JPH02243566A - Piezoelectric ceramics - Google Patents
Piezoelectric ceramicsInfo
- Publication number
- JPH02243566A JPH02243566A JP1064517A JP6451789A JPH02243566A JP H02243566 A JPH02243566 A JP H02243566A JP 1064517 A JP1064517 A JP 1064517A JP 6451789 A JP6451789 A JP 6451789A JP H02243566 A JPH02243566 A JP H02243566A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric ceramics
- sic
- weight
- sintered body
- si3n4
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 16
- 229910019653 Mg1/3Nb2/3 Inorganic materials 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 9
- 230000008878 coupling Effects 0.000 abstract description 7
- 238000010168 coupling process Methods 0.000 abstract description 7
- 238000005859 coupling reaction Methods 0.000 abstract description 7
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 abstract description 3
- 239000000843 powder Substances 0.000 abstract description 3
- 238000001354 calcination Methods 0.000 abstract description 2
- 239000011812 mixed powder Substances 0.000 abstract description 2
- 239000011369 resultant mixture Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 10
- 238000010304 firing Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910019704 Nb2O Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、ブザーやアクチュエータなどの電気機械エネ
ルギー変換子として用いられる圧電セラミックスに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to piezoelectric ceramics used as electromechanical energy converters such as buzzers and actuators.
従来の技術
xPb (Mgl/3Nb2/3)O,−yPbTio
。Conventional technology xPb (Mgl/3Nb2/3)O, -yPbTio
.
z P b Z ro3(ただしx+y+z=1で、X
=0.69〜0.01、y =0.52〜0.30、z
=0.69〜0.01)にS i O2を添加した圧
電セラミックスは特公昭45−15344号公報などで
大きな電気機械結合係数を持つことが知られており、ブ
ザーやアクチュエータなどの電気機械エネルギー変換子
に広く用いられている。z P b Z ro3 (However, x+y+z=1,
=0.69-0.01, y =0.52-0.30, z
Piezoelectric ceramics containing S i O2 (=0.69 to 0.01) are known to have a large electromechanical coupling coefficient, as reported in Japanese Patent Publication No. 45-15344, and are used in electromechanical energy applications such as buzzers and actuators. Widely used in converters.
発明が解決しようとする課題
しかしながら、上記のようにxPb (Mgl/3Nb
2/3)O,−yPbTio、−zPbZro、にS
i O,を添加した圧電セラミックスは大きな電気機械
結合係数を持つが、焼成時に粒成長を起こしやすく、焼
結体の結晶粒径が大きくなるために、機械的強度が低い
という課題があった。Problems to be Solved by the Invention However, as mentioned above, xPb (Mgl/3Nb
2/3) O, -yPbTio, -zPbZro, S
Piezoelectric ceramics doped with i 2 O, have a large electromechanical coupling coefficient, but they tend to undergo grain growth during firing and the crystal grain size of the sintered body increases, resulting in low mechanical strength.
本発明は上記課題を解決するもので、高強度で電気機械
結合係数の大きな圧電セラミックスを得ることを目的と
するものである。The present invention solves the above problems, and aims to obtain piezoelectric ceramics with high strength and a large electromechanical coupling coefficient.
課題を解決するための手段
上記課題を解決するために本発明は、xPb(M g
1/3N b 2/3) Ox 3’ P b T
x O□−yPbTiO3−zPbZrO3(ただし−
X+y+z=lで、X=0.69〜0.01、y=0.
52〜0.30、z 〜0.69〜0.01)にSiC
を0.01重量%〜0.05重量%添加してなるもので
ある。Means for Solving the Problems In order to solve the above problems, the present invention provides xPb (M g
1/3N b 2/3) Ox 3' P b T
x O□-yPbTiO3-zPbZrO3 (however -
X+y+z=l, X=0.69-0.01, y=0.
52 ~ 0.30, z ~ 0.69 ~ 0.01)
It is made by adding 0.01% to 0.05% by weight of.
また、本発明はx P b (M g 1/3N b
2/3) O。Further, the present invention provides x P b (M g 1/3N b
2/3) O.
−y P b T i○、−yPbTiO3−zPbZ
rO3(ただし、X+y+z=1で、x 〜0.69〜
0.01. :J 〜0.52〜0.30゜z 〜0.
69〜0.01)にSi、N4を0.01重量%〜0.
05重量%添加してなるものである。-y P b Ti○, -yPbTiO3-zPbZ
rO3 (where X+y+z=1, x ~0.69~
0.01. :J ~0.52~0.30゜z ~0.
69-0.01) with Si and N4 added in an amount of 0.01% by weight to 0.01% by weight.
It is made by adding 0.05% by weight.
作用
上記のようにx P b (M g 1/3N b
2/3) O。ActionAs above, x P b (M g 1/3N b
2/3) O.
yPbTio3−zPbZro3にSiCを0.01重
量%〜0.05重量%添加することにより、焼成時の粒
成長が抑えられ、結晶粒径が小さくなるため、焼結体の
機械的強度が向上する。By adding 0.01% to 0.05% by weight of SiC to yPbTio3-zPbZro3, grain growth during firing is suppressed and the crystal grain size becomes smaller, thereby improving the mechanical strength of the sintered body.
また、x P b (M g 1/3N b 2/3
) O。Also, x P b (M g 1/3N b 2/3
) O.
yPbTio、−z Pb Z ro、にSi3N4を
0.01重量%〜0.05重量%添加することによって
も焼成時の粒成長が抑えられ、結晶粒径が小さくなるた
め、焼結体の機械的強度が向上する。By adding 0.01% to 0.05% by weight of Si3N4 to yPbTio, -zPbZro, grain growth during firing is suppressed and the crystal grain size becomes smaller, which improves the mechanical properties of the sintered body. Strength is improved.
実施例 〔実施例1〕 以下、本発明に係る実施例について述べる。Example [Example 1] Examples according to the present invention will be described below.
第1図は本発明の圧電セラミックスのxPb(Mgl/
3N b 2/3)○、−yPbTio3−zPbZr
O3の組成図である。まず、第1図における斜線範囲内
、すなわちx+y+z=1で、X=0.69〜o、oi
、 y=0.52〜0.30、z = 0 、69〜0
、01の組成になるように、原料として化学的に純度
98%以上のpb○、T i O,、ZrO,、MgO
、Nb2O,と、この組成に対し重量%で0.0.01
.0.02.0.05.0.10になるように化学的に
純度98%以上のSiCとをそれぞれ秤量し、ボールミ
ルで混合した。混合粉末を850℃で仮焼した後、ボー
ルミルで粉砕し、この粉砕粉を1000kg/adの圧
力で成形し、1150〜1200℃の温度で焼成した。Figure 1 shows xPb(Mgl/
3N b 2/3) ○, -yPbTio3-zPbZr
It is a composition diagram of O3. First, within the shaded range in Figure 1, that is, x+y+z=1, X=0.69~o, oi
, y=0.52~0.30, z=0, 69~0
, 01, chemically pure pb○, T i O,, ZrO,, MgO with a purity of 98% or more was used as a raw material.
, Nb2O, and 0.0.01% by weight for this composition
.. SiC having a chemical purity of 98% or more was weighed and mixed in a ball mill so that the amounts were 0.02, 0.05, and 0.10. The mixed powder was calcined at 850°C, then pulverized in a ball mill, the pulverized powder was molded at a pressure of 1000 kg/ad, and fired at a temperature of 1150 to 1200°C.
得られた焼結体を直径15m、厚さ0.5m++の円板
に加工し、円板の上下面に銀電極を焼付けた。銀電極を
焼付けた円板を100℃のシリコンオイルに浸漬し、円
板の上下銀電極間に1.5kvの電位差を30分間与え
て分極を行い1分極後、24〜36時間経てから、上記
円板の電気特性を測定した。なお、測定方法および各電
気特性の計算は電子材料工業会標準規格(E MA S
−6001〜6007)に準じた。また、曲げ強度は上
記と同様にして得た焼結体を幅5n11、長さ15閣、
厚み0.5amの矩形板に加工し、スパン9mの3点曲
げ法で評価した。以上の方法で作成した各組成の電気特
性および機械的強度を第1表に示す、なお、第1表中の
W□はSiCの添加量でx P b (M g 1/3
N b 2/3)03−yPbTiO。The obtained sintered body was processed into a disk with a diameter of 15 m and a thickness of 0.5 m++, and silver electrodes were baked on the upper and lower surfaces of the disk. A disk with baked silver electrodes was immersed in silicone oil at 100°C, and a potential difference of 1.5 kV was applied between the upper and lower silver electrodes of the disk for 30 minutes to polarize it. After 1 polarization, 24 to 36 hours later, the above The electrical properties of the disk were measured. The measurement method and calculation of each electrical property are based on the Electronic Materials Association Standards (EMAS).
-6001 to 6007). In addition, the bending strength of the sintered body obtained in the same manner as above was determined by a width of 5n11 and a length of 15cm.
It was processed into a rectangular plate with a thickness of 0.5 am, and evaluated using a three-point bending method with a span of 9 m. The electrical properties and mechanical strength of each composition prepared by the above method are shown in Table 1. In Table 1, W□ is the amount of SiC added, x P b (M g 1/3
Nb2/3)03-yPbTiO.
−zPbZro、に対する重量%で表わしている。-zPbZro, expressed in weight %.
また、εI3ハ0は分極方向と同じ方向の比誘電率Kp
は径方向振動の電気機械結合係数、dはインターセプト
法より求めた焼結体の平均結晶粒径、σすは焼結体の曲
げ強度を示す。Also, εI3c0 is the relative dielectric constant Kp in the same direction as the polarization direction.
is the electromechanical coupling coefficient of radial vibration, d is the average grain size of the sintered body determined by the intercept method, and σ is the bending strength of the sintered body.
く以下余白〉
第1表
第1表に示すように、xPb (Mgl/3Nb2/3
)−y P b T i○、−zPbZro、にSiC
を添加することによって焼結体の結晶粒径が小さくなり
、機械的強度が向上する。しかし、SiCの添加量が0
.05重量%を越えると1機械的強度の向上が認められ
るものの電気特性の劣化をきたすため好ましくない。ま
た、SiCの添加量が0.01重量%より少ない場合は
添加の意味を持たない。焼結体の結晶粒径が小さくなる
と機械的強度が向上するのは、セラミックスの破壊発生
源となる表面のき裂はその焼結体の結晶粒径とほぼ同じ
であるため、結晶粒径が小さくなると破壊発生源となる
き裂も小さくなり、機械的強度が向上するものである。Table 1 As shown in Table 1, xPb (Mgl/3Nb2/3
) -y P b T i○, -zPbZro, SiC
By adding , the crystal grain size of the sintered body becomes smaller and the mechanical strength improves. However, the amount of SiC added is 0.
.. If it exceeds 0.05% by weight, an improvement in mechanical strength is observed, but electrical properties deteriorate, which is not preferable. Further, if the amount of SiC added is less than 0.01% by weight, the addition has no meaning. The reason why the mechanical strength improves as the crystal grain size of the sintered body becomes smaller is because the surface cracks that cause fractures in ceramics are almost the same as the crystal grain size of the sintered body. As the size becomes smaller, the cracks that cause fracture also become smaller, and the mechanical strength improves.
SiCの添加によって上記圧電セラミックスの結晶粒径
が小さくなるのは、SiCが仮焼または焼結の段階まで
完全に酸化されずに残っており、酸化物である上記圧電
セラミックスの焼成時の粒成長を抑制するためと考えら
れる。The reason why the crystal grain size of the piezoelectric ceramic becomes smaller due to the addition of SiC is that SiC remains unoxidized until the stage of calcination or sintering, and grain growth occurs during firing of the piezoelectric ceramic, which is an oxide. This is thought to be to suppress the
〔実施例2〕 次に本発明の他の実施例について述べる。[Example 2] Next, other embodiments of the present invention will be described.
この実施例においては、第1図における斜線範囲内、す
なわちx+y+z=1で、X=0.69〜0.01、y
=0.52−0.30、z =0.69〜0.01の
組成になるように原料として化学的に純度98%以上の
PbO,Tie、、ZrO2、MgO,Nb2O,と、
この組成に対し重量%でOlo、01.0.02.0.
05.0.10になるように化学的に純度98%以上の
Si3N4とをそれぞれ秤量し、以下の操作は実施例1
に基づいて作成した。第2表にこの圧電セラミックスの
電気特性および機械的強度を第2表に示す。なお、第2
表中のW2はSi3N4の添加量で上記x P b (
M g 1/3N b 2/3)○。In this example, within the shaded range in FIG. 1, that is, x+y+z=1, X=0.69 to 0.01, y
PbO, Tie, ZrO2, MgO, Nb2O, chemically with a purity of 98% or more as raw materials so as to have a composition of =0.52-0.30, z =0.69-0.01,
Based on this composition, Olo, 01.0.02.0.
Si3N4 with a purity of 98% or more was weighed so as to give a total weight of 0.05.
Created based on. Table 2 shows the electrical properties and mechanical strength of this piezoelectric ceramic. In addition, the second
W2 in the table is the amount of Si3N4 added, and the above x P b (
M g 1/3N b 2/3)○.
yPbTio3−zPbZro、に対する重量%で表わ
している。また−fL/ε0は分極方向と同じ方向の比
誘電率、Kpは径方向振動の電気機械結合係数dはイン
ターセプト法より求めた焼結体の平均結晶粒径、σ子は
焼結体の曲げ強度を示す。It is expressed in weight percent relative to yPbTio3-zPbZro. -fL/ε0 is the dielectric constant in the same direction as the polarization direction, Kp is the electromechanical coupling coefficient of radial vibration d is the average crystal grain size of the sintered body determined by the intercept method, and σ is the bending of the sintered body. Indicates strength.
〈以下余白〉
第2表
第2表に示すように、 x P b (M g ?/3
N b 2/3)−yPbTio、−zPbZro、に
Si、N4を添加することによって焼結体の結晶粒径が
小さくなり、機械的強度が向上し、上記実施例1と同様
の理由により、 S l 3 Noの添加量は0.旧型
量%〜0.05重量%が適している。この組成によって
も上記実施例1と同様の作用により機械的強度が向上す
る。<Margin below> Table 2 As shown in Table 2, x P b (M g ?/3
By adding Si and N4 to N b 2/3) -yPbTio and -zPbZro, the crystal grain size of the sintered body becomes smaller and the mechanical strength improves, and for the same reason as in Example 1 above, S The amount of l 3 No added was 0. An amount of old type % to 0.05% by weight is suitable. This composition also improves mechanical strength due to the same effect as in Example 1 above.
発明の効果
以上のようにx P b (M g 1/3N b 2
/3) −yPbTiO,−yPbTiO3−zPbZ
rO3(ただし、x+y十Z=1で、x =0.69〜
0.01、y=0.52〜0.30゜z =0.69〜
0.01)にSiCまたはSi3N4を0.01重量%
〜0.05重量%添加することにより、焼成時の粒成長
が抑制され、焼結体の結晶粒径が小さくなるため、焼結
体の機械的強度が向上し、高強度で大きな電気機械結合
係数を持った圧電セラミックスが得られる。x P b (M g 1/3N b 2
/3) -yPbTiO, -yPbTiO3-zPbZ
rO3 (however, x + y + Z = 1, x = 0.69 ~
0.01, y=0.52~0.30゜z=0.69~
0.01% by weight of SiC or Si3N4 in
Adding ~0.05% by weight suppresses grain growth during firing and reduces the crystal grain size of the sintered body, improving the mechanical strength of the sintered body and creating high strength and large electromechanical bonds. Piezoelectric ceramics with coefficients can be obtained.
第1図は本発明の圧電セラミックスのxPb(M gl
/3N b2/3) 03− y P b T i O
12P b Z r O3の組成図である。
代理人 森 本 義 弘Figure 1 shows xPb (M gl
/3N b2/3) 03- y P b T i O
It is a composition diagram of 12P b Z r O3. Agent Yoshihiro Morimoto
Claims (1)
iO_3−zPbZrO_3(ただし、x+y+z=1
で、x=0.69〜0.01、y=0.52〜0.30
、z=0.69〜0.01)にSiCを0.01重量%
〜0.05重量%添加してなる圧電セラミックス。 2、xPb(Mg1/3Nb2/3)O_3−yPbT
iO_3−zPbZrO_3(ただし、x+y+z=1
で、x=0.69〜0.01、y=0.52〜0.30
、z=0.69〜0.01)にSi_3N_4を0.0
1重量%〜0.05重量%添加してなる圧電セラミック
ス。[Claims] 1, xPb(Mg1/3Nb2/3)O_3-yPbT
iO_3-zPbZrO_3 (x+y+z=1
So, x=0.69~0.01, y=0.52~0.30
, z=0.69~0.01) with 0.01% by weight of SiC.
Piezoelectric ceramics containing ~0.05% by weight. 2, xPb(Mg1/3Nb2/3)O_3-yPbT
iO_3-zPbZrO_3 (x+y+z=1
So, x=0.69~0.01, y=0.52~0.30
, z=0.69~0.01) with 0.0 of Si_3N_4
Piezoelectric ceramics containing 1% to 0.05% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1064517A JP2803833B2 (en) | 1989-03-15 | 1989-03-15 | Piezoelectric ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1064517A JP2803833B2 (en) | 1989-03-15 | 1989-03-15 | Piezoelectric ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02243566A true JPH02243566A (en) | 1990-09-27 |
JP2803833B2 JP2803833B2 (en) | 1998-09-24 |
Family
ID=13260484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1064517A Expired - Fee Related JP2803833B2 (en) | 1989-03-15 | 1989-03-15 | Piezoelectric ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2803833B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167283A (en) * | 1984-09-10 | 1986-04-07 | Mitsubishi Mining & Cement Co Ltd | Piezoelectric ceramics |
-
1989
- 1989-03-15 JP JP1064517A patent/JP2803833B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167283A (en) * | 1984-09-10 | 1986-04-07 | Mitsubishi Mining & Cement Co Ltd | Piezoelectric ceramics |
Also Published As
Publication number | Publication date |
---|---|
JP2803833B2 (en) | 1998-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3482394B2 (en) | Piezoelectric ceramic composition | |
CN115321979B (en) | Multielement doped lead-based piezoelectric ceramic and preparation method thereof | |
EP2269965B1 (en) | Piezoelectric ceramic and piezoelectric ceramic composition | |
JP2942535B1 (en) | Piezoelectric porcelain composition | |
JP2002308672A (en) | Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device | |
KR930002641B1 (en) | Ferroelectric ceramics | |
JP3468461B2 (en) | Piezoelectric ceramic composition | |
JP2884635B2 (en) | Piezoelectric ceramics and method of manufacturing the same | |
JPH11217262A (en) | Piezoelectric porcelain composition | |
JPH02243566A (en) | Piezoelectric ceramics | |
JP2884631B2 (en) | Piezoelectric ceramics and manufacturing method thereof | |
JP2002326870A (en) | Piezoelectric ceramic | |
KR930001915B1 (en) | Method for producing piezoelectrical ceramic material sintered at low temperature | |
JP2841911B2 (en) | PZT ceramic composition | |
JPH0745882A (en) | Piezoelectric element | |
JP3087924B2 (en) | Method of manufacturing piezoelectric ceramic | |
JP3259321B2 (en) | Piezoelectric ceramic composition for actuator | |
RU2130000C1 (en) | Electrostrictive material | |
JP3062210B2 (en) | Piezoelectric strain material | |
JP2841344B2 (en) | Piezoelectric ceramic composition | |
JPH0438710B2 (en) | ||
JPH09157018A (en) | Piezoelectric ceramic composition and its production | |
JP3189582B2 (en) | Piezoelectric ceramic composition for actuator | |
KR100544091B1 (en) | Piezoelectric Ceramic Composition | |
JPH02197181A (en) | Ferroelectric porcelain body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |