉心支持
装置を組立構成したこと1こより、炉心構成物の支持装
置として必要な重量荷重の支持機能、および高温側と低
温側との間での冷却ガスの漏れを防止するシール機能を
満足させつつ、しかも炉の運転時に生じる構成部材相互
間の熱膨張を拘束せずに逃して過大な熱応力の発生を防
止して信頼性の向上を図ることができる。
As described above, according to the present invention, there is a space between the upper surface of the head of the support bolt implanted in the support post and the support plate supported on this, and between the upper surface of the support post and the seal plate supported on this. to allow mutual sliding between the
By assembling and configuring the core support device with a structure that does not restrict the thermal expansion difference between the two components, it is possible to perform the function of supporting the weight load necessary as a support device for the core components, and to maintain the function of supporting the weight load between the high temperature side and the low temperature side. While satisfying the sealing function to prevent cooling gas from leaking, it also allows the thermal expansion between the component parts that occurs during furnace operation to escape without restraint, preventing the generation of excessive thermal stress and improving reliability. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス冷却型原子炉における炉床部分の概要構成
を示す縦断面図、第2図は第1図にセけるB部の従来構
造を示す拡大断面図、第3図は支持ポストの配置ととも
に示したサポートプレートの平面図、第4図および第7
図はそれぞれ第3図におけるP、Qで示した支持部のこ
の発明による災流側の構成を示す拡大縦断面図、第5図
は第4図における矢視v−■断面図、第6図は第4図お
よび第7図におけるシールプレートの部分平面図である
。 5・・・グリッド、7・・・サポートプレート、7a・
・・ブロック、8・・・シールプレート、9・・・支持
ポスト、11・・・支持ボルト、12・・・キー溝、1
3・・・キー部材、16・・・支持ボルト貫通穴、−R
・・・炉心の半径方向。 へ1 叫 h ミ 〈くづ 第4図
Figure 1 is a vertical cross-sectional view showing the general structure of the hearth part in a gas-cooled nuclear reactor, Figure 2 is an enlarged cross-sectional view showing the conventional structure of section B in Figure 1, and Figure 3 is a cross-sectional view of the support post. Top view of support plate shown with arrangement, Figures 4 and 7
The figures are enlarged vertical cross-sectional views showing the configuration of the support parts indicated by P and Q in Figure 3 on the disaster side according to the present invention, Figure 5 is a cross-sectional view taken along arrow v-■ in Figure 4, and Figure 6 7 is a partial plan view of the seal plate in FIGS. 4 and 7. FIG. 5... Grid, 7... Support plate, 7a.
...Block, 8...Seal plate, 9...Support post, 11...Support bolt, 12...Keyway, 1
3...Key member, 16...Support bolt through hole, -R
...radial direction of the reactor core. 1 shout h mi〈kuzu fig. 4

Claims (1)

【特許請求の範囲】 1)炉心構成物を支えてグリッドの上に支持する炉心支
持装置であって、同一平面に並ぶブロック集合体として
なる炉心構成物のサポートプレート、サポートプレート
の下面を覆うシールプレート、サポートプレートの各ブ
ロックに対応してグリッドの上に固定設置された支持ポ
スト、および支持ポストの上面に螺合植設された支持ボ
ルトから構成され、かつ支持ボルトの頭部上面にサポー
トを、支持ポストの上面にシールプレートをそれぞれ炉
心の中心に対して半径方向へ摺動可能に載置支持したこ
とを特徴とするガス冷却型原子炉の炉心支持装置。 2)特許請求の範囲第1項記載の炉心支持装置において
、サポートプレートの下面に炉心の半径方向のキー溝が
形成され、このキー溝へ支持ボルト頭部に結合したキー
部材を嵌合したことを特徴とするガス冷却型原子炉の炉
心支持装置。 3)特許請求の範囲第1項記載の炉心支持装置において
、支持ボルトの頭部上面に対向してサポートプレート側
にレベル調節手段を備えていることを特徴とするガス冷
却型原子炉の炉心支持装置。 4)特許請求の範囲第1項記載の炉心支持装置において
、シールプレート上の支持ボルト貫通部に炉心の半径方
向の長孔が穿孔されていることを特徴とするガス冷却型
原子炉の炉心支持装置。 5)特許請求の範囲第1項記載の炉心支持装置において
、支持ボルトとサポートプレートとの間、および支持ポ
ストとシールプレートとの間の摺動面がそれぞれサポー
トプレート、シールプレートの厚さの中心に近い高さに
設定されていることを特徴とするガス冷却型原子炉の炉
心支持装置。
[Scope of Claims] 1) A core support device that supports core components on a grid, comprising a support plate for the core components as a block assembly arranged on the same plane, and a seal that covers the lower surface of the support plate. It consists of a support post fixedly installed on the grid corresponding to each block of the plate and support plate, and a support bolt screwed onto the top surface of the support post, and a support is attached to the top surface of the head of the support bolt. A core support device for a gas-cooled nuclear reactor, characterized in that seal plates are mounted and supported on the upper surfaces of support posts so as to be slidable in the radial direction with respect to the center of the reactor core. 2) In the core support device according to claim 1, a key groove in the radial direction of the core is formed on the lower surface of the support plate, and a key member connected to the support bolt head is fitted into this key groove. A core support device for a gas-cooled nuclear reactor characterized by: 3) A core support device for a gas-cooled nuclear reactor according to claim 1, characterized in that a level adjustment means is provided on the support plate side opposite to the upper surface of the head of the support bolt. Device. 4) A core support device for a gas-cooled nuclear reactor according to claim 1, characterized in that long holes in the radial direction of the core are bored in the support bolt penetration portions on the seal plate. Device. 5) In the core support device according to claim 1, the sliding surfaces between the support bolt and the support plate and between the support post and the seal plate are at the center of the thickness of the support plate and the seal plate, respectively. A core support device for a gas-cooled nuclear reactor characterized by being set at a height close to .
JP2003072A 1990-01-10 1990-01-10 Core supporting device of gas-cooled reactor Granted JPH02243994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072A JPH02243994A (en) 1990-01-10 1990-01-10 Core supporting device of gas-cooled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072A JPH02243994A (en) 1990-01-10 1990-01-10 Core supporting device of gas-cooled reactor

Publications (2)

Publication Number Publication Date
JPH02243994A true JPH02243994A (en) 1990-09-28
JPH0456278B2 JPH0456278B2 (en) 1992-09-07

Family

ID=11547137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072A Granted JPH02243994A (en) 1990-01-10 1990-01-10 Core supporting device of gas-cooled reactor

Country Status (1)

Country Link
JP (1) JPH02243994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653942B1 (en) * 2016-02-23 2016-09-02 문인득 Cooling apparatus for the structure under steam generator of atomic reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510878A (en) * 1978-07-10 1980-01-25 Toyo Umpanki Co Ltd Safety device for dc shunt motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510878A (en) * 1978-07-10 1980-01-25 Toyo Umpanki Co Ltd Safety device for dc shunt motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653942B1 (en) * 2016-02-23 2016-09-02 문인득 Cooling apparatus for the structure under steam generator of atomic reactor
WO2017146441A1 (en) * 2016-02-23 2017-08-31 문인득 Lower structure cooling apparatus for nuclear reactor steam generator

Also Published As

Publication number Publication date
JPH0456278B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JP5426110B2 (en) Reflector-controlled fast reactor
US4859402A (en) Bottom supported liquid metal nuclear reactor
US20230005629A1 (en) System for confining and cooling melt from the core of a nuclear reactor
US20230154633A1 (en) System for confining and cooling melt from the core of a nuclear reactor
EP0266593B1 (en) Frictionally loaded top end supports for cantilever-mounted rod guides of a pressurized water reactor
US4716012A (en) Reactor internals loose parts strainer
US4146430A (en) Nuclear reactor core flow baffling
JP5748179B2 (en) Core shroud, nuclear reactor having core shroud, and method of assembling core shroud
JPH02243994A (en) Core supporting device of gas-cooled reactor
US3544425A (en) Gas cooled nuclear reactor
JPS6093993A (en) Assembly of pressure vessel for nuclear reactor
US4490328A (en) Bottom shield for a gas cooled high temperature nuclear reactor
US4949363A (en) Bottom supported liquid metal nuclear reactor
CN115995304A (en) Horizontal high-temperature gas cooled reactor internals and horizontal high-temperature gas cooled reactor
US4681731A (en) Nuclear reactor construction with bottom supported reactor vessel
JPS582399B2 (en) It's a long time since I've been in the middle of a long time.
US20130272477A1 (en) Pressurized Water Reactor with Skirted Lower End Fitting and Filter Plate
JPH0321878B2 (en)
US4673548A (en) Thermal barrier and support for nuclear reactor fuel core
US4793965A (en) Simplified, flexible top end support for cantilever-mounted rod guides of a pressurized water reactor
JPH05209985A (en) Internal structure of fast neutron nucle- ar reactor
JPS6227693A (en) Annular ring seal
JP3810935B2 (en) Fusion reactor reactor structure
JPH0131993Y2 (en)
JPH01212395A (en) Thermal shielding device of fast breeder reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees