JP3697416B2 - Compost maturity judgment device and compost maturity judgment method - Google Patents

Compost maturity judgment device and compost maturity judgment method Download PDF

Info

Publication number
JP3697416B2
JP3697416B2 JP2002002425A JP2002002425A JP3697416B2 JP 3697416 B2 JP3697416 B2 JP 3697416B2 JP 2002002425 A JP2002002425 A JP 2002002425A JP 2002002425 A JP2002002425 A JP 2002002425A JP 3697416 B2 JP3697416 B2 JP 3697416B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
compost
sample container
temperature
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002002425A
Other languages
Japanese (ja)
Other versions
JP2003207502A (en
Inventor
修 古谷
稔 伊藤
智子 古川
信幸 柴山
保 市村
貞雄 中野
充弘 後藤
Original Assignee
財団法人畜産環境整備機構
富士平工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人畜産環境整備機構, 富士平工業株式会社 filed Critical 財団法人畜産環境整備機構
Priority to JP2002002425A priority Critical patent/JP3697416B2/en
Publication of JP2003207502A publication Critical patent/JP2003207502A/en
Application granted granted Critical
Publication of JP3697416B2 publication Critical patent/JP3697416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、堆肥の腐熟度を判定する堆肥腐熟度判定装置及び堆肥腐熟度判定方法に関するものである。
【0002】
【従来の技術】
従来、堆肥の腐熟度判定法に関しては多数の提案がなされているが、それらの方法は、分析に長い時間や高度な技術を必要とする場合が多く、実用的でないのが現状である。
例えば、BOD(生物学的酸素要求量)測定による腐熟度判定法は、堆肥から抽出された水を培養し、その培養前後の溶存酸素の差から堆肥の腐熟度を判定するものであるが、前記培養には5日も要するため、測定時間が長くなってしまうという問題を有していた。
そこで、前記腐熟度判定法を改良したものとして、特開昭57−56752号公報に記載された測定方法があるが、pH調整等の面倒な操作を有することや、24〜30時間程度の測定時間を要すること等、更なる改良点を有していた。
【0003】
【発明が解決しようとする課題】
本発明は上記従来事情に鑑みてなされたものであり、その目的とする処は、測定時間が短くて測定精度が高い上、取扱いも容易な堆肥腐熟度判定装置及び堆肥腐熟度判定方法を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、第一の発明の堆肥腐熟度判定装置は、試料容器内へ投入される堆肥サンプルを加熱し所定の培養温度に維持する加熱保温部と、前記試料容器内の温度を制御する制御回路部とを本体ケース内に備えるとともに、前記試料容器内に臨む酸素濃度センサーを備え、前記試料容器内の酸素濃度の変化を検知するようにした堆肥腐熟度判定装置であって、前記加熱保温部は、前記試料容器の外周を伝熱体によって覆い包むとともに、該伝熱体の外周面に電気ヒーターを接触させ、更に、前記伝熱体及び電気ヒーターを保温材によって覆い包んでなり、前記制御回路部は、前記試料容器内を所定の培養温度に保つように前記電気ヒーターへの供給電力を調整する温度調整手段と、所定の保温時間経過後に前記酸素濃度センサーによる第一回目の酸素濃度測定を開始する第一酸素濃度測定手段と、第一回目の酸素濃度測定が完了し所定時間経過後に前記酸素濃度センサーによる第二回目の酸素濃度測定を開始する第二酸素濃度測定手段とを具備し、前記二回の酸素濃度測定値より演算処理された結果を、本体ケース外に露出されている表示手段に表示することを特徴とする。
【0005】
また、第二の発明の堆肥腐熟度判定方法は、堆肥サンプルの含有水分の重量比を60〜75%の範囲内に調整し、その堆肥サンプルを30〜40度の範囲内の培養温度で所定の保温時間保持した後、第一回目の酸素濃度測定を行い、その第一回目の酸素濃度測定が完了し前記培養温度を保持した状態で所定時間経過後に第二回目の酸素濃度測定行い、前記二回の酸素濃度測定値の差より堆肥サンプルの腐熟度を判定するようにしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1及び2は、本発明に係わる堆肥腐熟度判定装置の一例を示す。
この堆肥腐熟度判定装置Aは、図2に示すように、本体ケース30内に、試料容器11内へ投入される堆肥サンプルを加熱し所定の培養温度に維持する加熱保温部10と、試料容器11内の温度を制御する制御回路部20とを備えるとともに、前記試料容器11の上方開口部を開閉する蓋部40の内側に、試料容器11内に臨む酸素濃度センサー50を備え、前記試料容器11内の酸素濃度の変化を検知するように構成されている。
【0007】
本体ケース30は、合成樹脂材料又は軽量金属材料を、上方に開口部を有する箱状に加工したものであり、その内部が、仕切り板32によって加熱保温部10を収納する空間と、制御回路部20を収納する空間とに仕切られている。
そして、この本体ケース30の上方開口部は、後述する試料容器11の開口部と表示手段21とを貫通露出させるカバー31によって覆われている。
【0008】
蓋部40は、前記本体ケース30と同材料からなり本体ケース30の上方開口部に重なり合うように形成され、本体ケース30との間に蝶番及び係脱金具を備えることで、本体ケース30に対し開閉且つ係脱するように取り付けられ、該蓋部40の内部には、本体ケース30内の試料容器11中心部に対応する位置に、酸素濃度センサー50が下向きに取り付けられている。
【0009】
加熱保温部10は、本体ケース30内の仕切り板32によって仕切られた一方の空間内に構成され、ステンレス、又はガラス、銅、アルミニウム等からなる有底筒状の試料容器11の外周を、該試料容器11の上方開口部を除いて伝熱体12によって覆い包むとともに、その伝熱体12の外周面に、複数の電気ヒーター13を接触させて固定し、更に、前記伝熱体12及び電気ヒーター13を保温材14によって覆い包んでなる。
尚、試料容器11の材質は、熱伝導性及び耐久強度、保温性等の観点から、特にステンレスを用いるのが好ましい。
【0010】
伝熱体12は、試料容器11の開口部を除く部位を覆い包むように形成されれば、一体構造または分割構造の何れであっても構わない。
この伝熱体12の材質は、アルミニウム、銅、ステンレス等の熱伝導性の高い材料であれば限定されるものでないが、熱伝導率が高く且つ軽量な材料として特にアルミニウムを用いるのが好ましい。
尚、蓋部40内にも、酸素濃度センサー50を貫挿するようにして伝熱体12’が設けられる。したがって、試料容器11は、その全周を伝熱体12,12’によって覆われることになる。
また、蓋部40側の伝熱体12’は、蓋部40が閉じられた際に、前記本体ケース30内の伝熱体12の上端に接触するように配置されている。
【0011】
よって、電気ヒーター13の熱は、伝熱体12,12’を伝導することで、試料容器11の外周を満遍なく加熱することになる。
【0012】
電気ヒーター13は、導体を耐熱性ゴムで被覆してなり、図示しない電線により制御回路部20へ電気的に接続され、制御回路部20から電力の供給を受けて発熱する。
【0013】
保温材14は、発泡スチロールや、スポンジ、ポリエチレンフォーム等からなり、伝熱体12及び電気ヒーター13の外周を覆い包んで、試料容器11内の熱を外部へ漏らさないようにしている。尚、蓋部40側の伝熱体12’も、その外側(図2における伝熱体12’の上部側)が保温材14’によって覆い包まれている。
【0014】
蓋部40内の酸素濃度センサー50は、ガルバニ電池式やジルコニア固体電解質方式等の周知構造の酸素濃度センサーであり、試料容器11内の酸素濃度に応じた電気信号を、図示しない電線を介して制御回路部20へ送信する。
【0015】
制御回路部20は、CPU、RAM、ROM等を具備した電子回路であり、試料容器11内を所定の培養温度に保つように電気ヒーター13への供給電力を調整する温度調整手段と、所定の保温時間経過後に酸素濃度センサー50による第一回目の酸素濃度測定を開始する第一酸素濃度測定手段と、第一回目の酸素濃度測定が完了し所定時間経過後に酸素濃度センサー50による第二回目の酸素濃度測定を開始する第二酸素濃度測定手段とを具備し、前記二回の酸素濃度測定値より演算処理された結果を、本体ケース30外に露出されている表示手段21に表示する。
【0016】
前記温度調整手段は、温度センサー15によって試料容器11内の温度を検知するとともに、その検知温度が設定された培養温度となるように、電気ヒーター13への供給電力を、電圧制御またはON/OFF制御等によって調整するフィードバック回路である。
【0017】
前記温度センサー15は、測温抵抗体や熱伝対等を用いた周知の温度センサーであり、伝熱体12の底部に下方から有底孔を形成し、この有底孔内に挿入されている。そして、この温度センサー15は、試料容器11内の堆肥サンプルの温度を間接的に検知している。
尚、本発明者は、温度センサー15によって検知される温度と堆肥サンプル自体の温度との温度差が実験により0.5度以下であることを確認しているため、温度センサー15により検知された温度を堆肥サンプルの温度としても殆ど支障をきたすことがないが、必要に応じて、制御回路部20内で前記温度差を補正して堆肥サンプルの温度を求めるようにしても構わない。
また、前記培養温度は、本実施の形態の好ましい一例では、30〜40度に設定されている。
【0018】
前記第一酸素濃度測定手段は、スタートボタン(図示せず)が押された直後に、制御回路部20内のタイマー機能によって前記培養温度を所定の保温時間保持し、その後に、酸素濃度センサー50による第一回目の酸素濃度の測定を行い、その測定値を一時的に記憶する回路である。
尚、前記スタートボタンは、本体ケース30の上面に設けてもよいし、蓋部40が閉じられた際にONになるように、蓋部40と本体ケース30との間に設けられたリミットスイッチであってもよい。
また、前記保温時間は、堆肥の種類等に応じて適宜設定されるが、本実施の形態の好ましい一例によれば、約30分に設定されている。
【0019】
前記第二酸素濃度測定手段は、前記第一酸素濃度測定手段による酸素濃度の測定が完了した後に、制御回路部20内のタイマー機能により前記培養温度を所定時間保持し、その後に、酸素濃度センサー50による第二回目の酸素濃度の測定を行い、その測定値を一時的に記憶する回路である。
尚、前記所定時間とは、第一回目の酸素濃度測定から第2回目の酸素濃度測定までの間の時間であり、堆肥の種類等に応じて適宜設定されるが、本実施の形態の好ましい一例によれば、約30分に設定されている。
【0020】
表示手段21は、液晶表示器であり、制御回路部20内で計算された酸素消費量を表示する。そして、この酸素消費量は、換算グラフや換算表等を用いて腐熟度に換算される。この腐熟度とは、堆肥の熟し度合いを百分率で表現したものである。
図3のグラフは、実験により、新鮮牛糞の腐熟度を0%、完熟と考えられる堆肥の腐熟度を100%と仮定し、それら二者の堆肥の混合割合を6段階に変えて、腐熟度に差のある試料を人為的に作り、それぞれの酸素消費量を計測したものである。
尚、前記完熟とは、堆肥の腐熟過程において、酸素消費量を定期的に測定し、その酸素消費量がほぼ0になった時点で完熟したと仮定したものである。すなわち、堆肥は、未熟のうちは微生物によって分解される易分解性有機物を多く含み微生物の呼吸が活発で、腐熟が進むにつれて易分解性有機物が少なくなり微生物の呼吸が少なくなる。
【0021】
また、図3のグラフに示す実験結果は、堆肥の成分が牛糞である場合の一例であり、堆肥が腐熟される際の諸条件や堆肥の成分等に応じて異なるものである。したがって、酸素消費量から腐熟度を換算するための換算グラフや換算表等は、堆肥腐熟度判定装置Aの測定対象となる堆肥の種類に応じて、実験に基づいて適宜作成される。
【0022】
また、酸素消費量の計算は、詳細には下記のようにして行われる。
先ず、第一回目の酸素濃度測定値と第二回目の酸素濃度測定値との各々について、下記式により酸素重量が求められる。
酸素重量[μg]=(試料容器の内容積[ml]−堆肥サンプルの容積[ml])×酸素濃度測定値(%)÷100×1mlあたりの酸素重量[μg]
尚、前記酸素重量は、例えば、温度0度、1気圧の場合は1430[μg]、また、温度35度、1気圧の場合には1270[μg]とする。
次に、次式により、前記2点の酸素重量の差が求められる。
酸素重量の差[μg]=第一回目の測定から求められた酸素重量[μg]−第二回目の測定から求められた酸素重量[μg]
そして、次式により、1gの堆肥によって1分間に消費された酸素消費量が求められる。
酸素消費量[μg/g/min]=酸素重量の差[μg]÷試料の重量[g]÷第一回目の酸素濃度測定から第2回目の酸素濃度測定までの間の時間[min]
【0023】
次に、上記堆肥腐熟度判定装置Aを用いた堆肥腐熟度判定方法について詳細に説明する。
この堆肥腐熟度判定方法は、上述したように、堆肥の腐熟度が堆肥内の微生物の呼吸による酸素消費量と相関関係を有することを利用したものである。
【0024】
この堆肥腐熟度判定方法によれば、先ず、採取された堆肥サンプルは、その含有水分の重量比が60〜75%の範囲内になるように水分調整される。
この水分調整方法は、例えば、堆肥サンプルの水分含有量を周知の方法で測定し、その測定された水分含有量(比率)が60%未満の場合には、堆肥サンプルに所定量の水を加え、また、75%以上の場合には、堆肥サンプルを風乾する等、周知の水分調整方法であればよい。
【0025】
前記含有水分の重量比は、図4に示す実験結果に基づくものである。すなわち、堆肥サンプルの含有水分の重量比率が前記範囲内にある場合(図中60%、及び65%、70%、75%の測定値)は、酸素消費量がほぼ一定して高めである。すなわち、所定時間における酸素濃度の変化が顕著であり、腐熟度判定に適していることになる。
それに対し、同重量比率が前記範囲外(55%、及び80%の測定値)では、前記よりも酸素消費量が極端に低く、すなわち所定時間における酸素濃度の変化が小さいために、信頼性の高い腐熟度判定が困難である。
【0026】
次に、堆肥腐熟度判定装置Aの電源が入れられ、予め、試料容器11が所定の培養温度(30〜40度)になるように加熱される。
そして、試料容器11内に、含有水分量が調整された上記堆肥サンプルが投入され、蓋部40が閉じられ、スタートボタン(図示せず)が押される。
【0027】
前記スタートボタンがONにされると、前記培養温度が所定の保温時間保持され、その後に、酸素濃度センサー50による第一回目の酸素濃度の測定が行われる。
【0028】
そして、前記一回目の酸素濃度の測定が完了し、更に前記培養温度が所定時間保持された後に、酸素濃度センサー50による第二回目の酸素濃度の測定が行われる。
【0029】
次に、第一回目の酸素濃度測定値及び第二回目の酸素濃度測定値、試料容器11の内容積、試料容器11内に投入される試料の容積等のデータに基づき制御回路部20内で酸素消費量が計算され、表示手段21に表示される。
そして、この酸素消費量は、上述したように、予め実験等に基づいて作成された換算グラフ(例えば図3に示すグラフ)や換算表等を用いて腐熟度に換算される。
【0030】
尚、前記培養温度は、本発明者が下記の諸条件に基づいて、最も好適な温度範囲を限定したものである。
すなわち、培養温度は、微生物の活性化により酸素消費量が多くなる温度が好適であること、また、試料容器11内の結露防止のため、通常の外気温度よりも若干高めの温度が適切であること、また、外気よりも低く設定された場合には試料容器11を冷却する必要があることから、通常の外気温度よりも高い温度が適切であること、また、低すぎる温度では微生物が不活性になるとともに酸素消費量が少なく測定時間が長くなってしまうこと、また、酸素濃度センサー50を使用温度範囲以内で使用するためには40度以下に設定するのが適切であること等の諸条件を勘案して、30〜40度の範囲内に設定された。
【0031】
また、本実施の形態では、表示手段21に表示された酸素消費量を換算グラフや換算表等によって腐熟度に換算するようにしているが、予め、酸素消費量と腐熟度の関係を制御回路部20内に記憶させておき、その関係から求められる腐熟度を直接表示手段21に表示するようにしても構わない。
【0032】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
第一の発明によれば、試料容器内へ投入される堆肥サンプルを所定の培養温度に維持し、所定時間経過前後の酸素濃度の変化を検知することができ、その酸素濃度の変化より堆肥サンプルの腐熟度を判定することができる。
しかも、試料容器を覆い包む伝熱体が電気ヒーターの熱を試料容器へ満遍なく伝熱するため、短時間に試料容器を培養温度まで加熱できる上、試料容器内の温度分布のバラツキによる測定精度の低下を防止することができる。
また、本体ケース及び蓋部に、加熱保温部、制御回路部、酸素濃度センサー等を一体に具備した構造であるため、持ち運び及び取扱いが容易である。
更に、第二の発明によれば、堆肥サンプルの含有水分量及び培養温度を好適な範囲内に維持することで、精度の高い腐熟度判定を行うことができる。
【図面の簡単な説明】
【図1】 本発明に係わる堆肥腐熟度判定装置の一例を示す斜視図。
【図2】 同堆肥腐熟度判定装置の縦断面図。
【図3】 堆肥の酸素消費量と腐熟度の関係を示すグラフ。
【図4】 堆肥の含有水分量と酸素消費量の関係を示すグラフ。
【符号の説明】
10:加熱保温部
11:試料容器
12:伝熱体
13:電気ヒーター
14:保温材
20:制御回路部
21:表示手段
30:本体ケース
40:蓋部
50:酸素濃度センサー
A:堆肥腐熟度判定装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compost maturity determination device and a compost maturity determination method for determining the maturity of compost.
[0002]
[Prior art]
Conventionally, many proposals have been made regarding methods for determining the degree of maturity of compost. However, these methods often require a long time and advanced techniques for analysis, and are currently not practical.
For example, the maturity determination method by measuring BOD (biological oxygen demand) measures water extracted from compost and determines the maturity of compost from the difference in dissolved oxygen before and after the culture. Since the culture requires 5 days, there is a problem that the measurement time becomes long.
Therefore, as an improvement of the method for determining the degree of maturity, there is a measurement method described in JP-A-57-56752. However, it has troublesome operations such as pH adjustment, and measurement for about 24 to 30 hours. It had further improvements such as taking time.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional circumstances, and the object of the process is to provide a compost maturity determination apparatus and a compost maturity determination method that have a short measurement time, high measurement accuracy, and easy handling. There is to do.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the compost maturity determination device of the first invention includes a heating and heat retaining unit that heats a compost sample put into a sample container and maintains it at a predetermined culture temperature, and a temperature in the sample container. A compost maturity determination apparatus that includes a control circuit unit that controls the inside of the main body case, an oxygen concentration sensor that faces the sample container, and detects a change in oxygen concentration in the sample container. The heating and heat retaining unit covers the outer periphery of the sample container with a heat transfer member, contacts an electric heater with the outer peripheral surface of the heat transfer member, and further covers the heat transfer member and the electric heater with a heat insulating material. The control circuit unit includes a temperature adjusting means for adjusting power supplied to the electric heater so as to keep the inside of the sample container at a predetermined culture temperature, and the oxygen concentration sensor after a predetermined heat retention time has elapsed. A first oxygen concentration measuring means for starting the first oxygen concentration measurement by the first, and a second oxygen concentration sensor for starting the second oxygen concentration measurement by the oxygen concentration sensor after the first oxygen concentration measurement is completed and a predetermined time has elapsed. An oxygen concentration measuring means, and the result of the arithmetic processing from the two oxygen concentration measurement values is displayed on the display means exposed outside the main body case.
[0005]
Moreover, the compost maturity determination method of 2nd invention adjusts the weight ratio of the moisture content of a compost sample in the range of 60-75%, and the compost sample is predetermined with the culture | cultivation temperature in the range of 30-40 degree | times. After the incubation time is maintained, the first oxygen concentration measurement is performed, the first oxygen concentration measurement is completed, and the second oxygen concentration measurement is performed after a predetermined time while the culture temperature is maintained, It is characterized in that the maturity of a compost sample is judged from the difference between two oxygen concentration measurements.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an example of an apparatus for determining compost maturity according to the present invention.
As shown in FIG. 2, the compost maturity determination apparatus A includes a heating and heat retaining unit 10 that heats a compost sample put into a sample container 11 into a main body case 30 and maintains it at a predetermined culture temperature, and a sample container. And a control circuit unit 20 that controls the temperature in the sample container 11, and an oxygen concentration sensor 50 that faces the sample container 11 inside the lid part 40 that opens and closes the upper opening of the sample container 11, and the sample container 11 is configured to detect a change in the oxygen concentration in the inside.
[0007]
The main body case 30 is formed by processing a synthetic resin material or a lightweight metal material into a box shape having an opening on the upper side, and the interior of the main body case 30 accommodates the heating and heat retaining unit 10 by the partition plate 32, and the control circuit unit. It is partitioned into a space for storing 20.
The upper opening of the main body case 30 is covered with a cover 31 that penetrates and exposes an opening of the sample container 11 described later and the display means 21.
[0008]
The lid 40 is made of the same material as the main body case 30 and is formed so as to overlap the upper opening of the main body case 30, and includes a hinge and an engagement / disengagement bracket between the main body case 30 and the main body case 30. The oxygen concentration sensor 50 is attached to the inside of the lid portion 40 so as to be opened / closed and engaged / disengaged at a position corresponding to the central portion of the sample container 11 in the main body case 30.
[0009]
The heat insulation unit 10 is configured in one space partitioned by the partition plate 32 in the main body case 30, and the outer periphery of the bottomed cylindrical sample container 11 made of stainless steel, glass, copper, aluminum, or the like, The sample container 11 is covered with a heat transfer body 12 except for the upper opening, and a plurality of electric heaters 13 are fixed in contact with the outer peripheral surface of the heat transfer body 12. The heater 13 is covered with a heat insulating material 14.
In addition, it is preferable to use stainless steel as the material of the sample container 11 from the viewpoint of thermal conductivity, durability strength, heat retention and the like.
[0010]
The heat transfer body 12 may be either an integral structure or a divided structure as long as the heat transfer body 12 is formed so as to cover a portion other than the opening of the sample container 11.
The material of the heat transfer body 12 is not limited as long as it is a material having high thermal conductivity such as aluminum, copper, and stainless steel, but it is particularly preferable to use aluminum as a material having high thermal conductivity and light weight.
A heat transfer body 12 ′ is also provided in the lid portion 40 so as to penetrate the oxygen concentration sensor 50. Accordingly, the entire circumference of the sample container 11 is covered with the heat transfer bodies 12 and 12 ′.
Further, the heat transfer body 12 ′ on the lid 40 side is disposed so as to contact the upper end of the heat transfer body 12 in the main body case 30 when the cover 40 is closed.
[0011]
Therefore, the heat of the electric heater 13 conducts the heat transfer bodies 12 and 12 ′, thereby uniformly heating the outer periphery of the sample container 11.
[0012]
The electric heater 13 has a conductor covered with heat-resistant rubber, and is electrically connected to the control circuit unit 20 by an electric wire (not shown), and generates heat when supplied with electric power from the control circuit unit 20.
[0013]
The heat insulating material 14 is made of foamed polystyrene, sponge, polyethylene foam or the like and covers the outer periphery of the heat transfer body 12 and the electric heater 13 so that the heat in the sample container 11 is not leaked to the outside. In addition, the heat transfer body 12 ′ on the lid 40 side is also covered with a heat insulating material 14 ′ on the outer side (the upper side of the heat transfer body 12 ′ in FIG. 2).
[0014]
The oxygen concentration sensor 50 in the lid portion 40 is an oxygen concentration sensor having a known structure such as a galvanic cell type or a zirconia solid electrolyte type, and an electric signal corresponding to the oxygen concentration in the sample container 11 is sent via an electric wire (not shown). Transmit to the control circuit unit 20.
[0015]
The control circuit unit 20 is an electronic circuit including a CPU, a RAM, a ROM, and the like, a temperature adjusting unit that adjusts the power supplied to the electric heater 13 so as to keep the inside of the sample container 11 at a predetermined culture temperature, First oxygen concentration measuring means for starting the first oxygen concentration measurement by the oxygen concentration sensor 50 after the heat retention time has elapsed, and a second time by the oxygen concentration sensor 50 after the first oxygen concentration measurement has been completed and a predetermined time has elapsed. A second oxygen concentration measuring means for starting the oxygen concentration measurement, and the result of the arithmetic processing based on the two oxygen concentration measurement values is displayed on the display means 21 exposed outside the main body case 30.
[0016]
The temperature adjusting means detects the temperature in the sample container 11 with the temperature sensor 15, and controls the power supplied to the electric heater 13 by voltage control or ON / OFF so that the detected temperature becomes the set culture temperature. It is a feedback circuit that is adjusted by control or the like.
[0017]
The temperature sensor 15 is a well-known temperature sensor using a resistance temperature detector, a thermocouple, or the like. A bottomed hole is formed in the bottom of the heat transfer body 12 from below, and is inserted into the bottomed hole. . The temperature sensor 15 indirectly detects the temperature of the compost sample in the sample container 11.
In addition, since this inventor has confirmed that the temperature difference between the temperature detected by the temperature sensor 15 and the temperature of the compost sample itself is 0.5 degrees or less by experiment, it was detected by the temperature sensor 15. Even if the temperature of the compost sample is hardly affected, the temperature difference of the compost sample may be obtained by correcting the temperature difference in the control circuit unit 20 as necessary.
Moreover, the said culture | cultivation temperature is set to 30-40 degree | times in the preferable example of this Embodiment.
[0018]
The first oxygen concentration measurement means holds the culture temperature for a predetermined incubation time by a timer function in the control circuit unit 20 immediately after a start button (not shown) is pressed, and thereafter, the oxygen concentration sensor 50 Is a circuit that measures the oxygen concentration for the first time and stores the measured value temporarily.
The start button may be provided on the upper surface of the main body case 30 or a limit switch provided between the lid portion 40 and the main body case 30 so that the start button is turned on when the lid portion 40 is closed. It may be.
Moreover, although the said heat retention time is suitably set according to the kind of compost etc., according to the preferable example of this Embodiment, it is set to about 30 minutes.
[0019]
The second oxygen concentration measuring unit holds the culture temperature for a predetermined time by a timer function in the control circuit unit 20 after the measurement of the oxygen concentration by the first oxygen concentration measuring unit is completed, and then the oxygen concentration sensor 50 is a circuit for measuring the second oxygen concentration by 50 and temporarily storing the measured value.
The predetermined time is the time from the first oxygen concentration measurement to the second oxygen concentration measurement, and is set as appropriate according to the type of compost, etc., which is preferable in the present embodiment. According to an example, it is set to about 30 minutes.
[0020]
The display means 21 is a liquid crystal display and displays the oxygen consumption calculated in the control circuit unit 20. And this oxygen consumption is converted into a maturity using a conversion graph, a conversion table, etc. The degree of maturity represents the degree of maturity of compost as a percentage.
The graph of FIG. 3 shows that the maturity of fresh cow dung is 0%, the maturity of compost considered to be fully ripe is 100%, and the mixing ratio of these two composts is changed to 6 levels. Samples with a difference between the two are artificially made and the oxygen consumption of each is measured.
The term “ripening” is based on the assumption that the amount of oxygen consumption is regularly measured during the maturation process of compost, and that the amount of oxygen consumption is almost zero when the amount of oxygen consumption is almost zero. That is, compost contains a large amount of easily decomposable organic substances that are decomposed by microorganisms when immature, and the respiration of microorganisms is active, and as the maturation progresses, the easily decomposable organic substances decrease and the respiration of microorganisms decreases.
[0021]
Moreover, the experimental result shown in the graph of FIG. 3 is an example in the case where the compost component is cow dung, and differs depending on various conditions when the compost is ripened, compost components, and the like. Therefore, a conversion graph, a conversion table, and the like for converting the maturity from the oxygen consumption are appropriately created based on experiments according to the type of compost to be measured by the compost maturity determination device A.
[0022]
The calculation of oxygen consumption is performed in detail as follows.
First, for each of the first oxygen concentration measurement value and the second oxygen concentration measurement value, the oxygen weight is obtained by the following equation.
Oxygen weight [μg] = (Inner volume of sample container [ml] −volume of compost sample [ml]) × measured oxygen concentration (%) ÷ 100 × oxygen weight per 1 ml [μg]
The oxygen weight is, for example, 1430 [μg] when the temperature is 0 degree and 1 atmosphere, and 1270 [μg] when the temperature is 35 degrees and 1 atmosphere.
Next, the difference in oxygen weight at the two points is obtained by the following equation.
Difference in oxygen weight [μg] = oxygen weight obtained from the first measurement [μg] −oxygen weight obtained from the second measurement [μg]
And the oxygen consumption consumed for 1 minute by 1 g of compost is calculated | required by following Formula.
Oxygen consumption [μg / g / min] = difference in oxygen weight [μg] ÷ sample weight [g] ÷ time from first oxygen concentration measurement to second oxygen concentration measurement [min]
[0023]
Next, the compost maturity determination method using the compost maturity determination device A will be described in detail.
As described above, this compost maturity determination method utilizes the fact that the maturity of compost has a correlation with the amount of oxygen consumed by respiration of microorganisms in the compost.
[0024]
According to this compost maturity determination method, first, the water content of the collected compost sample is adjusted so that the weight ratio of the contained water is in the range of 60 to 75%.
In this moisture adjustment method, for example, the moisture content of a compost sample is measured by a well-known method, and when the measured moisture content (ratio) is less than 60%, a predetermined amount of water is added to the compost sample. In the case of 75% or more, a known moisture adjustment method may be used, such as air drying of a compost sample.
[0025]
The weight ratio of the water content is based on the experimental results shown in FIG. That is, when the weight ratio of the moisture content of the compost sample is within the above range (measured values of 60%, 65%, 70%, and 75% in the figure), the oxygen consumption is almost constant and high. That is, the change in the oxygen concentration during a predetermined time is remarkable, which is suitable for determining the degree of maturity.
On the other hand, when the same weight ratio is outside the above range (measured values of 55% and 80%), the oxygen consumption is extremely lower than the above, that is, the change in the oxygen concentration in a predetermined time is small, so High maturity determination is difficult.
[0026]
Next, the compost maturity determination apparatus A is turned on, and the sample container 11 is heated in advance to a predetermined culture temperature (30 to 40 degrees).
Then, the compost sample in which the moisture content is adjusted is put into the sample container 11, the lid 40 is closed, and a start button (not shown) is pushed.
[0027]
When the start button is turned on, the culture temperature is maintained for a predetermined heat retention time, and then the first oxygen concentration measurement is performed by the oxygen concentration sensor 50.
[0028]
Then, after the measurement of the first oxygen concentration is completed and the culture temperature is maintained for a predetermined time, the second oxygen concentration measurement by the oxygen concentration sensor 50 is performed.
[0029]
Next, in the control circuit unit 20 based on data such as the first oxygen concentration measurement value and the second oxygen concentration measurement value, the internal volume of the sample container 11 and the volume of the sample put into the sample container 11. The oxygen consumption is calculated and displayed on the display means 21.
And as above-mentioned, this oxygen consumption is converted into a maturity degree using the conversion graph (for example, graph shown in FIG. 3), the conversion table, etc. which were created based on experiment etc. previously.
[0030]
In addition, the said culture | cultivation temperature limited the most suitable temperature range based on the following conditions by this inventor.
That is, the culture temperature is preferably a temperature at which oxygen consumption increases due to the activation of microorganisms, and a temperature slightly higher than the normal outside air temperature is appropriate for preventing condensation in the sample container 11. In addition, since it is necessary to cool the sample container 11 when it is set lower than the outside air, a temperature higher than the normal outside air temperature is appropriate, and microorganisms are inactive at a temperature too low. As a result, the oxygen consumption is small and the measurement time is long, and in order to use the oxygen concentration sensor 50 within the operating temperature range, it is appropriate to set it to 40 degrees or less. In consideration of the above, it was set within a range of 30 to 40 degrees.
[0031]
In the present embodiment, the oxygen consumption amount displayed on the display means 21 is converted into the maturity level by a conversion graph, a conversion table, or the like. However, the relationship between the oxygen consumption amount and the maturity level is controlled in advance by the control circuit. It may be stored in the unit 20 and the maturity obtained from the relationship may be directly displayed on the display means 21.
[0032]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
According to the first invention, the compost sample put into the sample container is maintained at a predetermined culture temperature, and a change in oxygen concentration before and after a predetermined time can be detected. The degree of maturity can be determined.
In addition, since the heat transfer body covering the sample container uniformly transfers the heat of the electric heater to the sample container, the sample container can be heated to the culture temperature in a short time, and the measurement accuracy due to variations in the temperature distribution in the sample container can be improved. A decrease can be prevented.
In addition, since the main body case and the lid are integrally provided with a heat insulation unit, a control circuit unit, an oxygen concentration sensor, etc., they are easy to carry and handle.
Furthermore, according to 2nd invention, a highly accurate maturity determination can be performed by maintaining the moisture content and culture | cultivation temperature of a compost sample in a suitable range.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a compost maturity determination apparatus according to the present invention.
FIG. 2 is a longitudinal sectional view of the compost maturity determination device.
FIG. 3 is a graph showing the relationship between compost oxygen consumption and maturity.
FIG. 4 is a graph showing the relationship between the moisture content of compost and the oxygen consumption.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10: Heat insulation part 11: Sample container 12: Heat transfer body 13: Electric heater 14: Heat insulation material 20: Control circuit part 21: Display means 30: Main body case 40: Lid part 50: Oxygen concentration sensor A: Compost maturity judgment apparatus

Claims (2)

試料容器内へ投入される堆肥サンプルを加熱し所定の培養温度に維持する加熱保温部と、前記試料容器内の温度を制御する制御回路部とを本体ケース内に備えるとともに、前記試料容器内に臨む酸素濃度センサーを備え、前記試料容器内の酸素濃度の変化を検知するようにした堆肥腐熟度判定装置であって、
前記加熱保温部は、前記試料容器の外周を伝熱体によって覆い包むとともに、該伝熱体の外周面に電気ヒーターを接触させ、更に、前記伝熱体及び電気ヒーターを保温材によって覆い包んでなり、
前記制御回路部は、前記試料容器内を所定の培養温度に保つように前記電気ヒーターへの供給電力を調整する温度調整手段と、所定の保温時間経過後に前記酸素濃度センサーによる第一回目の酸素濃度測定を開始する第一酸素濃度測定手段と、第一回目の酸素濃度測定が完了し所定時間経過後に前記酸素濃度センサーによる第二回目の酸素濃度測定を開始する第二酸素濃度測定手段とを具備し、前記二回の酸素濃度測定値より演算処理された結果を、本体ケース外に露出されている表示手段に表示することを特徴とする堆肥腐熟度判定装置。
The main body case includes a heating and heat retaining unit that heats the compost sample to be put into the sample container and maintains the culture temperature at a predetermined culture temperature, and a control circuit unit that controls the temperature in the sample container. A composting maturity determination device provided with an oxygen concentration sensor facing and detecting a change in oxygen concentration in the sample container,
The heating and heat retaining unit wraps the outer periphery of the sample container with a heat transfer member, brings an electric heater into contact with the outer peripheral surface of the heat transfer member, and further wraps the heat transfer member and the electric heater with a heat insulating material. Become
The control circuit section includes temperature adjusting means for adjusting power supplied to the electric heater so as to keep the inside of the sample container at a predetermined culture temperature, and a first oxygen concentration sensor by the oxygen concentration sensor after a predetermined heat retention time has elapsed. First oxygen concentration measuring means for starting concentration measurement; and second oxygen concentration measuring means for starting second oxygen concentration measurement by the oxygen concentration sensor after the first oxygen concentration measurement is completed and a predetermined time has elapsed. A composting maturity determination device comprising: a display unit exposed outside the main body case, and a result obtained by performing arithmetic processing from the two oxygen concentration measurement values.
堆肥サンプルの含有水分の重量比を60〜75%の範囲内に調整し、その堆肥サンプルを30〜40度の範囲内の培養温度で所定の保温時間保持した後、第一回目の酸素濃度測定を行い、その第一回目の酸素濃度測定が完了し前記培養温度を保持した状態で所定時間経過後に第二回目の酸素濃度測定行い、前記二回の酸素濃度測定値の差より堆肥サンプルの腐熟度を判定するようにしたことを特徴とする堆肥腐熟度判定方法。The weight ratio of the moisture content of the compost sample is adjusted to within a range of 60 to 75%, and the compost sample is held at a culture temperature within a range of 30 to 40 degrees for a predetermined incubation time, and then the first oxygen concentration measurement The second oxygen concentration measurement is performed after a predetermined time has passed while the first oxygen concentration measurement is completed and the culture temperature is maintained, and the compost sample is ripened from the difference between the two oxygen concentration measurement values. A method for determining compost maturity, characterized in that the degree is determined.
JP2002002425A 2002-01-09 2002-01-09 Compost maturity judgment device and compost maturity judgment method Expired - Fee Related JP3697416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002425A JP3697416B2 (en) 2002-01-09 2002-01-09 Compost maturity judgment device and compost maturity judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002425A JP3697416B2 (en) 2002-01-09 2002-01-09 Compost maturity judgment device and compost maturity judgment method

Publications (2)

Publication Number Publication Date
JP2003207502A JP2003207502A (en) 2003-07-25
JP3697416B2 true JP3697416B2 (en) 2005-09-21

Family

ID=27642281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002425A Expired - Fee Related JP3697416B2 (en) 2002-01-09 2002-01-09 Compost maturity judgment device and compost maturity judgment method

Country Status (1)

Country Link
JP (1) JP3697416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680432A (en) * 2016-12-30 2017-05-17 北京农业智能装备技术研究中心 Monitoring device for monitoring concentration of oxygen in compost and monitoring method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650374B2 (en) 2006-08-24 2011-03-16 独立行政法人農業・食品産業技術総合研究機構 Method for judging compost maturity and solution for judgment
JP5007263B2 (en) * 2008-04-02 2012-08-22 日本特殊陶業株式会社 Gas sensor
KR102387415B1 (en) * 2020-06-16 2022-04-15 대한민국 Compost maturity measuring device using sensor
KR102409579B1 (en) * 2020-06-16 2022-06-16 대한민국 Compost maturity measuring device
CN116908171B (en) * 2023-07-19 2024-06-14 中农创达(北京)环保科技有限公司 Color reagent for detecting compost maturity as well as preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680432A (en) * 2016-12-30 2017-05-17 北京农业智能装备技术研究中心 Monitoring device for monitoring concentration of oxygen in compost and monitoring method thereof

Also Published As

Publication number Publication date
JP2003207502A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
US4336329A (en) Method and apparatus for treatment of biological substances, particularly for cultivation of biological cells and tissues, or of microorganisms
US4407959A (en) Blood sugar analyzing apparatus
AU702526B2 (en) Breath testing apparatus
US6753027B1 (en) Method of controlling a cooking process and a cooking process sensor for use with the method
JP3697416B2 (en) Compost maturity judgment device and compost maturity judgment method
WO2012078650A4 (en) Transdermal sampling and analysis device
US20110132774A1 (en) Strip having temperature compensating function and method of measuring blood glucose using the same
NO853296L (en) MEASUREMENT OF WATER STEAM TRANSMISSION.
CN109115823A (en) One kind being based on LF-NMR pork moisture content rapid detection method
US20050194296A1 (en) pH measurement system for buoyant water chlorinator
Landini et al. Effect of exhalation variables on the current response of an enzymatic breath acetone sensing device
WO2001040511A3 (en) Detection system
Ikasari et al. Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus
Lasaridi et al. Development and demonstration of a thermogradient respirometer
JP4516659B2 (en) COD automatic measuring instrument and COD automatic measuring method
KR101481530B1 (en) Kimchi Refrigerator and Control Method thereof
JPS60164476A (en) Reaction chamber
JPS58196451A (en) Oxygen concentration measuring apparatus
Coon et al. An Isothermal Calorimeter for Slow Reactions.
Rose et al. Calibrated analytical model of low cost YL-69 hygrometer sensor for determining moisture content of fruit and vegetable waste
JP2000258370A (en) Water content sensor and garbage treatment apparatus using the same
JP2000055847A (en) Water content sensor and organic matter-treating device using it
CN215375438U (en) Simple potato virus enzyme-linked immunoassay operation panel
JP2512623B2 (en) Detector
JP3616409B2 (en) 厨 芥 Processing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees