JP3810935B2 - Fusion reactor reactor structure - Google Patents

Fusion reactor reactor structure Download PDF

Info

Publication number
JP3810935B2
JP3810935B2 JP02833899A JP2833899A JP3810935B2 JP 3810935 B2 JP3810935 B2 JP 3810935B2 JP 02833899 A JP02833899 A JP 02833899A JP 2833899 A JP2833899 A JP 2833899A JP 3810935 B2 JP3810935 B2 JP 3810935B2
Authority
JP
Japan
Prior art keywords
passive shell
passive
reactor structure
structural
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02833899A
Other languages
Japanese (ja)
Other versions
JP2000227486A (en
Inventor
正直 澁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02833899A priority Critical patent/JP3810935B2/en
Publication of JP2000227486A publication Critical patent/JP2000227486A/en
Application granted granted Critical
Publication of JP3810935B2 publication Critical patent/JP3810935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、核融合装置の真空容器やブランケット支持構造体等のパッシブシェル領域の炉構造体に関する。
【0002】
【従来の技術】
核融合装置の真空容器やブランケット支持構造体等の炉構造体は、大型のトーラス構造物であるため、一般に、トロイダル方向に複数個分割されたセクタの形で工場製作され、現地でセクタ間を溶接して組立てられる。セクタ間の現地接続では、製作精度等を吸収するため、現地接続部にはスプライス板が使用されるのが普通であり、内・外壁二重壁構成の炉構造体の場合には、空間的な制約から外壁は炉構造体の内側から接近して外壁を接続しなければならないので、少なくとも内壁にスプライス板の使用は避けられない。また、スプライス板の現地合せのし易さや幾何形状の制限からスプライス板はポロイダル方向に複数個分割されたものが使用される。
【0003】
また、炉構造体の内部に生成されるプラズマの安定性を確保するためパッシブシェルが用いられる。これは、銅合金のような電気抵抗が小さい材料で作られ、プラズマに最も近く、かつトロイダル方向に連続した炉構造体に設置される。この場合、パッシブシェルはトロイダル方向に連続していることが望ましい。
【0004】
このような炉構造体のセクタ間接続部はポロイダル方向に一周しているから、パッシブシェルをトロイダル方向に連続して構成するには、セクタ間接続部でセクタに既設のパッシブシェル間をトロイダル方向に電気的につなぐ必要がある。この場合、炉構造体には核融合反応の結果生じる中性子による核発熱があり、かつプラズマ崩壊時には電磁力が作用するので、セクタ間接続部のパッシブシェル構造はこれら熱負荷と電磁力荷重に耐えるものでなければならない。核発熱は体積発熱であるからパッシブシェルを効率良く冷却するには冷却面までの熱伝導距離を短くする必要がある。さらに、パッシブシェルは良導体であるから渦電流が流れやすく、一般的には薄肉シェルであるので、パッシブシェルは強固に支持する必要がある。
【0005】
次に、真空容器にパッシブシェルを設置した従来構造例を図6及び図7を参照して説明する。
図6は内壁1と外壁2からなる二重壁トーラス状真空容器の隣接する真空容器セクタのみを示した模式図である。なお、真空容器内壁のほぼ全領域に亙ってその内面にブランケットが設置されているが、見易くするために図6ではこれを省略してある。
【0006】
図6において、真空容器セクタ3aと真空容器セクタ3bは、セクタ間接続部でポロイダル方向に一周接続されるが、セクタの製作誤差を吸収するためもあって、このセクタ間接続には通常スプライス板が使用されている。パッシブシェル5は真空容器アウトボード側上部と下部に設置されており、それぞれトロイダル方向に一周している。したがって、セクタ接続部4では隣接セクタ間を溶接接続すると共に、隣接するセクタに設けられたパッシブシェル5をトロイダル方向に電気的に接続する必要がある。
【0007】
図7は、図6のVII-VII 方向断面の内、真空容器セクタ接続部領域の断面図(トロイダル断面図)である。
図7ではパッシブシェル5は内壁1に接合されているが、セクタ間接続部では、スプライス板9を用いて真空容器セクタ3aと真空容器セクタ3bとを溶接接続して溶接継手13を構成した後、接続銅板10をボルト11で固定することによって隣接セクタのパッシブシェル間を電気的に接続している。また、内壁1と外壁2、パッシブシェル5、接続銅板10及びボルト11は、内壁1と外壁2とこれらを接続するポロイダルリブ7で作られた冷却通路6に冷却水を流して冷却される。また、ブランケット8は内壁1に設置されているが、通常、真空容器とは別系統の冷却水で冷却される。
【0008】
ところで、上記のような従来の構造体の真空容器では次の如き問題がある。
【0009】
(1)パッシブシェル5は必要以上に厚くする必要はなく、銅板パッシブシェルの場合では、概略5〜6mm程度が用いられている。したがって、接続銅板10も同程度に薄く、その機械的剛性は小さいので、プラズマ急速消滅時の接続銅板10に働く電磁力をボルト11で支持しようとする電磁力が小さい場合であってもかなりの数のボルトが必要になる。
【0010】
(2)接続銅板10はボルト11によって固定されているため、接続銅板10と内壁1との間には大きな接触熱抵抗がある。このため、接続銅板10の除熱能力には限界があるので、図7に示すような従来の構造体への適用は炉壁への熱負荷が小さい場合に限られる。
【0011】
(3)ボルト11は熱の繰返し環境及びパルス的に生じる電磁力下で使われるので、緩み易い。また運転中における締結力の保持を含めたボルトの健全性を調べることは非常に困難であるばかりか、保守・点検に長時間要し、核融合装置の稼働率を低下することになる。
【0012】
(4)ボルト締結構造にはタップ切り加工が必要であるが、ボルトの本数が増えると、このタップ切りに長時間要する。また、セクタ間内外壁を溶接接続すると、溶接変形が生じるため、接続銅板10の合せ加工工程が必要となる。このような工程が必要となるため真空容器の製作には長時間を要する。
【0013】
【発明が解決しようとする課題】
以上述べたように、従来の核融合装置の炉構造体には、電磁力や熱応力対策が十分でないことに起因する低構造信頼性の問題、保守点検に多くの時間を要して核融合装置の稼働率が低下するという問題、更には製作時間が長くなるという問題があった。
【0014】
本発明は上記問題を解決するためになされたもので、その目的は、構造が単純かつ高い信頼性を有し、しかも製作時間が短縮できる核融合装置の炉構造体を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1は、複数のスプライス板を用いて複数の炉構造体セクタを接続してなる核融合装置の炉構造体において、パッシブシェル領域のスプライス板を、銅あるいは銅合金のような電気抵抗の小さいパッシブシェル材と炉構造体の構造材と同種の構造材とからなるクラッド材で構成し、スプライス板の構造材と炉構造体セクタの構造材とを溶接接続し、さらにパッシブシェル材を用いた溶接あるいは溶射によりスプライス板のパッシブシェル部と炉構造体セクタのパッシブシェル部間を肉盛りしてこれらパッシブシェル間を電気的に接続したことを特徴とする。
【0016】
請求項1によると、パッシブシェル材を用いた肉盛りの手段で隣接炉構造体セクタのパッシブシェル部間を電気的に接続したので、パッシブシェル材と構造材の間の接触熱抵抗や電磁力支持に関する問題を解決することができるばかりでなく、肉盛りには合せ加工やタップ切りなどの作業が不要となるため製作期間をかなり低減することができる。
【0017】
本発明の請求項2は、請求項1記載の核融合装置の炉構造体において、スプライス板の構造材と炉構造体セクタの構造材を溶接接続し、この溶接接続する溶接継手の最終溶接パスの表面とその最終溶接パスの表面近傍、あるいはこの最終溶接パスの表面領域とパッシブシェル材表面の一部に亙ってニッケルを肉盛り溶接し、さらにパッシブシェル材を肉盛り溶接してなることを特徴とする。
【0018】
請求項2によれば、ニッケルがバリアとなって、パッシブシェル材の肉盛り溶接時にパッシブシェル材が構造材に溶け込んで生じる溶接割れを防止し、したがって、このセクタ接続部に関して高い構造健全性を得ることができる。
【0019】
本発明の請求項3は、請求項1記載の核融合装置の炉構造体において、パッシブシェル材を用いた肉盛り溶接は、パッシブシェル材の粉末を用いた粉末プラズマ溶接であることを特徴とする。
請求項3によれば、通常のティグ(TIG)やマグ(MAG)溶接に比べ溶接の簡易化、施工時間の短縮を図ることができる。
【0020】
本発明の請求項4は、請求項1記載の核融合装置の炉構造体において、パッシブシェル領域に複数のスプライス板が設置されると共に、このスプライス板のポロイダル端面側の隣接スプライス板パッシブシェル間はパッシブシェル材を肉盛りしないことを特徴とする。
【0021】
請求項4によれば、隣接スプライス板のパッシブシェル間のポロイダルギャップは小さいので、隣接スプライス板でポロイダル方向にパッシブシェルを電気的に接続しなくてもパッシブシェルの機能が損なわれることはない。したがって、炉構造体の大幅な製作期間の短縮が図れる。
【0022】
本発明の請求項5は、複数のスプライス板を用いて複数の炉構造体セクタを接続してなる核融合装置の炉構造体において、パッシブシェル材と構造材とからなるクラッド材で構成するパッシブシェル領域におけるパッシブシェル材端面を所定の平面傾斜、あるいは凹面傾斜とすることを特徴とする。
【0023】
一般的に、炉構造体には大きな核発熱があり、熱伝導体に沿って大きな温度勾配が生じる。例えば銅合金のようなパッシブシェル材と例えばオーステナイトステンレス鋼のような構造材では熱膨張係数が異なる。このため、炉構造体の運転時にはパッシブシェル端面には大きな熱応力が集中する懸念がある。
請求項5によれば、この熱応力の集中を緩和し、当該部の構造健全性を高めることができる。
【0024】
本発明の請求項6は、請求項5記載の核融合装置の炉構造体において、パッシブシェル領域の構造溶接部位におけるパッシブシェル材端面の位置を構造材の溶接開先面から所定の距離だけ離して設定したことを特徴とする。
請求項6によれば、構造材溶接時のパッシブシェル材の巻込みによる溶接割れや溶接熱によるパッシブシェル材の剥離の問題を解決することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の第1実施例(請求項1対応)である核融合装置の真空容器のセクタ間接続部のパッシブシェル領域を示したトロイダル断面図である。
【0026】
図に示すように、本実施例ではパッシブシェル5は内壁1に接合されており、また真空容器セクタ3aと真空容器セクタ3b間の接続部は、スプライス板9の構造材と内壁1の構造材を溶接して溶接継手13を構成した後、スプライス板9のパッシブシェル部と真空容器のパッシブシェル部間に銅あるいは銅合金のような電気抵抗の小さいパッシブシェル材を肉盛りしてパッシブシェル材肉盛り部14とし、これらパッシブシェルを電気的に接続している。また、内壁1と外壁2とこれらを接続するポロイダルリブ7で作られた冷却通路6には冷却水を流して冷却される。ブランケット8は内壁1に設置されている。
【0027】
本実施例によれば、肉盛りで隣接セクタ間のパッシブシェル間を電気的に接続するため、セクタ接続部のパッシブシェル部の除熱特性と電磁力に対する強度を向上させることができるばかりでなく、肉盛りは極めて簡単な作業であるため真空容器の製作期間をかなり短縮することができる。
【0028】
図2は、本発明の第2実施例(請求項2及び請求項3対応)である核融合装置の真空容器のセクタ間接続部のトロイダル断面図であり、図1の“A”部に相当した拡大図である。なお、図1の第1実施例と同一部分には同一符号を付して重複説明は省略しており、以下の各実施例においても同様である。
【0029】
図において、本実施例では、構造材相互を溶接した後、セクタ間構造材溶接継手13の最終溶接パス表面と、パッシブシェルが除去されているセクタ間構造材溶接継手13表面と、パッシブシェルの傾斜端面の一部にニッケルを肉盛り溶接してニッケル肉盛り部15を構成する。しかる後にパッシブシェル材を粉末プラズマ溶接してパッシブシェル材肉盛り部14を構成して隣接セクタのパッシブシェル間を電気的に接続する。また、パッシブシェルの端部は傾斜端面16とする。
【0030】
本実施例によれば、先ずニッケルを肉盛りすることによって、パッシブシェル材の肉盛り溶接時にパッシブシェル材が構造材に溶け込んで生じる溶接割れを防止できる。したがって、このセクタ接続部に関して高い構造健全性を得ることができる。次に、パッシブシェルの粉末を用いた粉末プラズマ溶接することによってパッシブシェルの肉盛り作業を容易にし、真空容器の製作期間を短縮することができる。更に、パッシブシェルの肉盛り側端部に傾斜を付けることにより肉盛りの一連の作業を容易にすることができる。
【0031】
図3は、本発明の第3実施例(請求項4対応)である核融合装置の真空容器のセクタ間接続部のパッシブシェル領域にある隣接スプライス板のポロイダル断面図である。
【0032】
図に示すように、本実施例では、スプライス板の溶接において狭開先溶接法を適用して開先開口部が小さいスプライス板溶接継手18を構成しており、隣接するスプライス板17a,17bのパッシブシェル5,5間にはパッシブシェル材を肉盛りしない構造としている。
【0033】
本実施例によれば、パッシブシェル領域にある複数のスプライス板17a,17bのパッシブシェル5,5間の実効ポロイダルギャップ20を小さくして、当該部分のパッシブシェル材の肉盛りを省いているので、真空容器の製作期間を短縮することができる。
【0034】
図4は、本発明の第4実施例(請求項5対応)である核融合装置の真空容器のパッシブシェルのポロイダル端部を示すポロイダル断面図である。
図に示すように、本実施例では、パッシブシェル5のポロイダル端面を凹状端面21に形成している。すなわち、図ではパッシブシェル材端面を凹面傾斜としているが所定の平面傾斜とすることも可能である。なお、ブランケットは図示していない。
【0035】
本実施例によれば、パッシブシェル材と構造材の熱膨張係数の相違によって発生するパッシブシェル端面の構造体との接合界面の熱応力集中を低減し、高信頼のパッシブシェル付き真空容器を得ることができる。
【0036】
図5は、本発明の第5実施例(請求項6対応)である核融合装置の真空容器のスプライス板の斜視図である。
図において、本実施例では、パッシブシェル5領域の構造溶接部位において、パッシブシェル材端面の位置を構造材の溶接開先面22から所定の距離23だけ離した位置に設定している。さらに、パッシブシェル端面には傾斜角24を付けている。
本発明によれば、構造材溶接時のパッシブシェル材の巻込みによる溶接割れの問題や溶接熱によるパッシブシェル材の剥離の問題を解決することができる。
【0037】
【発明の効果】
以上説明したように、本発明(請求項1乃至請求項6対応)によれば、電磁力や熱応力対策が十分でないことに起因する低構造信頼性の問題や製作時間が長くなるという問題が解決できるので、構造が単純かつ高信頼で、しかも製作時間が短縮できる核融合装置の炉構造体を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例である核融合装置の真空容器のセクタ間接続部のパッシブシェル領域のトロイダル断面図。
【図2】本発明の第2実施例である核融合装置の真空容器のセクタ間接続部のトロイダル断面図であり、図1の“A”部に相当した部分の拡大図。
【図3】本発明の第3実施例である核融合装置の真空容器のパッシブシェル領域にある隣接スプライス板のポロイダル断面図。
【図4】本発明の第4実施例である核融合装置の真空容器のパッシブシェルのポロイダル端面を示す断面図。
【図5】本発明の第5実施例である核融合装置の真空容器のスプライス板の斜視図。
【図6】従来の二重壁トーラス状真空容器の隣接2セクタの斜視図。
【図7】図6のVII-VII 方向の断面図。
【符号の説明】
1…内壁、2…外壁、3a,3b…真空容器セクタ、4…セクタ間接続部、5…パッシブシェル、6…冷却流路、7…ポロイダルリブ、8…ブランケット、9…スプライス板、10…接続銅板、11…ボルト、12…トロイダル方向を示す矢印、13…セクタ間構造材溶接継手、14…パッシブシェル材肉盛り部、15…ニッケル肉盛り部、16…傾斜端面、17a,17b…パッシブシェル付き隣接スプライス板、18…スプライス板間溶接継手、19…ポロイダル方向を示す矢印、20…パッシブシェル間実効ポロイダルギャップ、21…凹状端面、22…構造材の溶接開先面、23…構造材溶接開先面とパッシブシェル端面までの距離、24…パッシブシェルの傾斜端面の傾斜角。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reactor structure in a passive shell region such as a vacuum vessel or a blanket support structure of a fusion apparatus.
[0002]
[Prior art]
Reactor structures such as fusion vessel vacuum vessels and blanket support structures are large torus structures, so they are generally manufactured in the form of multiple sectors in the toroidal direction, and between the sectors on-site. It is assembled by welding. In the local connection between sectors, a splice plate is usually used for the local connection part in order to absorb manufacturing accuracy etc. In the case of a furnace structure with a double wall structure inside and outside, it is spatial. Because of this restriction, the outer wall must be connected from the inside of the furnace structure and connected to the outer wall, and therefore, the use of a splice plate is inevitable at least for the inner wall. In addition, a splice plate that is divided into a plurality of pieces in the poloidal direction is used because of the ease of local alignment of the splice plate and restrictions on the geometric shape.
[0003]
In addition, a passive shell is used to ensure the stability of the plasma generated inside the furnace structure. It is made of a material with low electrical resistance, such as a copper alloy, and is installed in a furnace structure that is closest to the plasma and continuous in the toroidal direction. In this case, it is desirable that the passive shell is continuous in the toroidal direction.
[0004]
Since the inter-sector connection part of such a furnace structure makes a round in the poloidal direction, in order to continuously form the passive shell in the toroidal direction, the existing passive shells in the sector are connected in the toroidal direction at the inter-sector connection part. It is necessary to connect it electrically. In this case, the reactor structure has nuclear heat generated by the neutrons resulting from the fusion reaction, and electromagnetic force acts when the plasma collapses, so the passive shell structure at the inter-sector connection part can withstand these heat loads and electromagnetic force loads. Must be a thing. Since the nuclear heat generation is volumetric heat generation, it is necessary to shorten the heat conduction distance to the cooling surface in order to efficiently cool the passive shell. Furthermore, since the passive shell is a good conductor, an eddy current tends to flow, and since it is generally a thin shell, the passive shell needs to be firmly supported.
[0005]
Next, an example of a conventional structure in which a passive shell is installed in a vacuum vessel will be described with reference to FIGS.
FIG. 6 is a schematic diagram showing only adjacent vacuum vessel sectors of a double-walled torus-like vacuum vessel comprising an inner wall 1 and an outer wall 2. A blanket is installed on the inner surface of almost the entire inner wall of the vacuum vessel, but this is omitted in FIG. 6 for the sake of clarity.
[0006]
In FIG. 6, the vacuum vessel sector 3a and the vacuum vessel sector 3b are connected once in the poloidal direction at the inter-sector connection portion. However, in order to absorb the manufacturing error of the sector, the connection between the sectors is usually a splice plate. Is used. The passive shells 5 are installed at the upper part and the lower part on the vacuum vessel outboard side, and each makes a round in the toroidal direction. Therefore, in the sector connection part 4, it is necessary to weld-connect between adjacent sectors and to electrically connect the passive shells 5 provided in the adjacent sectors in the toroidal direction.
[0007]
FIG. 7 is a cross-sectional view (toroidal cross-sectional view) of the vacuum vessel sector connection region in the cross-section in the VII-VII direction of FIG.
In FIG. 7, the passive shell 5 is joined to the inner wall 1, but at the inter-sector connection portion, the splice plate 9 is used to weld and connect the vacuum vessel sector 3 a and the vacuum vessel sector 3 b to form the weld joint 13. The passive copper of the adjacent sector is electrically connected by fixing the connecting copper plate 10 with bolts 11. Further, the inner wall 1 and the outer wall 2, the passive shell 5, the connection copper plate 10 and the bolt 11 are cooled by flowing cooling water through the cooling passage 6 made of the inner wall 1, the outer wall 2 and the poloidal rib 7 connecting them. Moreover, although the blanket 8 is installed in the inner wall 1, it is normally cooled with the cooling water of a different system from the vacuum vessel.
[0008]
By the way, there are the following problems in the vacuum container of the conventional structure as described above.
[0009]
(1) The passive shell 5 does not need to be thicker than necessary. In the case of a copper plate passive shell, approximately 5 to 6 mm is used. Therefore, since the connecting copper plate 10 is also as thin as its mechanical rigidity, the electromagnetic force acting on the connecting copper plate 10 at the time of rapid plasma extinction is small even when the electromagnetic force for supporting the bolt 11 is small. Several bolts are required.
[0010]
(2) Since the connection copper plate 10 is fixed by the bolt 11, there is a large contact thermal resistance between the connection copper plate 10 and the inner wall 1. For this reason, since there is a limit to the heat removal capability of the connection copper plate 10, application to the conventional structure as shown in FIG. 7 is limited to a case where the heat load on the furnace wall is small.
[0011]
(3) Since the bolt 11 is used under a heat repetitive environment and an electromagnetic force generated in pulses, it is easy to loosen. In addition, it is very difficult to check the soundness of the bolts, including the holding of the fastening force during operation, and it takes a long time for maintenance and inspection, which reduces the operating rate of the fusion device.
[0012]
(4) The bolt fastening structure requires tapping, but when the number of bolts increases, this tapping takes a long time. Further, when the inner and outer walls between the sectors are connected by welding, welding deformation occurs, and therefore a connecting step of the connecting copper plate 10 is required. Since such a process is required, it takes a long time to manufacture the vacuum vessel.
[0013]
[Problems to be solved by the invention]
As described above, the reactor structure of the conventional fusion device has a problem of low structural reliability due to insufficient countermeasures against electromagnetic force and thermal stress, and it takes a lot of time for maintenance and inspection. There was a problem that the operating rate of the apparatus was lowered, and further, there was a problem that the production time was long.
[0014]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a reactor structure of a nuclear fusion apparatus that has a simple structure and high reliability and that can shorten the manufacturing time.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 of the present invention provides a reactor structure of a fusion apparatus in which a plurality of reactor structure sectors are connected using a plurality of splice plates, and a splice plate in a passive shell region is provided. It is composed of a passive shell material with low electrical resistance, such as copper or copper alloy, and a clad material composed of the same type of structural material as the structural material of the furnace structure, and the structural material of the splice plate and the structural material of the furnace structure sector In addition, the passive shell part of the splice plate and the passive shell part of the furnace structure sector are built up by welding or spraying using a passive shell material, and these passive shells are electrically connected. And
[0016]
According to the first aspect, since the passive shell portion of the adjacent furnace structure sector is electrically connected by means of overlaying using the passive shell material, the contact thermal resistance and electromagnetic force between the passive shell material and the structural material. Not only can the problems related to support be solved, but work such as mating and tapping is not necessary for the build-up, so the production period can be considerably reduced.
[0017]
According to a second aspect of the present invention, in the reactor structure of the nuclear fusion apparatus according to the first aspect, the splice plate structural material and the structural material of the reactor structure sector are welded and the final welding pass of the welded joint to be welded Overlay welding of nickel over the surface of the metal and its vicinity in the final welding pass , or over the surface area of the final welding pass and part of the surface of the passive shell material, and overlay welding of the passive shell material It is characterized by.
[0018]
According to claim 2, nickel serves as a barrier to prevent weld cracks caused by the passive shell material being melted into the structural material at the time of build-up welding of the passive shell material, and therefore, high structural soundness can be achieved with respect to this sector connection portion. Obtainable.
[0019]
Claim 3 of the present invention is characterized in that, in the reactor structure of the fusion apparatus according to claim 1, the build-up welding using the passive shell material is powder plasma welding using the powder of the passive shell material. To do.
According to the third aspect, the welding can be simplified and the construction time can be shortened as compared with ordinary TIG (MAG) welding.
[0020]
According to a fourth aspect of the present invention, in the reactor structure of the fusion apparatus according to the first aspect, a plurality of splice plates are installed in the passive shell region, and between the adjacent splice plate passive shells on the poloidal end surface side of the splice plate. Is characterized by not depositing passive shell material.
[0021]
According to the fourth aspect, since the poloidal gap between the passive shells of the adjacent splice plates is small, the function of the passive shell is not impaired even if the passive shells are not electrically connected in the poloidal direction by the adjacent splice plates. Therefore, the manufacturing period of the furnace structure can be greatly shortened.
[0022]
According to a fifth aspect of the present invention, in a reactor structure of a nuclear fusion apparatus in which a plurality of reactor structure sectors are connected using a plurality of splice plates, a passive material composed of a clad material composed of a passive shell material and a structure material. The end surface of the passive shell material in the shell region is characterized by a predetermined plane slope or concave slope.
[0023]
Generally, the furnace structure has a large nuclear heat generation and a large temperature gradient is generated along the heat conductor. For example, a passive shell material such as a copper alloy and a structural material such as austenitic stainless steel have different thermal expansion coefficients. For this reason, there is a concern that a large thermal stress is concentrated on the end face of the passive shell during operation of the furnace structure.
According to the fifth aspect, the concentration of the thermal stress can be relaxed and the structural integrity of the part can be improved.
[0024]
According to a sixth aspect of the present invention, in the reactor structure of the fusion device according to the fifth aspect, the position of the end face of the passive shell material at the structural welding site in the passive shell region is separated from the weld groove surface of the structural material by a predetermined distance. It is characterized by setting.
According to the sixth aspect, it is possible to solve the problems of welding cracking due to the entrainment of the passive shell material during welding of the structural material and the peeling of the passive shell material due to welding heat.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a toroidal sectional view showing a passive shell region of an inter-sector connection portion of a vacuum vessel of a nuclear fusion apparatus according to a first embodiment of the present invention (corresponding to claim 1).
[0026]
As shown in the figure, in this embodiment, the passive shell 5 is joined to the inner wall 1, and the connecting portion between the vacuum vessel sector 3 a and the vacuum vessel sector 3 b is the structural material of the splice plate 9 and the structural material of the inner wall 1. After forming the welded joint 13 by welding, a passive shell material having a low electrical resistance such as copper or copper alloy is built up between the passive shell portion of the splice plate 9 and the passive shell portion of the vacuum vessel. The built-up portion 14 is electrically connected to these passive shells. Further, cooling water is allowed to flow through the cooling passage 6 formed by the inner wall 1 and the outer wall 2 and the poloidal rib 7 connecting them. The blanket 8 is installed on the inner wall 1.
[0027]
According to the present embodiment, the passive shells between adjacent sectors are electrically connected by overlaying, so that not only the heat removal characteristics and the strength against electromagnetic force of the passive shell part of the sector connection part can be improved. Since the build-up is an extremely simple operation, the production period of the vacuum vessel can be considerably shortened.
[0028]
FIG. 2 is a toroidal cross-sectional view of the inter-sector connection portion of the vacuum vessel of the fusion device according to the second embodiment of the present invention (corresponding to claims 2 and 3), and corresponds to “A” portion of FIG. FIG. The same parts as those in the first embodiment of FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. The same applies to the following embodiments.
[0029]
In this figure, in this embodiment, after welding the structural materials, the final weld pass surface of the inter-sector structural material welded joint 13, the surface of the inter-sector structural material welded joint 13 from which the passive shell has been removed, Nickel build-up part 15 is formed by build-up welding nickel on a part of the inclined end surface. Thereafter, the passive shell material is powder plasma welded to form the passive shell material build-up portion 14 to electrically connect the passive shells in adjacent sectors. The end of the passive shell is the inclined end surface 16.
[0030]
According to the present embodiment, by first depositing nickel, it is possible to prevent weld cracks caused by the passive shell material being melted into the structural material during the overlay welding of the passive shell material. Therefore, high structural soundness can be obtained with respect to this sector connection. Next, it is possible to facilitate the build-up operation of the passive shell by performing powder plasma welding using the powder of the passive shell, and to shorten the production period of the vacuum vessel. Furthermore, a series of operations for building up can be facilitated by inclining the end portion on the building side of the passive shell.
[0031]
FIG. 3 is a poloidal sectional view of an adjacent splice plate in the passive shell region of the inter-sector connection portion of the vacuum vessel of the fusion device according to the third embodiment (corresponding to claim 4) of the present invention.
[0032]
As shown in the drawing, in this embodiment, a narrow groove welding method is applied in welding of splice plates to form a splice plate weld joint 18 having a small groove opening, and the adjacent splice plates 17a and 17b are connected to each other. A passive shell material is not built between the passive shells 5 and 5.
[0033]
According to the present embodiment, the effective poloidal gap 20 between the passive shells 5 and 5 of the plurality of splice plates 17a and 17b in the passive shell region is reduced, and the build-up of the passive shell material in that portion is omitted. The production period of the vacuum vessel can be shortened.
[0034]
FIG. 4 is a poloidal sectional view showing a poloidal end portion of a passive shell of a vacuum vessel of a nuclear fusion apparatus according to a fourth embodiment of the present invention (corresponding to claim 5).
As shown in the figure, in this embodiment, the poloidal end surface of the passive shell 5 is formed on the concave end surface 21. That is, in the drawing, the end surface of the passive shell material has a concave slope, but it can also have a predetermined plane slope. The blanket is not shown.
[0035]
According to the present embodiment, the thermal stress concentration at the joint interface between the passive shell end face structure and the structure formed by the difference in thermal expansion coefficient between the passive shell material and the structural material is reduced, and a highly reliable vacuum vessel with a passive shell is obtained. be able to.
[0036]
FIG. 5 is a perspective view of a splice plate of a vacuum vessel of a nuclear fusion apparatus according to a fifth embodiment (corresponding to claim 6) of the present invention.
In the figure, in the present embodiment, the position of the end face of the passive shell material is set to a position separated by a predetermined distance 23 from the weld groove surface 22 of the structural material in the structural welding portion of the passive shell 5 region. Further, the passive shell end face is provided with an inclination angle 24.
ADVANTAGE OF THE INVENTION According to this invention, the problem of the welding crack by the winding of the passive shell material at the time of structural material welding, and the problem of peeling of the passive shell material by welding heat can be solved.
[0037]
【The invention's effect】
As described above, according to the present invention (corresponding to claims 1 to 6), there is a problem of low structural reliability and a long manufacturing time due to insufficient countermeasures against electromagnetic force and thermal stress. Since this can be solved, it is possible to provide a reactor structure of a nuclear fusion apparatus that has a simple and highly reliable structure and that can shorten the manufacturing time.
[Brief description of the drawings]
FIG. 1 is a toroidal cross-sectional view of a passive shell region of an inter-sector connection portion of a vacuum vessel of a nuclear fusion apparatus according to a first embodiment of the present invention.
2 is a toroidal cross-sectional view of an inter-sector connection portion of a vacuum vessel of a nuclear fusion apparatus according to a second embodiment of the present invention, and is an enlarged view of a portion corresponding to the “A” portion of FIG.
FIG. 3 is a poloidal sectional view of an adjacent splice plate in a passive shell region of a vacuum vessel of a nuclear fusion apparatus according to a third embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a poloidal end face of a passive shell of a vacuum vessel of a nuclear fusion apparatus according to a fourth embodiment of the present invention.
FIG. 5 is a perspective view of a splice plate of a vacuum vessel of a fusion device according to a fifth embodiment of the present invention.
FIG. 6 is a perspective view of two adjacent sectors of a conventional double-walled torus vacuum vessel.
7 is a cross-sectional view in the VII-VII direction of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner wall, 2 ... Outer wall, 3a, 3b ... Vacuum container sector, 4 ... Inter-sector connection part, 5 ... Passive shell, 6 ... Cooling flow path, 7 ... Poloidal rib, 8 ... Blanket, 9 ... Splice plate, 10 ... Connection copper plate, 11 ... bolt, 12 ... arrow indicating the toroidal direction, 13 ... inter-sector structural material weld joint, 14 ... passive shell material build-up part, 15 ... nickel build-up part, 16 ... inclined end face, 17a, 17b ... passive Adjacent splice plate with shell, 18 ... weld joint between splice plates, 19 ... arrow indicating poloidal direction, 20 ... effective poloidal gap between passive shells, 21 ... concave end face, 22 ... weld groove surface of structural material, 23 ... structural material The distance between the weld groove surface and the passive shell end surface, 24... The inclination angle of the inclined end surface of the passive shell.

Claims (6)

複数のスプライス板を用いて複数の炉構造体セクタを接続してなる核融合装置の炉構造体において、パッシブシェル領域のスプライス板を、銅あるいは銅合金のような電気抵抗の小さいパッシブシェル材と炉構造体の構造材と同種の構造材とからなるクラッド材で構成し、スプライス板の構造材と炉構造体セクタの構造材とを溶接接続し、さらにパッシブシェル材を用いた溶接あるいは溶射によりスプライス板のパッシブシェル部と炉構造体セクタのパッシブシェル部間を肉盛りしてこれらパッシブシェル間を電気的に接続したことを特徴とする核融合装置の炉構造体。  In a reactor structure of a fusion apparatus in which a plurality of reactor structure sectors are connected using a plurality of splice plates, the splice plate in the passive shell region is replaced with a passive shell material having a low electrical resistance such as copper or a copper alloy. It is composed of a clad material consisting of the structural material of the furnace structure and the same type of structural material, and the splice plate structural material and the structural material of the furnace structure sector are welded together, and further, by welding or spraying using a passive shell A reactor structure of a nuclear fusion apparatus, wherein a passive shell portion of a splice plate and a passive shell portion of a reactor structure sector are built up and the passive shells are electrically connected. スプライス板の構造材と炉構造体セクタの構造材を溶接接続し、この溶接接続する溶接継手の最終溶接パスの表面とその最終溶接パスの表面近傍、あるいはこの最終溶接パスの表面領域とパッシブシェル材表面の一部に亙ってニッケルを肉盛り溶接し、さらにパッシブシェル材を肉盛り溶接してなることを特徴とする請求項1記載の核融合装置の炉構造体。The splice plate structural material and the furnace structural sector structural material are welded together, and the surface of the final weld pass of the weld joint to be welded and the vicinity of the surface of the final weld pass , or the surface region of the final weld pass and the passive shell The reactor structure of a nuclear fusion apparatus according to claim 1, wherein nickel is welded over a part of the material surface and further passive shell material is welded. パッシブシェル材を用いた肉盛り溶接は、パッシブシェル材の粉末を用いた粉末プラズマ溶接であることを特徴とする請求項1記載の核融合装置の炉構造体。  The reactor structure of a nuclear fusion apparatus according to claim 1, wherein the build-up welding using the passive shell material is powder plasma welding using the powder of the passive shell material. パッシブシェル領域に複数のスプライス板が設置されると共に、このスプライス板のポロイダル端面側の隣接スプライス板パッシブシェル間はパッシブシェル材を肉盛りしないことを特徴とする請求項1記載の核融合装置の炉構造体。  2. The fusion device according to claim 1, wherein a plurality of splice plates are installed in the passive shell region, and no passive shell material is built up between adjacent splice plates on the poloidal end surface side of the splice plate. Furnace structure. 複数のスプライス板を用いて複数の炉構造体セクタを接続してなる核融合装置の炉構造体において、パッシブシェル材と構造材とからなるクラッド材で構成するパッシブシェル領域におけるパッシブシェル材端面を所定の平面傾斜、あるいは凹面傾斜とすることを特徴とする核融合装置の炉構造体。  In the reactor structure of a nuclear fusion apparatus formed by connecting a plurality of reactor structure sectors using a plurality of splice plates, the end surface of the passive shell material in the passive shell region composed of the clad material composed of the passive shell material and the structural material A reactor structure of a nuclear fusion apparatus, characterized by having a predetermined plane inclination or concave inclination. パッシブシェル領域の構造溶接部位において、パッシブシェル材端面の位置を構造材の溶接開先面から所定の距離だけ離して設定したことを特徴とする請求項5記載の核融合装置の炉構造体。  6. The reactor structure of a nuclear fusion apparatus according to claim 5, wherein the position of the end surface of the passive shell material is set at a predetermined distance from the weld groove surface of the structural material at the structural welding site in the passive shell region.
JP02833899A 1999-02-05 1999-02-05 Fusion reactor reactor structure Expired - Fee Related JP3810935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02833899A JP3810935B2 (en) 1999-02-05 1999-02-05 Fusion reactor reactor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02833899A JP3810935B2 (en) 1999-02-05 1999-02-05 Fusion reactor reactor structure

Publications (2)

Publication Number Publication Date
JP2000227486A JP2000227486A (en) 2000-08-15
JP3810935B2 true JP3810935B2 (en) 2006-08-16

Family

ID=12245832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02833899A Expired - Fee Related JP3810935B2 (en) 1999-02-05 1999-02-05 Fusion reactor reactor structure

Country Status (1)

Country Link
JP (1) JP3810935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340325B (en) * 2016-10-19 2020-04-24 中国科学院合肥物质科学研究院 Joint area structure for joining and looping between vacuum chamber segments of nuclear fusion reactor
RU2687289C1 (en) * 2017-11-23 2019-05-13 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for attachment of blanket module on vacuum housing of thermonuclear reactor

Also Published As

Publication number Publication date
JP2000227486A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP5717779B2 (en) Monoblock cooling device components
JP2007205931A (en) Metal cask for radioactive substance
US20130334182A1 (en) Core shroud corner joints
JP3810935B2 (en) Fusion reactor reactor structure
Tivey et al. ITER divertor, design issues and research and development
Hirai et al. Design and integration of ITER divertor components
US4410487A (en) Core baffle or enclosure and method of fabricating the same
US4892702A (en) Light-water nuclear reactor vessel and process for its manufacture
Vieider et al. ITER plasma facing components, design and development
Ioki et al. Design improvements and R&D achievements for vacuum vessel and in-vessel components towards ITER construction
JP3605116B2 (en) Core shroud for surrounding the core, especially in boiling water reactors
Lipa et al. Development of actively cooled plasma-facing components for Tore Supra
US3460237A (en) Method of making a nuclear fuel element
JP3448222B2 (en) Shroud for nuclear reactor
Vieider et al. European development of the ITER divertor target
CN114038581A (en) Flat-plate divertor target plate suitable for magnetic confinement nuclear fusion device and processing method thereof
US20240136076A1 (en) Plasma-facing component (pfc) of fusion reactor divertor and preparation method thereof
Giniyatulin et al. Optimization of armour geometry and bonding techniques for tungsten-armoured high heat flux components
Ioki et al. ITER shield blanket and vacuum vessel
US6389094B1 (en) Integral forged shroud flange for a boiling water reactor
JP3808661B2 (en) Fusion reactor vacuum vessel and method of manufacturing the same
Sadakov et al. ITER containment structures
JPH05113487A (en) Nuclear fusion device
JP2008216079A (en) Method for sealing defect of reactor structure
JP3887759B2 (en) Core support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees