JPH02242047A - Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials - Google Patents

Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials

Info

Publication number
JPH02242047A
JPH02242047A JP1059725A JP5972589A JPH02242047A JP H02242047 A JPH02242047 A JP H02242047A JP 1059725 A JP1059725 A JP 1059725A JP 5972589 A JP5972589 A JP 5972589A JP H02242047 A JPH02242047 A JP H02242047A
Authority
JP
Japan
Prior art keywords
endothermic
raw material
heat
throwaway
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1059725A
Other languages
Japanese (ja)
Inventor
Junichi Kodama
順一 児玉
Hiroshi Sato
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1059725A priority Critical patent/JPH02242047A/en
Publication of JPH02242047A publication Critical patent/JPH02242047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

PURPOSE:To rate accurately the characteristic of endothermic raw materials for a throwaway pocket heater by blending an endothermic raw material for a throwaway pocket heater in a container, such as a glove box replaced with nitrogen, and then trying to fill an insulated reaction container, which is arranged to control the amount of air supply, with said raw material, and inserting a direct temperature measurement sensor into the raw material. CONSTITUTION:An attempt is made to take out an endothermic raw material for a throwaway pocket heater to be measured in an enclosed container replaced with nitrogen or blend the endothermic raw material 6 so that it may not react prior to measurement. Then, an air pump 1, a flow rate controller 2, and a flow meter 5 are installed so that the amount of air may be controlled either in automatic or manual mode, moreover, a reaction container 4 covered with an insulation material 3 is filled with the endothermic raw material 6. The container 4 is also designed so that air may be supplied to the endothermic raw material 6 by way of an air supply pipe 7 where a temperature sensor 7 is inserted into the endothermic raw material directly so that the endothermic characteristic may be measured and evaluated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、使用時に火、電気等の外部エネルギーを与え
ず内包された成分の化学反応を利用して発熱する、使い
捨てカイロ素材の発熱特性を簡便に、かつ精度良く評価
する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the heat generating properties of a disposable body warmer material that generates heat by the chemical reaction of the contained ingredients without applying external energy such as fire or electricity during use. This invention relates to a method for easily and accurately evaluating

[従来の技術] 使い捨てカイロが市場に多く流通するようになり、カイ
ロとしておもに使用されるようになったことから、規格
化が行われ、1985年にJISが制定された。従来の
発熱特性評価方法はJIS S 4]00に記述されて
いる。測定方法を第1図に示したが、試験条件として(
1)周囲温度5±5℃、(2)周囲湿度55〜70%、
(3)風速0.5m/s以下の無風状態の条件とし、ス
テンレス族の35℃の温水循環槽12の外側を発泡スチ
ロールlOで断熱し、厚さ1mmのポリプロピレン板1
1の7枚を重ね合わせ、これにガーゼ14を2枚敷いた
上に使い捨てカイロ9を使用時と同様に設置した後に、
ネル13を3枚を被覆し使い捨てカイロとガーゼの間に
温度センサー8をセットし、発熱特性を測定する方法で
ある。
[Prior Art] Since many disposable body warmers have come to be distributed in the market and are mainly used as body warmers, standardization has been carried out and JIS was established in 1985. The conventional heat generation characteristic evaluation method is described in JIS S4]00. The measurement method is shown in Figure 1, and the test conditions (
1) Ambient temperature 5±5℃, (2) Ambient humidity 55-70%,
(3) Under conditions of no wind with a wind speed of 0.5 m/s or less, the outside of the stainless steel hot water circulation tank 12 at 35°C is insulated with expanded polystyrene lO, and the polypropylene plate 1 with a thickness of 1 mm is
After stacking the 7 sheets of 1 and laying 2 sheets of gauze 14 on top of this, placing the disposable body warmer 9 in the same way as when using it,
In this method, three sheets of flannel 13 are covered and a temperature sensor 8 is set between a disposable body warmer and gauze, and the heat generation characteristics are measured.

[発明が解決しようとする課題] JIsによる発熱特性の測定方法は使い捨てカイロが実
際に人体に使用された状況を想定して規格化されている
ために、使用特性を評価するにはほぼ十分であるが、通
気性の包材を通して温度測定することにより包材の通気
度、通気パターンの影響も検出されるために、発熱素材
の純粋な特性を評価するには不十分であった。また使い
捨てカイロと温度センサーの接触状況が必ずしも同じ条
件とはならないことにより、測定値にばらつきが大きい
という問題があり、JISでは1つのサンプルについて
試料個数を10個としている。
[Problem to be solved by the invention] The method for measuring heat generation characteristics according to JIs is standardized based on the assumption that disposable body warmers are actually used on the human body, so it is not nearly sufficient to evaluate the usage characteristics. However, since measuring temperature through a breathable packaging material also detects the influence of the packaging material's air permeability and ventilation pattern, it has not been sufficient to evaluate the pure characteristics of the heat generating material. In addition, there is a problem that the contact conditions between the disposable body warmer and the temperature sensor are not necessarily the same, resulting in large variations in the measured values, and JIS specifies that the number of samples for one sample is 10.

この結果、使い捨てカイロの一度の反応時間はほぼ20
時間以上であることから測定にほぼ一日を要するため、
多くの測定装置を有していないと特性評価に多大の時間
がかかることになる等の課題がある。
As a result, the reaction time of disposable body warmers at one time is approximately 20
Because it takes more than an hour, it takes almost a whole day to measure.
If the system does not have many measuring devices, there are problems such as the fact that it takes a lot of time to evaluate the characteristics.

本発明はこれに鑑み、使い捨てカイロの発熱素材の特性
を精度良く評価する方法を提供するものである。すなわ
ち発熱反応に影響を及ぼす要因を制御、調整できるよう
に構成した発熱素材の発熱特性を直接測定する方法を提
供するものである。
In view of this, the present invention provides a method for accurately evaluating the characteristics of the heat generating material of a disposable body warmer. That is, the present invention provides a method for directly measuring the exothermic characteristics of a exothermic material configured to control and adjust factors that affect exothermic reactions.

[課題を解決するための手段] 本発明は、発熱素材の発熱特性と、それに及ぼす要因に
ついて種々実験、検討を行った結果なされたものであり
、鉄粉の酸化反応を主体とした使い捨てカイロ発熱素材
を窒素で置換したグローブボックスの様な容器内で配合
した後、空気供給量を調整可能なように構成した断熱性
を有する反応容器に充填し、素材に直接温度測定センサ
ーを挿入することを特徴とした使い捨てカイロ素材の発
熱特性評価方法である。
[Means for Solving the Problems] The present invention was made as a result of various experiments and studies on the heat generating properties of heat generating materials and the factors that affect them. After the materials are mixed in a glove box-like container purged with nitrogen, they are filled into an insulated reaction container with adjustable air supply, and a temperature sensor is inserted directly into the materials. This is a method for evaluating the heat generation characteristics of disposable hand warmer materials.

すなわち本発明は、測定しようとする使い捨てカイロ用
発熱素材が測定する前に反応しないように窒素で置換し
た密閉容器内でカイロの包装材料から取り出すか、発熱
素材6を配合した後に、第2図に示したように、空気供
給量が手動、自動いずれでも調整可能なように空気ポン
プ1、流量調節器2、流量計5が設置されかつ断熱材3
で被覆された反応容器4に発熱素材6を充填し、空気供
給管7を通して発熱素材6に空気が供給されるように構
成し、直接発熱素材に温度センサー8を挿入して発熱特
性を測定し、評価するものである。
That is, in the present invention, the heating material for disposable body warmers to be measured is taken out from the packaging material of the body warmer in a closed container purged with nitrogen to prevent it from reacting before the measurement, or after the heating material 6 is mixed with the heating material, as shown in FIG. As shown in , an air pump 1, a flow rate regulator 2, and a flow meter 5 are installed so that the air supply amount can be adjusted either manually or automatically, and a heat insulating material 3 is installed.
The reaction vessel 4 covered with the heat-generating material 6 is filled with the heat-generating material 6, air is supplied to the heat-generating material 6 through the air supply pipe 7, and the temperature sensor 8 is directly inserted into the heat-generating material to measure the heat-generating characteristics. , to be evaluated.

ここで、反応容器は発泡スチロール等の熱伝導の低い材
質を使用するのが適正であり、断熱材はセラミックウー
ル等の熱伝導が低く、かつ熱容量が低い断熱材を反応容
器に巻き付けて構成してもよく、あるいは真空断熱によ
り構成しても同様な効果を奥するものである。
Here, it is appropriate to use a material with low thermal conductivity such as styrofoam for the reaction vessel, and the insulating material is composed of a material with low thermal conductivity and low heat capacity, such as ceramic wool, wrapped around the reaction vessel. Alternatively, the same effect can be obtained even if the structure is constructed using vacuum insulation.

[作用] 鉄粉の酸化発熱反応の進行のためには、鉄と酸素と水分
が必要不可欠な要素である。この中で鉄と水分は発熱素
材に配合されているため空気の供給量が発熱特性に及ぼ
す影響について検討した。
[Action] Iron, oxygen, and moisture are essential elements for the oxidation exothermic reaction of iron powder to proceed. Since iron and water are included in the heat-generating material, we investigated the effect of the amount of air supply on the heat-generating characteristics.

そのために、空気ポンプと流!;1調節器を設置して発
熱素材へ供給する酸素を調整できるようにして、市販の
使い捨てカイロ素材の発熱特性に及ぼす空気供給量の影
響を測定した。その結果を第3図に示した。空気供給量
を0.5 fl /+inから1.017ai nに増
加することにより、立ち上がり時間が短く、最高温度が
高く、発熱持続時間が短くなることが確認され、発熱特
性に及ぼす空気供給量が大きく影響した。このことは使
い□捨てカイロ素材が酸素供給律速になっているためと
考えられ、発熱特性を調査するためには空気および酸素
供給量の調整が不可欠である。
For that, air pump and flow! ;1 A regulator was installed to adjust the oxygen supplied to the heat generating material, and the influence of the air supply amount on the heat generating properties of a commercially available disposable hand warmer material was measured. The results are shown in Figure 3. It was confirmed that by increasing the air supply amount from 0.5 fl/+in to 1.017 ain, the rise time was shortened, the maximum temperature was high, and the heat generation duration was shortened, and the effect of the air supply amount on the heat generation characteristics was It had a big impact. This is thought to be because the oxygen supply is rate-limiting to the disposable hand warmer material, and it is essential to adjust the air and oxygen supply amounts in order to investigate the heat generation characteristics.

反応容器の断熱効果については、発泡スチロールの容器
を断熱を行わないで20±1℃の雰囲気に設置して、発
熱特性を測定した場合と、セラミックウールで30mm
の厚さで断熱した場合の発熱特性を第4図に示した。こ
の結果、反応容器を断熱した場合には反応容器からの放
熱が低減され、最高温度が上昇し、発熱持続時間が長く
なった。このことから放熱によるロスを極力少なくし、
発熱特性を精度良く測定するためには反応容器を断熱す
ることが必要となる・。
Regarding the heat insulation effect of the reaction container, we measured the exothermic characteristics by installing a Styrofoam container in an atmosphere of 20 ± 1 °C without insulation, and when using ceramic wool at 30 mm.
Figure 4 shows the heat generation characteristics when insulated with a thickness of . As a result, when the reaction vessel was insulated, heat radiation from the reaction vessel was reduced, the maximum temperature increased, and the duration of heat generation became longer. This minimizes loss due to heat radiation,
In order to accurately measure exothermic characteristics, it is necessary to insulate the reaction vessel.

また、発熱素材を窒素置換容器内で配合した場合と、大
気中で配合した場合の発熱特性の変化を第5図に示した
が、大気中で配合した場合は、最高温度に差はないもの
の、持続時間が短くなった。このことは発熱測定を行う
前に発熱素材が反応したために持続時間が短くなったも
のと考えられ、精度良く発熱素材の発熱特性の評価を行
うためには窒素置換容器内で発熱素材の配合を行い、反
応容器に充填することが不可欠である。
Figure 5 shows the change in heat generation properties when the heat generating materials are mixed in a nitrogen purged container and when mixed in the atmosphere. , the duration became shorter. This is thought to be because the exothermic material reacted before the heat generation measurement, resulting in a shorter duration.In order to accurately evaluate the exothermic properties of the exothermic material, the exothermic material should be mixed in a nitrogen-purged container. It is essential to conduct and fill the reaction vessel.

発熱素材の表面に空気が供給されることから、発熱素材
への温度センサーの挿入位置については発熱特性測定に
大きく影響を及ぼし、空気供給表面に近い表面から5n
+mの位置、はぼ中央部の25no+の位置、底に近い
45mmの位置の3箇所に温度センサーを挿入して発熱
特性を測定した。その結果、第6図に示したように表面
から5ffllnの位置に挿入した場合は短時間で温度
上昇するが、最高温度が低く、持続時間が短くなり、短
時間で発熱が開始したが、すぐに発熱が終了した。また
発熱素材の底部まで温度センサーを挿入した場合は、昇
温時間が長く、最高温度はほぼ、25IIIfflの位
置に挿入した場合と変わらないが、持続時間が短くなっ
た。
Since air is supplied to the surface of the heat-generating material, the insertion position of the temperature sensor into the heat-generating material has a large effect on the measurement of heat generation characteristics.
Temperature sensors were inserted at three locations: +m position, 25no+ position at the center of the flap, and 45mm position near the bottom, and the heat generation characteristics were measured. As a result, as shown in Figure 6, when inserted at a position 5fflln from the surface, the temperature rose in a short time, but the maximum temperature was low and the duration was short. The fever ended. Furthermore, when the temperature sensor was inserted to the bottom of the heat generating material, the heating time was longer and the maximum temperature was almost the same as when inserted at the 25IIIffl position, but the duration was shorter.

この原因は反応特性評価後に発熱素材を取り出して観察
した結果から、反応容器底部に未反応発熱素材が残って
いたことから、持続時間が短くなったものであり、発熱
素材の代表特性を測定評価するためには温度センサーを
反応容器のほぼ中央部に挿入しなければならない。
The cause of this was that the exothermic material was taken out and observed after the reaction characteristics were evaluated, and as a result, there was some unreacted exothermic material remaining at the bottom of the reaction vessel, resulting in a short duration.The typical characteristics of the exothermic material were measured and evaluated. In order to do this, the temperature sensor must be inserted approximately in the center of the reaction vessel.

[実施例] (実施例1) 第1表に示した形状、仕様の装置により構成された本発
明による発熱素材の特性評価方法で、反応容器に厚さ1
mmの発泡スチロールを使用し、外径40mm高さ70
mmに成形し、こむの周りを熱伝導係数0.11 kc
al/m/h/℃のセラミックウールで30mmの厚さ
に被覆し、2 kg/cm”の圧力、10IL/min
の窒素で10分間置換した容器内で市販の使い捨てカイ
ロ素材と反応性が優れている粒径50JJI11の鉄粉
を配合した素材をそれぞれ50g充填した後に、20℃
の恒温層に設置し、空気供給量を0.5 j! /mi
nに流量調節弁で調整し、直径1mn+のに熱電対を発
熱素材の中央部まで挿入して発熱特性の測定を行った。
[Example] (Example 1) In the method for evaluating the characteristics of a heat-generating material according to the present invention, which is configured with an apparatus having the shape and specifications shown in Table 1, a reaction vessel with a thickness of 1
Made of styrofoam with an outer diameter of 40 mm and a height of 70 mm.
The heat conductivity coefficient around the hole is 0.11 kc.
coated with ceramic wool of al/m/h/°C to a thickness of 30 mm, pressure of 2 kg/cm'', 10 IL/min
After filling 50g of a commercially available disposable body warmer material and a material containing iron powder with a particle size of 50JJI11 with excellent reactivity in a container that was purged with nitrogen for 10 minutes, the container was heated at 20°C.
It is installed in a constant temperature layer, and the air supply amount is 0.5 j! /mi
A thermocouple with a diameter of 1 mm+ was inserted into the center of the heat generating material to measure the heat generating properties.

ここで供給空気は反応容器開口部に設置されたキャップ
から供給され、同時に排出部も設けておき排出できるよ
うにした。
Here, the supplied air was supplied from a cap installed at the opening of the reaction vessel, and at the same time a discharge part was provided so that it could be discharged.

比較のために、JIS法で同一素材の発熱特性も測定し
た。その結果、第7図に示したようにJIS法では発熱
素材の変化がほとんど検出できなかったが、本発明法に
よれば、反応性を改善した発熱素材の方が最高温度が高
く、昇温時間が短くなり、持続時間が短くなった。
For comparison, the heat generation characteristics of the same material were also measured using the JIS method. As a result, as shown in Figure 7, almost no change in the heat-generating material could be detected using the JIS method, but according to the method of the present invention, the maximum temperature of the heat-generating material with improved reactivity was higher; The time has become shorter and the duration has become shorter.

(実施例2) 本発明による発熱素材の特性評価方法で実施例1と同様
の形状、仕様の装置により構成された、反応容器に厚さ
1mmの発泡スチロールを使用し、外径4011Iff
l高さ70mmに成形し、これの回りを熱伝導係数0.
11kcal/m/h/ ℃のセラミッククールで30
oonの厚さに被覆し、2 kg/cm2の圧力、10
1 /minの窒素で10分間置換した容器内で、市販
の使い捨てカイロ素材と反応性が優れている粒径50μ
mの鉄粉を配合した素材をそれぞれ50g充填した後に
、20℃の恒温層に設置し、空気供給量を0.5 Il
/minと1.0 IL/winに流(を調節弁で調整
し、直径11のに熱電対を発熱素材の中央部まで挿入し
て発熱特性の測定を行った。ここで供給空気は反応容器
開口部に設置されたキャップから供給され、同時に排出
部も設けておき排出できるようにした。
(Example 2) In the method for evaluating the characteristics of a heat-generating material according to the present invention, a styrene foam with a thickness of 1 mm was used as the reaction vessel, which was constructed with an apparatus having the same shape and specifications as in Example 1, and an outer diameter of 4011Iff was used.
It is molded to a height of 70 mm, and the area around it has a thermal conductivity coefficient of 0.
11kcal/m/h/30 with ceramic cool at ℃
Coated to a thickness of 10 mm, a pressure of 2 kg/cm2, 10
In a container purged with nitrogen at a rate of 1/min for 10 minutes, a particle size of 50 μm, which has excellent reactivity with commercially available disposable hand warmer materials, was heated.
After filling each material with 50 g of iron powder mixed with m, it was placed in a constant temperature layer at 20°C, and the air supply amount was set at 0.5 Il.
The flow rate was adjusted to 1.0 IL/min and 1.0 IL/win using a control valve, and a thermocouple with a diameter of 11 was inserted to the center of the heat generating material to measure the heat generation characteristics. It is supplied from a cap installed in the opening, and a discharge part is also provided at the same time so that it can be discharged.

第8図に発熱特性を示した。本発明法によれば、空気供
給量を1.01L /minに増加した場合、最高温度
が高くなり、昇温時間が短くなるが、発熱持続時間が短
くな)た。しかし発熱素材の特性の変化は、十分に検出
可能であり、空気供給量を増すことにより、発熱素材の
反応性の違いを検出しつつ、特性測定時間を約20%短
縮できた。
Figure 8 shows the heat generation characteristics. According to the method of the present invention, when the air supply amount was increased to 1.01 L/min, the maximum temperature became higher and the temperature rising time became shorter, but the duration of heat generation became shorter. However, changes in the properties of the heat generating material were sufficiently detectable, and by increasing the amount of air supplied, the time for measuring the properties could be reduced by about 20% while detecting differences in the reactivity of the heat generating material.

[発明の効果] 本発熱素材特性評価装置を使用することにより、外乱が
少なく、発熱素材の特性の違いを精度良く測定でき、ば
らつきが少なくなるために測定素材の個数を少なくする
ことができる。また空気供給量を増加することにより、
JIS法に比べより短時間で発熱特性の評価ができ、効
果的な評価方法である。
[Effects of the Invention] By using the heat generating material characteristic evaluation device of the present invention, there are few disturbances, differences in the characteristics of the heat generating materials can be measured with high precision, and the number of measurement materials can be reduced due to less variation. Also, by increasing the air supply,
It is an effective evaluation method that allows the evaluation of heat generation characteristics in a shorter time than the JIS method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:  JIS法の発熱特性測定の概略図第2図:
 本発熱特性測定装置の構成図第3図: 空気供給量と
発熱特性の関係第4図: 容器断熱と発熱特性の関係 第5図二 窒素置換有無と発熱特性の関係第6図: 温
度センサーの挿入位置と発熱特性の関係 第7図: 反応性の異なる素材の特性測定時間8図: 
反応性の異なる素材の空気供給量を変えた測定例。
Figure 1: Schematic diagram of heat generation characteristic measurement using JIS method Figure 2:
Configuration diagram of this exothermic characteristic measuring device Figure 3: Relationship between air supply amount and exothermic characteristics Figure 4: Relationship between container insulation and exothermic characteristics Figure 5 2 Relationship between presence or absence of nitrogen substitution and exothermic characteristics Figure 6: Relationship between temperature sensor Relationship between insertion position and heat generation characteristics Figure 7: Characteristic measurement time of materials with different reactivity Figure 8:
Example of measurement by changing the amount of air supplied to materials with different reactivity.

Claims (1)

【特許請求の範囲】[Claims] 1. 鉄粉の酸化反応を主体とした使い捨てカイロ発熱
素材を窒素で置換した容器内で配合した後、空気供給量
を調整可能なように構成した断熱性を有する反応容器に
充填し、素材に直接温度測定センサーを挿入することを
特徴とした使い捨てカイロ素材の発熱特性評価方法。
1. After compounding a disposable body warmer heat-generating material based on the oxidation reaction of iron powder in a container purged with nitrogen, it is filled into an insulated reaction container configured to adjust the amount of air supplied, and the temperature is directly applied to the material. A method for evaluating the heat generation characteristics of disposable hand warmer materials, characterized by inserting a measurement sensor.
JP1059725A 1989-03-14 1989-03-14 Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials Pending JPH02242047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059725A JPH02242047A (en) 1989-03-14 1989-03-14 Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059725A JPH02242047A (en) 1989-03-14 1989-03-14 Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials

Publications (1)

Publication Number Publication Date
JPH02242047A true JPH02242047A (en) 1990-09-26

Family

ID=13121466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059725A Pending JPH02242047A (en) 1989-03-14 1989-03-14 Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials

Country Status (1)

Country Link
JP (1) JPH02242047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332987B1 (en) * 1999-06-26 2002-04-17 윤순광 LCD Aging tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332987B1 (en) * 1999-06-26 2002-04-17 윤순광 LCD Aging tester

Similar Documents

Publication Publication Date Title
US5366491A (en) Moist heat apparatus
US20200166417A1 (en) Adiabatic Concrete Calorimeter and Method
US20100326217A1 (en) Apparatus for simulatively measuring environment of wound dressing on skin and measuring method therefor
JPWO2007023611A1 (en) Heating element and article heating device
CN101622520B (en) Analytical sample drying method and drying apparatus
JPH02242047A (en) Exothermic characteristic evaluation method for throwaway portable pocket heater's raw materials
WO2007023755A1 (en) Evaporation device and method of evaporation
CN206979414U (en) A kind of intelligent rice-storing case
Currie et al. Factors defining spontaneous heating and ignition of hay
CN107929911A (en) A kind of oxygen suction humidifying bottle and oxygen heating corollary apparatus
CN107957433B (en) Device and method for testing thermal insulation performance of textile in low-temperature environment
JP3697416B2 (en) Compost maturity judgment device and compost maturity judgment method
CN207703754U (en) Coal sample heater incubator
CN207318396U (en) A kind of test device for big specific heat capacity
CN217819851U (en) Protective clothing/fabric moisture permeability rapid inspection device
US3504525A (en) Apparatus for measuring thermic characteristics of extremely small amounts of test material
JPH0249464B2 (en) HANNONETSUSOKUTEISOCHI
CN209802904U (en) Chemical fiber humidity testing device
CN209608891U (en) A kind of hand warmer
JPH0134549B2 (en)
KR100262633B1 (en) Method for humidification with pressure rice cooker
CN212906019U (en) Heating insulation can
CN212092308U (en) Portable digital adjustable field experiment high-temperature thermostat
CN206515190U (en) Melt flow rate (MFR) test detecting equipment
CN1119512A (en) Fireless non-electric portable safety automatic heater