JP2512623B2 - Detector - Google Patents

Detector

Info

Publication number
JP2512623B2
JP2512623B2 JP2280242A JP28024290A JP2512623B2 JP 2512623 B2 JP2512623 B2 JP 2512623B2 JP 2280242 A JP2280242 A JP 2280242A JP 28024290 A JP28024290 A JP 28024290A JP 2512623 B2 JP2512623 B2 JP 2512623B2
Authority
JP
Japan
Prior art keywords
detector
sensor
electrolytic
water content
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2280242A
Other languages
Japanese (ja)
Other versions
JPH04155254A (en
Inventor
修 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2280242A priority Critical patent/JP2512623B2/en
Publication of JPH04155254A publication Critical patent/JPH04155254A/en
Application granted granted Critical
Publication of JP2512623B2 publication Critical patent/JP2512623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は検出器に関し、さらに詳しくは被電解物質の
濃度を高精度に測定できる、小型化の容易な検出器に関
する。
The present invention relates to a detector, and more particularly to a detector that can measure the concentration of a substance to be electrolyzed with high accuracy and that can be easily downsized.

〔従来の技術〕[Conventional technology]

近年、マイクロアレイ電極(日本化学会、第58春季年
会要旨集、4IG13、京都(1988))やカーボンファイバ
ー電極(K.Kinoshita,“carbon"p.443〜p.455 John Wil
eych Sons,(1988))などの微小電極が開発され、これ
らの微小電極を用いた電解技術(マイクロエレクトロー
ド技術)は、invivo(生物体)用センサーに応用されて
いる。このinvivo用センサーにおいては、可能なかぎり
の小型化を図る必要があるため、分析精度向上や測定種
拡大のための付属品の設置は試みられていない。
In recent years, microarray electrodes (Chemical Society of Japan, 58th Annual Meeting, 4IG13, Kyoto (1988)) and carbon fiber electrodes (K. Kinoshita, “carbon” p.443-p.455 John Wil
Eych Sons, (1988)) and other microelectrodes have been developed, and the electrolysis technology (microelectrode technology) using these microelectrodes has been applied to in vivo sensors. In this in-vivo sensor, it is necessary to make the size as small as possible, and therefore, no attempt has been made to install accessories for improving analysis accuracy and expanding measurement species.

一般に、被電解物質の電解による出力信号(電流また
は電圧値)は検出時の温度や導電率などに影響を受ける
ため、高精度の測定が要求される場合には、別途、温度
や導電率を測定して電解による出力信号を補正する必要
があった。
Generally, the output signal (current or voltage value) due to electrolysis of the substance to be electrolyzed is affected by the temperature and conductivity at the time of detection. Therefore, when highly accurate measurement is required, the temperature and conductivity are separately set. It was necessary to measure and correct the output signal due to electrolysis.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者等は、先に陰極と陽極を1mm以下の間隔で配
した電極を用い、水の直接電解により試料中の水分量を
測定することができる水分測定器および水分測定法を提
案した(特願平1−321078号(特開平3−180747号公
報))。このような陰陽極間を1mm以下に設置して被電
解物質を直接電解する検出器は、試料の導電率変化の影
響を受けにくいため、電解によって得られる電流値の補
正は温度について実施すれば、一般に良好な測定が行え
る。
The present inventors previously proposed a water content measuring device and a water content measuring method capable of measuring the water content in a sample by direct electrolysis of water using an electrode in which a cathode and an anode are arranged at intervals of 1 mm or less ( Japanese Patent Application No. 1-321078 (JP-A-3-180747). A detector that directly electrolyzes a substance to be electrolyzed by setting the space between the negative and positive electrodes to 1 mm or less is not easily affected by the change in the conductivity of the sample.Therefore, the current value obtained by electrolysis should be corrected for temperature. Generally, good measurement can be performed.

本発明の目的は、上記電極を用いて測定した測定値の
高精度化と測定種の拡大を図ることができる、小型化の
容易な検出器を提供することにある。
An object of the present invention is to provide a detector that is easy to downsize and that can improve the accuracy of measurement values measured using the above electrodes and expand the types of measurement.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、被電解物質を直接電解する1mm以下の間隔
で設置された陰極および陽極を少なくとも1対有、かつ
0.1秒以上持続するピーク電流信号を電解電流として出
力する電解検出部と、該電解検出部に近接して設置した
温度測定部とを備えた検出器に関する。
The present invention has at least one pair of a cathode and an anode, which are directly electrolyzed with a substance to be electrolyzed and are installed at intervals of 1 mm or less,
The present invention relates to a detector including an electrolytic detection unit that outputs a peak current signal that lasts for 0.1 second or more as an electrolytic current, and a temperature measurement unit that is installed close to the electrolytic detection unit.

〔作用〕[Action]

本発明においては、センサーを試料中に放置、固定ま
たは手で静止して設置し、センサー内の電解検出部で測
定された測定値を、ほぼ同時かつ同一位置で温度測定部
により測定された温度に基づいて補正することができる
ため、測定値の高精度化を図ることができる。またセン
サーの測定対象としては、試料中の一般的な被電解物質
の定量(含水率、ビタミンC濃度など)の他、酸度もプ
ロトンの電解によって測定することができる。さらに電
源部および計測部をセンサーに内蔵して小型のハンディ
型センサーとすることができるため、高精度の測定を持
ち運び可能な簡便な装置で行うことができる。
In the present invention, the sensor is left in the sample, fixed or fixed by hand, and the measurement values measured by the electrolytic detection section in the sensor are measured at the same time and at the same position by the temperature measurement section. Since the correction can be performed based on, it is possible to improve the accuracy of the measured value. As the measurement target of the sensor, in addition to quantification of general substances to be electrolyzed in a sample (water content, vitamin C concentration, etc.), acidity can also be measured by electrolysis of protons. Further, since the power supply unit and the measuring unit can be built in the sensor to form a small handy-type sensor, highly accurate measurement can be performed by a portable and simple device.

第1図は、本発明の一実施例を示す検出器の説明図で
ある。
FIG. 1 is an explanatory diagram of a detector showing an embodiment of the present invention.

図において、センサー担持棒1は、該センサー担持棒
1の先端に設置された、試料中の被電解物質の電解電流
を測定する電解検出部2と、該電解検出部の近傍に設置
された、試料の温度を測定する温度測定部3と、計測さ
れた信号を計測部6に入力するためのリード線5とから
なる。
In the figure, a sensor-carrying rod 1 is installed at the tip of the sensor-carrying rod 1 for measuring an electrolysis current of an electrolyzed substance in a sample, and is installed near the electrolysis detecting unit. It comprises a temperature measuring unit 3 for measuring the temperature of the sample and a lead wire 5 for inputting a measured signal to the measuring unit 6.

このような構成において、センサー担持棒1の先端測
定部は試料中に浸漬され、定電圧電源部7からリード線
5を経て各測定部に測定に応じた電圧が印加される。電
解検出部2では、被電解物質の直接電解により測定され
る電流のうち、少なくとも時間軸上のピーク幅が0.1秒
以上持続しているものを平均化処理して試料中の被電解
物質の電解電流として出力する。それぞれの測定値はリ
ード線5を通して計測部6に入力され、温度補正後のデ
ータ処理を行った後、記録計8に表示される。次の試料
の計測に入るときは計測部6に設けられる。
In such a configuration, the tip measuring portion of the sensor-carrying rod 1 is immersed in the sample, and the voltage according to the measurement is applied to each measuring portion from the constant voltage power source portion 7 through the lead wire 5. In the electrolysis detection unit 2, among the currents measured by the direct electrolysis of the substance to be electrolyzed, at least the peak width on the time axis that lasts for 0.1 seconds or more is averaged to electrolyze the substance to be electrolyzed in the sample. Output as current. The respective measured values are input to the measuring unit 6 through the lead wire 5, are subjected to temperature-corrected data processing, and then displayed on the recorder 8. When the measurement of the next sample is started, the measurement unit 6 is provided.

第2図は、第1図の電解検出部センサーの一例の説明
図である。
FIG. 2 is an explanatory diagram of an example of the electrolytic detection unit sensor of FIG.

この電解検出部センサー10は、陽極20と陰極21が、交
互に複数枚配列され、リード線23を介して電源および計
測部に接続されている。該陽極20と陰極21の先端部A
(試料25と接触して電解電流値を測定する部分)以外
は、エポキシ樹脂等の樹脂22で覆われ、固定されてい
る。該先端部Aは面として電極が露出しているか、また
は試料が電極間に詰まらない程度にまで突出していても
よい。電極には、例えば白金属に属する金属が用いられ
る。
In this electrolytic detection section sensor 10, a plurality of anodes 20 and cathodes 21 are alternately arranged, and are connected to a power source and a measurement section via lead wires 23. The tips A of the anode 20 and the cathode 21
Except for the portion (which contacts the sample 25 and measures the electrolytic current value), it is covered and fixed with a resin 22 such as an epoxy resin. The tip A may be such that the electrodes are exposed as a surface, or the tip A protrudes to such an extent that the sample is not clogged between the electrodes. For example, a metal belonging to a white metal is used for the electrodes.

電極20、21に印加する電圧の大きさは測定する被電解
物質の種類によって定められる。例えば水分の場合は2.
5V以上、好ましくは3〜10Vが印加され、またビタミン
Cの測定の場合には2Vの電圧が印加される。
The magnitude of the voltage applied to the electrodes 20 and 21 is determined by the type of substance to be measured. For example, for water, 2.
A voltage of 5 V or more, preferably 3 to 10 V is applied, and a voltage of 2 V is applied when measuring vitamin C.

例えば脱水汚泥25中の電解電流値(水分量)の測定
は、センサー10を用いて次のようにして行われる。ま
ず、電極先端部Aの全体を汚泥25に完全に浸漬するよう
に押しつけ、電極20、21に2.5V以上の電圧を印加する。
For example, the measurement of the electrolytic current value (water content) in the dehydrated sludge 25 is performed using the sensor 10 as follows. First, the entire electrode tip portion A is pressed so as to be completely immersed in the sludge 25, and a voltage of 2.5 V or more is applied to the electrodes 20 and 21.

電圧が印加されると、陰極21では 2H2O+2e-→H2↑+20H- の反応を生じ、また陽極20では 2H2O→O2↑+4H++4e- の反応を生じ、脱水汚泥含水量測定の場合は電気浸透脱
水領域および熱処理領域に至るまでの含水率に基づく電
解電流が得られる。
When a voltage is applied, the reaction of 2H 2 O + 2e → H 2 ↑ + 20H occurs at the cathode 21, and the reaction of 2H 2 O → O 2 ↑ + 4H + + 4e occurs at the anode 20 to measure the water content of the dehydrated sludge. In the case of, an electrolytic current based on the water content up to the electroosmotic dehydration region and the heat treatment region can be obtained.

第3図は、本発明の他の実施例を示す検出器の斜視
図、第4A図は、第3図の検出器先端部の拡大図、第4B図
は、第4A図の底面図である。
FIG. 3 is a perspective view of a detector showing another embodiment of the present invention, FIG. 4A is an enlarged view of the detector tip portion of FIG. 3, and FIG. 4B is a bottom view of FIG. 4A. .

第3図において、第1図と異なる点は、電解検出部30
のセンサーとして陽極および陰極のいずれかを中心部に
配し(検出極31)、その周囲に1mm以下の間隔で円状に
設けたもう一方の極(対極32)を有する電極を用い、か
つセンサー担持棒1に第1図の計測部6および定電圧電
源部7を内蔵させ、該センサー担持棒1に液晶表示計36
およびリセットボタン35を取りつけてハンディ型とした
ことである。このような検出器によれば、持ち運びが可
能であり、各種試料の手軽な計測が可能となる。
In FIG. 3, the difference from FIG.
As the sensor of the sensor, either the anode or the cathode is arranged in the center (detection electrode 31), and the electrode having the other pole (counter electrode 32) circularly provided at intervals of 1 mm or less is used, and the sensor The carrier rod 1 is equipped with the measuring unit 6 and the constant voltage power supply unit 7 shown in FIG.
And the reset button 35 is attached to make it a handy type. According to such a detector, it is possible to carry and easily measure various samples.

本発明において、電解検出部からの出力信号(電流ま
たは電圧信号)は、電解検出部の電極が試料の十分接触
しているときに安定して得られるため、該電解検出部を
3〜5秒以上安定に試料の浸漬または挿入して測定する
ことが好ましい。
In the present invention, the output signal (current or voltage signal) from the electrolysis detection unit is stably obtained when the electrodes of the electrolysis detection unit are in sufficient contact with the sample. As described above, it is preferable to stably measure the sample by dipping or inserting it.

〔実施例〕〔Example〕

以下、本発明を実施例により詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

実施例1 電解用電極として幅0.5mm、長さ5mm、間隔0.1mmの白
金電極対と、温度センサーとして白金側温体とを設置し
た第1図のセンサー担持棒1を用いて濃度の異なる消石
灰スラリーの含水率をそれぞれ測定した。センサー担持
棒1を手にもってその先端部をスラリーに挿入し、電極
に4Vの定電圧を印加した。始めは不規則な電流信号が得
られたが、3〜5秒以上そのまま保持すると、0.1秒以
上持続するピーク電流が信号として得られた。このピー
ク電流に係数を乗じて求めた含水率が記録計8に表示さ
れた。別試料を測定するときには、リセットボタンを押
してデータを除去した後、同じ測定を行った。このとき
に得られた温度補正後の含水率と、乾燥重量法で得た含
水率とを比較し、その結果を第6図に示したが、温度補
正後の含水率は乾燥重量法による含水率と一致した。ま
た電解電流値として単にセンサーの出力電流の平均値を
用いて算出した場合の含水率を第6図において×印で示
したが、この場合は温度補正しても正確な含水率が得ら
れないことがわかった。
Example 1 Using the sensor-supporting rod 1 of FIG. 1 in which a platinum electrode pair having a width of 0.5 mm, a length of 5 mm, and an interval of 0.1 mm as an electrode for electrolysis and a platinum side temperature body as a temperature sensor were installed, different concentrations were used. The water content of each slurry was measured. The tip of the sensor-carrying rod 1 was held in the hand and inserted into the slurry, and a constant voltage of 4 V was applied to the electrodes. At first, an irregular current signal was obtained, but when it was held for 3 to 5 seconds or longer, a peak current lasting 0.1 seconds or more was obtained as a signal. The water content obtained by multiplying this peak current by a coefficient was displayed on the recorder 8. When measuring another sample, the same measurement was performed after pressing the reset button to remove the data. The temperature-corrected water content obtained at this time was compared with the water content obtained by the dry weight method, and the results are shown in FIG. 6. The water content after temperature correction is shown by the dry weight method. In agreement with the rate. In addition, the water content calculated by simply using the average value of the output current of the sensor as the electrolysis current value is shown by a cross in FIG. 6, but in this case, an accurate water content cannot be obtained even if the temperature is corrected. I understand.

〔発明の効果〕〔The invention's effect〕

本発明の検出器によれば、陰極と陽極を1mm以下の間
隔で配した電極により、被電解物質を直接電解して得ら
れる、0.1秒以上持続するピーク電流信号を電解電流と
し、これをほぼ同時かつ同一位置で測定した温度に基づ
いて補正することによって、測定値の高精度化を図るこ
とができる。さらに計測部および電源部を内蔵させて小
型でハンディ型の検出器とすることができ、手軽な測定
が可能となる。
According to the detector of the present invention, an electrode having a cathode and an anode arranged at a distance of 1 mm or less, which is obtained by directly electrolyzing a substance to be electrolyzed, has a peak current signal of 0.1 second or more as an electrolytic current, which is almost the same. By making corrections based on the temperatures measured at the same time and at the same position, it is possible to improve the accuracy of the measured values. Furthermore, by incorporating a measuring unit and a power supply unit into a small, handy-type detector, it is possible to perform easy measurement.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す検出器の説明図、第
2図は、第1図の電解検出センサーの一例の説明図、第
3図は、本発明の他の実施例を示す検出器の斜視図、第
4A図は、第3図の検出器先端部の拡大図、第4B図は、第
4A図の底面図、第5図は、本発明の検出器で得られた温
度補正後の含水率と乾燥重量法による含水率との関係を
示す図である。 1……センサー担持棒、2、30……電解検出部、3、33
……温度測定部、5、23……リード線、6……計測部、
7……定電圧電源部、8……記録計、9、35……リセッ
トボタン、10……電解検出部センサー、20……陽極、21
……陰極、22……樹脂、23……リード線、25……汚泥、
31……検出極、32……対極、液晶表示計36。
FIG. 1 is an explanatory view of a detector showing an embodiment of the present invention, FIG. 2 is an illustration of an example of the electrolytic detection sensor of FIG. 1, and FIG. 3 is another embodiment of the present invention. A perspective view of the detector shown,
FIG. 4A is an enlarged view of the detector tip of FIG. 3, and FIG.
FIG. 4A is a bottom view and FIG. 5 is a diagram showing the relationship between the water content after temperature correction obtained by the detector of the present invention and the water content by the dry weight method. 1 ... Sensor carrying rod, 2,30 ... Electrolytic detection part, 3,33
...... Temperature measuring unit, 5,23 ...... Lead wire, 6 …… Measuring unit,
7: Constant voltage power supply, 8: Recorder, 9, 35 ... Reset button, 10 ... Electrolysis detector sensor, 20 ... Anode, 21
…… Cathode, 22 …… Resin, 23 …… Lead wire, 25 …… Sludge,
31 …… Detection pole, 32 …… Counter pole, liquid crystal display 36.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被電解物質を直接電解する1mm以下の間隔
で設置された陰極および陽極を少なくとも1対有し、か
つ0.1秒以上持続するピーク電流信号を電解電流として
出力する電解検出器と、該電解検出部に近接して設置し
た温度測定部とを備えたことを特徴とする検出器。
1. An electrolytic detector which has at least one pair of a cathode and an anode installed at intervals of 1 mm or less for directly electrolyzing a substance to be electrolyzed, and which outputs a peak current signal lasting 0.1 seconds or more as an electrolytic current. A detector comprising a temperature measuring unit installed in the vicinity of the electrolytic detecting unit.
JP2280242A 1990-10-18 1990-10-18 Detector Expired - Lifetime JP2512623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280242A JP2512623B2 (en) 1990-10-18 1990-10-18 Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280242A JP2512623B2 (en) 1990-10-18 1990-10-18 Detector

Publications (2)

Publication Number Publication Date
JPH04155254A JPH04155254A (en) 1992-05-28
JP2512623B2 true JP2512623B2 (en) 1996-07-03

Family

ID=17622281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280242A Expired - Lifetime JP2512623B2 (en) 1990-10-18 1990-10-18 Detector

Country Status (1)

Country Link
JP (1) JP2512623B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682569B2 (en) * 1991-11-05 1997-11-26 工業技術院長 Measuring electrode and manufacturing method thereof
JP2001056309A (en) * 1999-08-20 2001-02-27 Tic Keisokuki Kogyo Kk Conductivity detection electrode and conductivity measuring apparatus using the same
WO2013134582A1 (en) * 2012-03-08 2013-09-12 Senova Systems, Inc. Analyte sensing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145986U (en) * 1975-05-16 1976-11-24
FI65675C (en) * 1982-05-12 1984-06-11 Kajaani Oy ELECTRICAL SYSTEM VOLTAMETRISKA MAETNINGAR
US4752360A (en) * 1985-06-03 1988-06-21 Cities Service Oil And Gas Corporation Corrosion probe and method for measuring corrosion rates
JPS6184551A (en) * 1984-10-03 1986-04-30 Furontetsukusu:Kk Measuring electrode in instrument for measuring concentration of chlorine ion

Also Published As

Publication number Publication date
JPH04155254A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
US5217595A (en) Electrochemical gas sensor
KR101256133B1 (en) Method and apparatus for detection of abnormal traces during electrochemical analyte detection
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
JP2006511788A5 (en)
DE3486127D1 (en) ELECTRODE ARRANGEMENT FOR TRANSCUTANEALLY MEASURING THE PARAMETER OF GASES IN BLOOD AND FOR SCANNING A BIOELECTRICAL SIGNAL AND AN ELECTRODE AGGREGATE THAT INCLUDES SUCH AN ELECTRODE ARRANGEMENT.
CN111108374A (en) PH sensor and calibration method for a PH sensor
JP2512623B2 (en) Detector
US4452672A (en) Process and apparatus for polarographic determination of oxygen and carbon dioxide
KR100868566B1 (en) Device for measuring glucose concentration and a method of measuring the concentration of glucose using the same
US4952300A (en) Multiparameter analytical electrode structure and method of measurement
US20050084978A1 (en) Method of simultaneous fractional analysis of peracetic acid and hydrogen peroxide
US20070227908A1 (en) Electrochemical cell sensor
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
CA1279370C (en) Method for measuring periodontal pocket gases
JPH0769300B2 (en) Moisture analyzer and method
JP2854398B2 (en) Layer change detection method
JP2004085450A (en) Device and method for measuring free chlorine
RU2523564C1 (en) Method for measuring antioxidant activity of biological fluids
JP2974551B2 (en) Battery cell for electrical analysis and electrical analyzer
JPH06138068A (en) Concentration meter for electrolyte solution
JP2674389B2 (en) Moisture measurement method
JPH0725689Y2 (en) Coulometric analyzer
CN113514527B (en) Ion detection method
JPH087175B2 (en) Rotating electrode and concentration measurement method
RU2225901C1 (en) Autonomous electrochemical complex