JPH02243557A - Production of oxide superconductor and wiry material thereof - Google Patents
Production of oxide superconductor and wiry material thereofInfo
- Publication number
- JPH02243557A JPH02243557A JP1065291A JP6529189A JPH02243557A JP H02243557 A JPH02243557 A JP H02243557A JP 1065291 A JP1065291 A JP 1065291A JP 6529189 A JP6529189 A JP 6529189A JP H02243557 A JPH02243557 A JP H02243557A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- oxide
- oxide superconductor
- carbonate
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 title abstract description 3
- 239000000843 powder Substances 0.000 claims abstract description 51
- 239000002245 particle Substances 0.000 claims abstract description 15
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005491 wire drawing Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 13
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 2
- -1 BaCO3 Chemical compound 0.000 abstract 1
- 238000001354 calcination Methods 0.000 abstract 1
- 239000011369 resultant mixture Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、酸化物超電導体及びその線材の製造方法に関
し、特に、結晶中に非超電導相の少ない、超電導特性に
優れた酸化物超電導体及び酸化物超電導線材が、比較的
短時間で容易に製造することのできる酸化物超電導体及
びその線材の製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxide superconductor and a method for producing its wire, and in particular, to an oxide superconductor having excellent superconducting properties and having few non-superconducting phases in its crystals. The present invention also relates to an oxide superconductor and a method for manufacturing the wire, which can be easily manufactured in a relatively short period of time.
〔従来技術及び発明が解決しようとする課題〕近年、酸
化物超電導体を線材化しようとする試みは、ケーブル化
、コイル化等を目的として多くの研究機関で研究が行わ
れている。このような酸化物超電導線材を製造するため
には、まず、超電導特性に優れた良質の酸化物超電導結
晶を製造しなければならない。[Prior Art and Problems to be Solved by the Invention] In recent years, many research institutes have attempted to make oxide superconductors into wires for the purpose of making cables, coils, etc. In order to manufacture such an oxide superconducting wire, it is first necessary to manufacture a high quality oxide superconducting crystal with excellent superconducting properties.
この良質の結晶を有する酸化物超電導体を製造する方法
としては、粉末混合法が一般的によく知られている。こ
の方法は、例えばYBa 2 Cu 307−8結晶を
製造する場合、Y203 、Ba co3゜Cu O等
の原料酸化物粉末を混合、焼成、焼結することによって
酸化物超電導体を得るというものである。A powder mixing method is generally well known as a method for producing an oxide superconductor having high quality crystals. In this method, for example, when producing YBa 2 Cu 307-8 crystal, an oxide superconductor is obtained by mixing, firing, and sintering raw material oxide powders such as Y203 and Ba co 3 ° Cu O. .
しかし、この粉末混合法では、その結晶化時に、Cu
O,Ba Cu 02等の非超電導相が結晶粒界に析出
してしまうため、得られた酸化物超電導体のYBa 2
Cu 307−6結晶中を超電導電流が流れる際に、
上記結晶粒界で電流が遮断され、結果として酸化物超電
導体全体としての臨界電流密度Jcが、例えばat77
に、OTで数100 A/c−jと非常に小さな値とな
り、実用線材に要求されるat77に、OTで数10’
A/cd以上という値には、大きく掛は離れている。However, in this powder mixing method, Cu
Since non-superconducting phases such as O, Ba Cu 02, etc. precipitate at grain boundaries, YBa 2 of the obtained oxide superconductor
When superconducting current flows through Cu 307-6 crystal,
The current is cut off at the grain boundaries, and as a result, the critical current density Jc of the oxide superconductor as a whole becomes, for example, at77
In addition, OT has a very small value of several 100 A/c-j, and compared to at77 required for practical wires, OT has a value of several 10'
The value of A/cd or more is far away.
また、上記粉末混合法より高いJc値の得られる方法と
して、Y203 、Ba CO3、Cu O等の原料酸
化物粉末を金属管内に封入して、圧力を加えることによ
り結晶に配向性を持たせる方法があるが、この方法でも
Jcがat77に、OTで数1000A/cdと低いた
め、実用的ではない。In addition, as a method for obtaining a higher Jc value than the powder mixing method described above, there is a method in which raw material oxide powder such as Y203, Ba CO3, CuO, etc. is sealed in a metal tube and the crystals are given orientation by applying pressure. However, even with this method, Jc is as low as at77 and several thousand A/cd in OT, so it is not practical.
そこで考え出されたのが、一方向凝固法を基本的な考え
方として、結晶軸を揃えようとするいわゆる急冷一方向
凝固法である。この方法は、例えばYBa 2 Cu
307−&の仮焼粉をpt坩堝に入れて1400℃程度
にまで加熱して溶融状態にした後、双ロール、ハンマー
クエンチ等で2.冷することにより液相が存在する状態
の成形体を作成し、この成形体を再び1200°C程度
にまで再加熱し、約1000℃から950°Cまでを徐
冷して比較的大きな結晶を作製した後、任意の温度勾配
をつけて徐々に結晶化させ結晶軸を揃えるという方法で
ある。この方法により製造された酸化物超電導体はJc
がat77に、OTでIOA/C1i以上という高い値
を得ている。Therefore, the so-called rapid cooling unidirectional solidification method was devised, which uses the unidirectional solidification method as its basic concept and attempts to align the crystal axes. This method uses, for example, YBa 2 Cu
After putting the calcined powder of 307-& into a PT crucible and heating it to about 1400°C to make it into a molten state, 2. By cooling, a molded body in which a liquid phase exists is created, and this molded body is reheated to about 1200°C, and then slowly cooled from about 1000°C to 950°C to form relatively large crystals. After it is produced, it is gradually crystallized using an arbitrary temperature gradient to align the crystal axes. The oxide superconductor produced by this method is Jc
has obtained a high value of IOA/C1i or higher for at77 in OT.
しかし、まだこの方法で得られた酸化物超電導体の結晶
中には、粒径が数μm程度の非超電導相であるY2 B
a Cu 05が多く残存している。更に、上記のよう
に温度勾配をつけて徐々に結晶化する必要があるため、
製造時間が長くなってしまうなどの問題点もある。However, the crystals of oxide superconductors obtained by this method still contain Y2B, a non-superconducting phase with a grain size of several μm.
a A large amount of Cu 05 remains. Furthermore, as mentioned above, it is necessary to create a temperature gradient and gradually crystallize.
There are also problems such as increased manufacturing time.
従って、本発明の目的とするところは、結晶中に非超電
導相が少ない、超電導特性に優れた酸化物超電導体及び
その線材を、短時間で容易に製造することのできる酸化
物超電導体及びその線材の製造方法を提供することであ
る。Therefore, the object of the present invention is to provide an oxide superconductor and its wire which can be easily produced in a short time and have excellent superconducting properties and a small amount of non-superconducting phase in the crystal. An object of the present invention is to provide a method for manufacturing a wire rod.
上記目的を達成するために本発明が採用する酸化物超電
導体の製造方法は、Y酸化物、B、炭酸化物及びCu酸
化物を任意の割合に混合、焼成して得た粉末と、粒径が
0.5μm以下のY2O3粉末とを均一に分散して得た
試料粉末を、焼成することを構成上の特徴とするもので
ある。また、その線材の製造方法は、Y酸化物、B、炭
酸化物及びCu酸化物を任意の割合に混合、焼成して得
た粉末と、粒径が0.5μm以下のY2O,粉末とを均
一に分散して得た試料粉末を、金属管内に封入しその金
属管を線引き加工、熱処理することを構成上の特徴とす
るものである。The method for manufacturing an oxide superconductor adopted by the present invention in order to achieve the above object is to mix Y oxide, B, carbonate, and Cu oxide in arbitrary proportions and sinter the powder, and The structural feature is that a sample powder obtained by uniformly dispersing Y2O3 powder having a diameter of 0.5 μm or less is fired. In addition, the method for manufacturing the wire rod is to uniformly mix and sinter Y oxide, B, carbonate, and Cu oxide in any proportion, and Y2O powder with a particle size of 0.5 μm or less. The structural feature is that the sample powder obtained by dispersing the powder is enclosed in a metal tube, and the metal tube is subjected to wire drawing and heat treatment.
本発明の酸化物超電導体及びその線材の製造方法によれ
ば、Y酸化物(例えばY203 )、 Ba炭酸化物
(例えばBa CO3)及びCu酸化#(例えばCu
O)を混合、焼成して得た粉末中に含まれるBa Cu
02 、Cu Oと、粒径が0.5 a m以下のY
2O3粉末とがrY203 +4Ba CuO2+ 2
Cu O→2 YBa 2 Cu 3 o7−1i
Jのように反応してYBa 2 Cu3 o7.結晶を
生成するため、非超電導相の生成を著しく抑制すること
ができ、高い臨界電流密度Jcを得ることができる。According to the method for producing an oxide superconductor and its wire of the present invention, Y oxide (e.g. Y203), Ba carbonate (e.g. Ba CO3) and Cu oxide (e.g. Cu
Ba Cu contained in the powder obtained by mixing and firing O)
02, CuO and Y with a particle size of 0.5 a m or less
2O3 powder and rY203 +4Ba CuO2+ 2
Cu O→2 YBa 2 Cu 3 o7-1i
React as shown in J to form YBa 2 Cu3 o7. Since crystals are generated, the generation of non-superconducting phases can be significantly suppressed, and a high critical current density Jc can be obtained.
続いて、添付した図面を参照して、本発明を具体化した
一実施例につき説明し、本発明の理解に供する。ここに
第1図は、本発明の一実施例に係る試料粉末を熱処理す
る場合のヒートパターンの一例を示すタイムチャート第
2図は、本実施例方法により製造された酸化物超電導線
材の臨界電流密度特性図、第3図は、その酸化物超電導
線材の超電導転移温度とy2o、粉末選別用フィルタの
網目径との相関関係図である。Next, an embodiment embodying the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a time chart showing an example of a heat pattern when a sample powder is heat-treated according to an embodiment of the present invention. FIG. 2 is a time chart showing a critical current of an oxide superconducting wire manufactured by the method of this embodiment. The density characteristic diagram, FIG. 3, is a correlation diagram between the superconducting transition temperature of the oxide superconducting wire, y2o, and the mesh diameter of the powder sorting filter.
この実施例では、まず、Y2O3とBa CO3とCu
O(各々純度99.9%)の粉末を混合した後、酸素
雰囲気中で930°CX10hr焼成し、この焼成体を
ボールミルにより粉砕して微細混合粉末とし、その中か
ら粒径1μm以下の粒子のみを選別した。In this example, first, Y2O3, BaCO3 and Cu
After mixing powders of O (each with a purity of 99.9%), they were fired at 930°C for 10 hours in an oxygen atmosphere, and this fired body was ground in a ball mill to form a fine mixed powder, from which only particles with a particle size of 1 μm or less were mixed. were selected.
次に、y2o、のみの粉末を上記と同様にボールミルに
より粉砕して微細粉末とし、その中がら粒径0.1μm
以下のみの粒子を選別した。そして、上記粒径1μm以
下の微細混合粉末(Y203+Ba CO3+Cu O
)と、上記粒径0.1 // m以下の微細粉末(Y2
03 )とを
/cffl、IOT中でも4.OX 10’ A/dと
いう高い値を示した。更に、この線材の超電導転移温度
Tc endを測定したところ90.2にという値を得
た。Next, the powder of y2o was ground into a fine powder using a ball mill in the same manner as above, and the inner particle size was 0.1 μm.
Only the following particles were selected: Then, the fine mixed powder (Y203 + Ba CO3 + Cu O
) and the fine powder (Y2
03) and /cffl, 4. in IOT. It showed a high value of OX 10' A/d. Furthermore, when the superconducting transition temperature Tc end of this wire was measured, a value of 90.2 was obtained.
従って、本実施例方法により製造した酸化物超電導線材
は超電導特性に優れていることがわかる。Therefore, it can be seen that the oxide superconducting wire manufactured by the method of this example has excellent superconducting properties.
(Y、0.+ BaC0,+ CuO)の重量+(YA
)の重量となる割合で均一に分散するように配合して、
これを試料粉末とし、該試料粉末を外径5閣、内径3、
5 mの金属管(ここでは銀製のものを用いた)内に封
入して、上記金属管の外径が0.8wになるように線引
き加工した後、酸素雰囲気中で第1図に示すようなヒー
トパターンで熱処理して、Y−Ba −Cu −0線材
を得た。Weight of (Y, 0.+ BaC0, + CuO) + (YA
) in such a way that it is evenly dispersed in a proportion of the weight of
This is used as a sample powder, and the sample powder has an outer diameter of 5, an inner diameter of 3,
After enclosing it in a 5 m metal tube (a silver one was used here) and drawing it so that the outer diameter of the metal tube was 0.8W, it was drawn in an oxygen atmosphere as shown in Figure 1. A Y-Ba-Cu-0 wire rod was obtained by heat treatment using a heat pattern.
このようにして製造されたY−Ba−Cu−0線材の4
端子電気抵抗測定法による、磁場中、77.3にでの臨
界電流密度Jcの測定結果を第2図に示す。4 of the Y-Ba-Cu-0 wire produced in this way
FIG. 2 shows the measurement results of the critical current density Jc at 77.3 in a magnetic field by the terminal electrical resistance measurement method.
これによると、OT中でJcが3.5X10’A次に、
上記微細混合粉末(Y203 + Ba C03+Cu
O)と、上記微細粉末(Y203 )との配合割合を
(Y、Q、+ BaC0,+ CuO)の重量+(Y、
0.)の重量とした場合、Jc (at77.3K)
はOT中で2.1×10’ A/cii、IOT中で
1.8X10’A10f、Tcendは85.8にとい
う値を示した。これによると、上記の配合割合を5%と
した場合に較べると若干低い値になっているが、十分に
実用線材として要求される値を満足している。According to this, Jc is 3.5X10'A in OT, then
The above fine mixed powder (Y203 + Ba C03 + Cu
O) and the above-mentioned fine powder (Y203) are determined by the weight of (Y, Q, + BaC0, + CuO) + (Y,
0. ), Jc (at77.3K)
showed values of 2.1×10′ A/cii in OT, 1.8×10′ A10f in IOT, and 85.8 for Tcend. According to this, the value is slightly lower than when the above-mentioned blending ratio is 5%, but it sufficiently satisfies the value required for a practical wire material.
最後に、本発明の構成の中で、Y酸化物、 Ba炭酸化
物、Cu酸化物よりなる混合粉末と共に試料粉末を形成
するY2O3粉末の粒径を、0.5μm下に限定した理
由について、第3図を参照して説明する。Finally, in the structure of the present invention, the reason why the particle size of the Y2O3 powder that forms the sample powder together with the mixed powder consisting of Y oxide, Ba carbonate, and Cu oxide is limited to 0.5 μm or less is explained below. This will be explained with reference to FIG.
ここに第3図は、上記Y20.粉末をボールミルにより
粉砕して微細粉末とし、その微細粉末の粒径を選別する
フィルタの網目径と、その網目径のフィルタにより選別
されたY2O3微細粉末を使用して得られた酸化物超電
導線材の超電導転移温度Tc endとの関係を示す
図面である。Here, FIG. 3 shows the above Y20. Powder is pulverized into fine powder using a ball mill, and the mesh size of a filter is used to select the particle size of the fine powder. It is a drawing showing the relationship with superconducting transition temperature Tc end.
これによると、フィルタの網目径が0.8μm以下の場
合には、液体窒素温度(77,3K)以上のTcend
が得られたが、それ以上の場合では、Tc endが7
7.3に以下となり、上記網目径が0.8μ顛以下でも
特に、0.5μm以下の場合に高いTc endを示す
ためである。According to this, when the mesh diameter of the filter is 0.8 μm or less, Tcend above the liquid nitrogen temperature (77.3 K)
was obtained, but in the case beyond that, Tc end was 7
This is because Tc end is high even when the mesh diameter is 0.8 μm or less, especially when it is 0.5 μm or less.
本発明によれば、Y酸化物,Ba炭酸化物及びCu酸化
物を任意の割合に混合、焼成して得た粉末と、粒径が0
.5μm以下のy2o、粉末とを均一に分散して得た試
料粉末を、焼成することを特徴とする酸化物超電導体の
製造方法及びY酸化物。According to the present invention, a powder obtained by mixing and firing Y oxide, Ba carbonate, and Cu oxide in an arbitrary ratio and a powder having a particle size of 0
.. A method for producing an oxide superconductor and Y oxide, characterized by firing a sample powder obtained by uniformly dispersing Y2O and powder having a particle size of 5 μm or less.
B1炭酸化物及びCu酸化物を任意の割合に混合焼成し
て得た粉末と、粒径が0.5μm以下のy、o2粉末と
を均一に分散して得た試料粉末を、金属管内に封入しそ
の金属管を線引き加工、熱処理することを特徴とする酸
化物超電導線材の製造方法が提供され、これにより非超
電導相の少ない、優れた超電導特性の酸化物超電導体及
びその線材が得られる。A sample powder obtained by uniformly dispersing a powder obtained by mixing and firing B1 carbonate and Cu oxide in an arbitrary ratio and Y, O2 powder with a particle size of 0.5 μm or less is sealed in a metal tube. A method for manufacturing an oxide superconducting wire is provided, which is characterized by drawing and heat-treating a perilla metal tube, thereby obtaining an oxide superconductor and its wire with excellent superconducting properties and a small amount of non-superconducting phase.
また本発明の製造方法は、基本的には粉末混合法を用い
ているため、例えば急冷一方向凝固法などの方法に較べ
て、比較的短時間で、且つ容易に優れた超電導特性の酸
化物超電導体及びその線材を製造することができる。Furthermore, since the production method of the present invention basically uses a powder mixing method, it is easier to produce an oxide with excellent superconducting properties in a relatively short time compared to methods such as rapid cooling and unidirectional solidification. Superconductors and their wires can be manufactured.
第1図は、本発明の〜実施例に係る試料粉末を熱処理す
る場合のヒートパターンの一例を示すタイムチャート、
第2図は、本実施例方法により製造された酸化物超電導
線材の臨界電流密度特性図。
第3図は、その酸化物超電導線材の超電導転移温度とY
2O3粉末選別用フィルタの網目径との相量関係図であ
る。FIG. 1 is a time chart showing an example of a heat pattern when heat-treating sample powder according to embodiments of the present invention;
FIG. 2 is a critical current density characteristic diagram of the oxide superconducting wire manufactured by the method of this example. Figure 3 shows the superconducting transition temperature and Y of the oxide superconducting wire.
FIG. 2 is a diagram showing the relationship between the amount of phase and the mesh diameter of a filter for sorting 2O3 powder.
Claims (2)
割合に混合,焼成して得た粉末と、粒径が0.5μm以
下のY_2O_3粉末とを均一に分散して得た試料粉末
を、焼成することを特徴とする酸化物超電導体の製造方
法。(1) Sample powder obtained by uniformly dispersing a powder obtained by mixing and firing Y oxide, Ba carbonate, and Cu oxide in arbitrary proportions and Y_2O_3 powder with a particle size of 0.5 μm or less A method for producing an oxide superconductor, comprising firing.
割合に混合,焼成して得た粉末と、粒径が0.5μm以
下のY_2O_3粉末とを均一に分散して得た試料粉末
を、金属管内に封入しその金属管を線引き加工,熱処理
することを特徴とする酸化物超電導線材の製造方法。(2) Sample powder obtained by uniformly dispersing a powder obtained by mixing and firing Y oxide, Ba carbonate, and Cu oxide in arbitrary proportions and Y_2O_3 powder with a particle size of 0.5 μm or less 1. A method for manufacturing an oxide superconducting wire, the method comprising: enclosing the metal tube in a metal tube, and subjecting the metal tube to wire drawing and heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1065291A JPH02243557A (en) | 1989-03-16 | 1989-03-16 | Production of oxide superconductor and wiry material thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1065291A JPH02243557A (en) | 1989-03-16 | 1989-03-16 | Production of oxide superconductor and wiry material thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02243557A true JPH02243557A (en) | 1990-09-27 |
Family
ID=13282678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1065291A Pending JPH02243557A (en) | 1989-03-16 | 1989-03-16 | Production of oxide superconductor and wiry material thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02243557A (en) |
-
1989
- 1989-03-16 JP JP1065291A patent/JPH02243557A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0643268B2 (en) | Oxide high temperature superconductor | |
JPH0259465A (en) | Production of oxide high temperature superconductor | |
JPH07172834A (en) | Oxide superconductive material and its production | |
JPH04500196A (en) | Superconducting metal oxide composition | |
JPH02243557A (en) | Production of oxide superconductor and wiry material thereof | |
JPH02207420A (en) | Manufacture of superconducting wire rod | |
JPH01251514A (en) | Superconductive wire and manufacture thereof | |
JP2854338B2 (en) | Copper oxide superconductor | |
JP2727565B2 (en) | Superconductor manufacturing method | |
JPH10330117A (en) | Oxide superconductor, its production and current lead using the same | |
JP2971504B2 (en) | Method for producing Bi-based oxide superconductor | |
JPS63279513A (en) | Superconductor wire rod and its manufacture | |
JPS63277547A (en) | Production of high-temperature superconductive porcelain | |
JP2002326817A (en) | Oxide superconductor and its production method | |
JPH01278467A (en) | Production of superconductor | |
JPH01160822A (en) | Superconductor | |
JPH01278458A (en) | Production of superconductor | |
JPH02160317A (en) | Manufacture of superconducting wire | |
JPH0395808A (en) | Manufacture of oxide superconductor wire rod | |
JPH04202046A (en) | Production of superconducting ceramic sintered body | |
JPH05310428A (en) | Superconductor having high critical current density and its production | |
JPH01241717A (en) | Manufacture of oxide superconductor wire | |
JPH04259203A (en) | Manufacture of ceramic superconductor coil | |
JPH01278460A (en) | Production of superconductor | |
JPH01278464A (en) | Production of superconductor |