JPH02241448A - Artificial blood tube and manufacture thereof - Google Patents

Artificial blood tube and manufacture thereof

Info

Publication number
JPH02241448A
JPH02241448A JP1064153A JP6415389A JPH02241448A JP H02241448 A JPH02241448 A JP H02241448A JP 1064153 A JP1064153 A JP 1064153A JP 6415389 A JP6415389 A JP 6415389A JP H02241448 A JPH02241448 A JP H02241448A
Authority
JP
Japan
Prior art keywords
cylindrical body
fibers
artificial blood
blood vessel
adhere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1064153A
Other languages
Japanese (ja)
Inventor
Yoji Imai
庸二 今井
Takayuki Tsuji
隆之 辻
Katsuhiko Oikawa
及川 克彦
Hirobumi Yanagisawa
博文 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP1064153A priority Critical patent/JPH02241448A/en
Publication of JPH02241448A publication Critical patent/JPH02241448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Knitting Of Fabric (AREA)

Abstract

PURPOSE:To provide an artificial blood tube which has excellent antithrombus property and enables the thickness of a formed false inner membrane to be controlled to a low value by a method wherein different specified fibers are used to knit or weave them to form a cylindrical body. CONSTITUTION:A fibre made of a material to which a cell is apt to adhere and a fiber made of a material to which a cell is difficult to adhere are combined together as different fibers. For example, a tetrafluoroethylene - perfluoroalkylvinyl ether copolymer filament, molten and spun and having 10% or more thermal shrinkage property in a longitudinal direction in a 200 deg.C dry oven and a polyester series fiber having thermal shrinkage property are knitted or woven to form a cylindrical body. After a core is inserted in the cylindrical body, heat treatment is effected to bring texture density of the cylindrical body into a dense state. In which case, the latter to which a cell is apt to adhere is favorable to rapid and neat formation of a false inner membrane. The former to which a cell is difficult to adhere has an effect to suppress the rapid and sudden occurrence of a thrombus, and difficult to cause the occurrence of dehiscence and kinking due to a needle hole formed during a sature.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は好ましい特性を有する人工血管の分野に係わる
ものであり、かかる人工血管及びその製造法を提供する
ことにより、もって当該産業上の利用に供せんとするも
のである。
Detailed Description of the Invention <Field of Industrial Application> The present invention relates to the field of artificial blood vessels having favorable characteristics, and by providing such artificial blood vessels and a method for manufacturing the same, It is intended to be offered to

〈従来の技術〉 現在実用化されている人工血管には、ポリエスチル繊維
の筒状織編物やポリテトラフルオロエチレンをペースト
押出ししたものを特殊延伸した多孔質チューブ等がある
が、解決すべき問題がまだいろいろと残されている。後
者では縫合時に針穴による裂開が生じやすく、伸縮性に
乏しく、キンキングを起こしやすいという問題を抱えて
いる。
<Prior art> Artificial blood vessels currently in practical use include tubular woven and knitted fabrics of polyester fibers and porous tubes made from specially stretched polytetrafluoroethylene paste extrusions, but there are still problems that need to be solved. There are still many things left. The latter has problems in that it tends to tear due to the needle hole during suturing, has poor elasticity, and is prone to kinking.

いずれのタイプの人工血管にあっても、最終的には生体
による偽内膜形成により抗血栓性を獲得するという原理
に基づいているが、これら従来のものはいずれも偽内膜
の過形成により血管内腔の狭窄が起こり、それが原因と
なって閉塞することがあり、口径の小さな人工血管では
特に大きな問題となっている。そのため、人工血管の適
用範囲が内径61mWm以上の比較的太い動脈に限られ
ている。
All types of artificial blood vessels are based on the principle that they ultimately acquire antithrombotic properties through the formation of pseudointima by the living body, but all of these conventional artificial blood vessels develop antithrombotic properties due to hyperplasia of pseudointima. Narrowing of the vascular lumen may occur, which may lead to occlusion, which is a particularly serious problem in small-diameter artificial blood vessels. Therefore, the scope of application of artificial blood vessels is limited to relatively large arteries with an inner diameter of 61 mWm or more.

長期間にわたって、抗血栓性が非常に優れていて、しか
も偽内膜の形成を起こさないようなものがあれば、人工
血管用材料として最適であるが、そのような材料はこれ
までのところ存在しない。
If there were a material that had excellent antithrombotic properties over a long period of time and did not cause the formation of pseudointima, it would be ideal as a material for artificial blood vessels, but such a material does not exist so far. do not.

〈発明が解決しようとする問題点〉 偽内膜形成により抗血栓性を獲得するタイプの人工血管
の問題点の解決に当っては、抗血栓性に優れた材料、及
び偽内膜形成を薄く制御できるような材料が必要とされ
ることは言うまでもない。
<Problems to be Solved by the Invention> In order to solve the problems of the type of artificial blood vessel that acquires antithrombotic properties through the formation of pseudointima, it is necessary to develop materials with excellent antithrombotic properties and to reduce the formation of pseudointimal membranes. Needless to say, a material that can be controlled is required.

本発明の目的は、異質の材料を組合わせることにより、
必要とされる上記二つの性質を同時に満足させるととも
に、人工血管として必要なその他の性質も持つ、これま
でにない新しいタイプの人工血管を提供することにある
The purpose of the present invention is to combine different materials to
The object of the present invention is to provide an unprecedented new type of artificial blood vessel that simultaneously satisfies the above two required properties and also has other properties necessary for an artificial blood vessel.

く問題点を解決するための手段〉 抗血栓性材料の設計原理として、ミクロ不均質構造の概
念が提案されている(人工臓器、2巻、95頁、197
3年)、すなわち、適当な大きさを持った、性質の異な
るものが不均質に分布していると、血栓ができにくくな
る、と言うものである0本発明はかかるミクロ不均質構
造の概念を拡張して、異質の繊維を適宜に組合わせるこ
とにより問題点の解決を図らんとするものである。
Measures to solve these problems> The concept of micro-heterogeneous structure has been proposed as a design principle for antithrombotic materials (Artificial Organs, Vol. 2, p. 95, 197).
3), that is, when substances of appropriate size and different properties are distributed in a non-uniform manner, it becomes difficult for blood clots to form.The present invention is based on the concept of such a micro-heterogeneous structure. The aim is to solve the problem by expanding the method and appropriately combining different types of fibers.

即ち、本発明の特徴とするところは人工血管において、
異質の繊維を用いて編まれ、もしくは織られて筒状体に
形成されてなる点にあり、更にその特徴とするところは
人工血管において、溶融紡糸されたテトラフルオロエチ
レン−パーフルオロアルキルビニルエーテル共重合体フ
ィラメントとポリエステル系繊維とにより筒状体に形成
された点にあり、更にその特徴とするところは人工血管
を製造するに当り、溶融紡糸され、200℃乾式オーブ
ン中で長平方向に10%以上の熱収縮性を有するテトラ
フルオロエチレン−パーフルオロアルキルビニルエーテ
ル共重合体フィラメントと熱収縮性を有するポリエステ
ル系繊維とにより編まれ、もしくは織られた筒状体に芯
材を挿入し、しかる後熱処理を行うことにより、前記筒
状体の組織密度を密にしてなる点にある。
That is, the present invention is characterized in that, in the artificial blood vessel,
It is formed into a cylindrical body by knitting or weaving using different types of fibers, and its unique feature is that it is made of melt-spun tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer in artificial blood vessels. It is formed into a cylindrical body from combined filaments and polyester fibers, and its unique feature is that when manufacturing an artificial blood vessel, it is melt-spun and processed in a dry oven at 200°C to form a cylindrical body with a thickness of 10% or more in the longitudinal direction. A core material is inserted into a cylindrical body knitted or woven with heat-shrinkable tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer filaments and heat-shrinkable polyester fibers, and then heat-treated. By doing so, the tissue density of the cylindrical body is made denser.

本発明は異質の繊維を用いる必要があり、この結果、本
発明に係る人工血管は異質の繊維により形成されるが、
この際、人工血管中に異質の繊維がいかなる状態で存在
しようと差しつかえない。
The present invention requires the use of foreign fibers, and as a result, the artificial blood vessel according to the present invention is formed of foreign fibers, but
At this time, it does not matter what state foreign fibers exist in the artificial blood vessel.

かかる異質の繊維の使用状態については、適宜の材料等
からなる繊維を合計で2種類以上(例えば2.3.4・
・・・・・種類等)どのような状態で用いてもよく、ま
た後記する複合紡糸により得られた繊維を少なくとも1
種類用いてもよい等、特に制限を受けるものではないが
、例えばお互いの界面化学的性質がかなり異なっている
材料からなる繊維どうしの組合わせが望ましく、好まし
くは細胞が付着しやすい材料からなる繊維と細胞が付着
しにくい材料からなる繊維との組合せを例示できる。何
故かというと細胞が付着しやすい材料は、偽内膜が早期
にきれいに形成されるのに好都合であり、細胞が付着し
にくい材料には、血栓が早期に急激にできるのを抑制す
る効果があるためである。
Regarding the use of such different types of fibers, a total of two or more types of fibers made of appropriate materials (for example, 2.3.4.
... Type, etc.) may be used in any state, and at least one fiber obtained by composite spinning as described later may be used.
There are no particular restrictions on the types of fibers that can be used, but for example, it is desirable to have a combination of fibers made of materials that have significantly different surface chemical properties, and preferably fibers made of materials to which cells easily adhere. An example is a combination of fibers made of a material to which cells do not easily adhere. This is because materials to which cells easily adhere are favorable for early and clean formation of pseudointima, while materials to which cells do not adhere easily have the effect of suppressing the early and rapid formation of blood clots. It's for a reason.

細胞が付着しやすい材料としては、例えばポリエチレン
テレフタレート(以下PETと云う)、ポリエチレンナ
フタレート、ポリグリコール酸、ポリ乳酸などのポリエ
ステル、およびポリアミド、ポリイミド、ポリサルホン
、ポリウレタン、ポリフッ化ビニリデン等をあげること
ができる。
Examples of materials to which cells easily adhere include polyesters such as polyethylene terephthalate (hereinafter referred to as PET), polyethylene naphthalate, polyglycolic acid, and polylactic acid, as well as polyamide, polyimide, polysulfone, polyurethane, and polyvinylidene fluoride. can.

細胞の付着しにくい材料としては、例えばポリテトラフ
ルオロエチレン(以下PTFEという)、テトラフル才
口エチレンーパーフルオロアルキルビニルエーテル共重
合体、(以下PFAと云う)、テトラフルオロエチレン
−ヘキサフルオロプロピレン共重合体、テトラフルオロ
エチレン−エチレン共重合体、テトラフルオロエチレン
−ヘキサフルオロプロピレン−パーフルオロアルキルビ
ニルエーテル共重合体などのフッ素系ポリマーや、ポリ
エチレン、ポリプロピレンなどのオレフィン系のポリマ
ーで比較的疎水性の高いもの等、あるいはポリエチレン
グリコール5ポリアクリルアミド、ポリ(N−ビニルと
ロリドン)、ポリビニルアルコールなどのユニットを含
む親水性のポリマー等をあげることができる。
Materials to which cells do not easily adhere include, for example, polytetrafluoroethylene (hereinafter referred to as PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (hereinafter referred to as PFA), and tetrafluoroethylene-hexafluoropropylene copolymer. , fluorine-based polymers such as tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer, and relatively highly hydrophobic olefin-based polymers such as polyethylene and polypropylene. Alternatively, hydrophilic polymers containing units such as polyethylene glycol 5-polyacrylamide, poly(N-vinyl and lolidone), and polyvinyl alcohol can be mentioned.

上記に記載の、細胞が付着しやすい、あるいは付着しに
くい材料としては、好ましくはできる限り細い繊維が望
ましく、このことからして、現在利用しつる繊維はかな
り限られている傾向を有するが、このことは特に制限を
受けるものではなく、繊維であれば自由に使用可能であ
る。細胞が付着しやすい繊維の中では、生体反応が少な
く、耐久性もあり、人工血管として利用されてきている
実績から、現時点ではポリエステル系繊維に属するPE
T製の繊維が好ましいものとして例示できる。細胞が付
着しにくい繊維の中では、例えばPTFE、PFA、ポ
リプロピレン製のもの等があげられるが、現時点ではP
FA繊維が好ましいものとして例示できる。P TF 
EとPFAはともにフッ素系の非粘着性を特徴とするポ
リマーであるが、PFAは熱可塑性であるために溶融押
出し成形が可能となり、表面性がPTFEよりも優れて
おり、抗血栓性の点でも有利である。さらに、PFAの
周囲に形成される線維性組織の世が5PTFEやPET
に比べて少ないことが明らかにされており(人工臓器、
17巻、553頁、1988年)、偽内膜を薄く形成さ
せて、その過形成を抑制しつる点でも好都合である。
As the above-mentioned material to which cells easily attach or do not easily attach, it is desirable to use fibers as thin as possible, and for this reason, the number of vine fibers currently available tends to be quite limited. There are no particular restrictions on this, and any fiber can be used. Among the fibers to which cells easily attach, PE, which belongs to polyester fibers, is currently selected because it has a low biological reaction, is durable, and has been used as an artificial blood vessel.
A preferable example is fibers made of T. Examples of fibers to which cells do not adhere are those made of PTFE, PFA, and polypropylene;
FA fibers can be exemplified as preferred. PTF
E and PFA are both fluorine-based polymers that are characterized by non-adhesive properties, but PFA is thermoplastic and therefore can be melt-extruded, has better surface properties than PTFE, and has antithrombotic properties. But it is advantageous. Furthermore, the world of fibrous tissue formed around PFA is
It has been revealed that there are fewer cases compared to artificial organs (artificial organs,
17, p. 553, 1988), it is also advantageous in that it forms a thin pseudointima and suppresses its hyperplasia.

本発明で好ましい繊維として例示されるPFA繊維、好
ましくはフィラメントは、通常のフッ素樹脂用押出し機
により溶融紡糸されたものを例示できる。このフィラメ
ントは配向結晶性が低いために柔軟性や耐屈曲疲労性に
優れている。かかるPFAフィラメント、および本発明
で好ましい繊維として例示されるポリエステル系繊維、
例えばPET繊維、好ましくはフィラメントの糸径は、
細ければ細いほどよく、こうした細手のものは人工血管
として成形された時に、柔軟性、耐屈曲疲労性あるいは
針の通過性に優れる傾向を有する。
PFA fibers, preferably filaments, which are exemplified as preferred fibers in the present invention, can be exemplified by those melt-spun using a common extruder for fluororesins. This filament has low oriented crystallinity, so it has excellent flexibility and bending fatigue resistance. Such PFA filaments, and polyester fibers exemplified as preferred fibers in the present invention,
For example, the thread diameter of PET fiber, preferably filament, is
The thinner the material, the better, and such thin material tends to have excellent flexibility, bending fatigue resistance, and needle passability when molded into an artificial blood vessel.

単糸の径としては特に制限はないが、好ましくはPFA
フィラメントでは50μφ以下のもの、PETフィラメ
ントでは30μφ以下のものを例示できる。
There is no particular restriction on the diameter of the single yarn, but preferably PFA
Examples of filaments include those with a diameter of 50 μφ or less, and PET filaments with a diameter of 30 μφ or less.

人工血管として、有孔性を有することは、血管の柔軟性
、扱いやすさ、縫合しやすさ、宿主血管とのフィツトの
しやすさ、器質化の早さ等と密に関連しており、有孔性
の制御は重要な問題である。上記の如く例えばPFA、
PETフィラメントを用いる場合等には、必要ならばフ
ィラメントの熱収縮性を利用することにより組織密度を
詰めて、筒状体の有孔状態を制御することができる。
As an artificial blood vessel, having porosity is closely related to the flexibility of the blood vessel, ease of handling, ease of suturing, ease of fitting with host blood vessels, speed of organization, etc. Control of porosity is an important issue. As mentioned above, for example, PFA,
When PET filaments are used, if necessary, the tissue density can be reduced by utilizing the heat shrinkability of the filaments to control the perforated state of the cylindrical body.

勿論、このような熱収縮性は必要に応じ付与すればよく
、本発明では状況に応じ熱収縮性の少ないものから多い
もの、および熱収縮性を有しないものまで広く利用に供
し得る。
Of course, such heat shrinkability may be imparted as necessary, and in the present invention, a wide range of materials can be used, from those with little heat shrinkage to those with high heat shrinkability, and those without heat shrinkability, depending on the situation.

次に、PFAフィラメントの製法の一例について述べる
ことにする。PFAフィラメントは通常フッ素系樹脂の
溶融押出用に多用される急圧縮型のものにより溶融紡糸
するのが望ましいが、このことは特に制限を受けるもの
でない。また紡糸条件は特に制限はなく、適宜でよい。
Next, an example of a method for manufacturing PFA filament will be described. PFA filaments are preferably melt-spun using a rapid compression type that is commonly used for melt extrusion of fluororesins, but this is not particularly limited. Further, the spinning conditions are not particularly limited and may be arbitrary.

熱収縮性を有するフィラメントにする場合には、紡糸時
のノズルのL/Dの値の制御や冷却温度等の制御、即ち
冷却速度を適宜に制御等を行えばよいが、このことは特
に制限を受けるものでない。紡糸後の延伸についても、
その有無を含め自由に条件設定を行えばよいが、具体的
には熱延伸、冷延伸等を例示でき、延伸倍率、延伸温度
等も適宜でよい、しかる後必要ならばアニーリング等を
行なってもよい。大きな熱収縮性を有するフィラメント
を得るためにはアニーリングは省いた方が好ましい。
When making a filament with heat shrinkability, it is sufficient to control the L/D value of the nozzle during spinning, the cooling temperature, etc., that is, the cooling rate, etc., but there are no particular restrictions on this. It is not something that can be received. Regarding stretching after spinning,
You can freely set the conditions, including the presence or absence of such stretching, but specific examples include hot stretching, cold stretching, etc., and the stretching ratio, stretching temperature, etc. may be set as appropriate.Afterwards, if necessary, annealing etc. may be performed. good. In order to obtain filaments with high heat shrinkability, it is preferable to omit annealing.

この際、熱収縮性を有するPFAフィラメントにおける
その熱収縮率については、200℃乾式オーブン中にて
長平方向に10%以上、好ましくは15%以上程度の値
を示すものを好適な例としてあげることができるが特に
制限はなく、こうした熱収縮性を付与するには前記した
紡糸、延伸条件等を適宜に操作すればよい。
At this time, regarding the heat shrinkage rate of heat-shrinkable PFA filaments, a suitable example is one that exhibits a value of 10% or more, preferably 15% or more in the longitudinal direction in a 200°C dry oven. However, there is no particular restriction, and in order to impart such heat shrinkability, the above-described spinning, stretching conditions, etc. may be appropriately manipulated.

このような好適な熱収縮性を有するPFAフィラメント
を作製するための好ましい条件を次に述べることにする
。溶融紡糸条件については、ノズルのL/Dの値を3〜
20程度、好ましくは5〜15程度とし、更に紡糸時の
引取りの際の冷却温度を好ましくはノズル下方5cmで
200〜350℃、20c議で50〜200℃、更に好
ましくはノズル下方5cmで260〜320℃、20c
mで100〜150℃とすることが望ましい、勿論上記
の各値は特に制限を受けるものでなく、好ましい一例に
過ぎない、延伸は熱収縮性と最も大きな係わりを有して
おり、前記した好適な熱収縮性を有するPFAフィラメ
ントを作製するためには冷延伸、熱延伸どちらでもよ(
2延伸倍率、延伸温度等も適宜に定めればよいが、好ま
しくは延伸倍率2倍以上、更に好ましくは2.5〜4.
5倍、また延伸温度は好ましくは200〜300℃の熱
延伸、更に好ましくは20〜50℃の冷延伸をあげるこ
とができる。この際、熱収縮性を有するPFAフィラメ
ントを得るには、延伸後にアニーリングを行うことは好
ましくないが、必要に応じ適宜に実施しても差しつかえ
ない。また、紡糸と延伸は連続工程で行うも、別工程で
行うもどちらでもよいが、一般には連続工程で行う場合
が多い。
Preferred conditions for producing a PFA filament having such suitable heat shrinkability will be described below. Regarding melt spinning conditions, the nozzle L/D value is 3 to 3.
The cooling temperature at the time of take-up during spinning is preferably 200 to 350 °C at 5 cm below the nozzle, 50 to 200 °C at 20 cm, and more preferably 260 °C at 5 cm below the nozzle. ~320℃, 20c
It is desirable to set the temperature to 100 to 150°C in m.Of course, the above values are not particularly limited and are only preferred examples.Stretching has the greatest relationship with heat shrinkability, and the above-mentioned preferred In order to produce a PFA filament with good heat shrinkability, either cold stretching or hot stretching can be used (
2. The stretching ratio, stretching temperature, etc. may be determined as appropriate, but preferably the stretching ratio is 2 times or more, more preferably 2.5 to 4.
5 times, and the stretching temperature is preferably hot stretching at 200 to 300°C, more preferably cold stretching at 20 to 50°C. At this time, in order to obtain a PFA filament having heat shrinkability, it is not preferable to perform annealing after stretching, but it may be performed as appropriate if necessary. Further, spinning and stretching may be carried out in a continuous process or in separate processes, but generally they are often carried out in a continuous process.

以上は、好適な熱収縮性を有するPFAフィラメントに
ついてのフィラメント作製条件の一例であるが、勿論本
発明の人工血管は熱収縮性を有しないか、前記の好適な
値として定めた10%に達しない熱収縮性を有するPF
Aフィラメントを用いてもよいし、かかる10%に達し
ない熱収縮性を有するPFAフィラメントを用い、例え
ば請求項(5)に記載の方法と同様の方法等で熱処理を
行ってもいっこうに差しつかえないことはこれまでの説
明からも明らかである。また前記の好適な値として定め
た10%以上の熱収縮性を有するPFAフィラメントを
用い、熱処理工程を行わないで、人工血管としてもよい
ことも勿論である。
The above is an example of filament production conditions for PFA filament having suitable heat shrinkability, but of course the artificial blood vessel of the present invention either does not have heat shrinkage or reaches 10%, which is set as the above-mentioned preferable value. PF with no heat shrinkage
A filament may be used, or a PFA filament having a heat shrinkage of less than 10% may be used, and heat treatment may be performed, for example, by a method similar to the method described in claim (5). It is clear from the previous explanation that this is not the case. Furthermore, it is of course possible to use a PFA filament having a heat shrinkage of 10% or more, which is determined as the above-mentioned preferable value, and to make an artificial blood vessel without performing a heat treatment process.

次にPETフィラメントについて述べることにする。P
ETフィラメントは市販されているものから2熱収縮性
を付与せしめるべく例えば溶融紡糸−延伸のみで57二
−リングを行わないもの等まで広範に利用に供され、特
に制限はない。熱収縮性を有するPETフィラメントの
熱収縮率についても特に制限はないが、好ましくは20
0℃の乾式オーブン中で長手方法に10%以上、更に好
ましくは15%以上をあげることができる。
Next, let's talk about PET filament. P
ET filaments can be used in a wide variety of ways, from commercially available filaments to those that are subjected to heat shrinkage, for example, those that are only melt-spun and drawn but not double-ringed, and are not particularly limited. There is no particular restriction on the heat shrinkage rate of PET filament having heat shrinkability, but it is preferably 20
10% or more, more preferably 15% or more can be added to the longitudinal direction in a dry oven at 0°C.

人工血管を作製する具体例としては、例えば適宜のPF
Aフィラメントと適宜のPETフィラメントとを適宜に
使用して編もしくは織等を行い筒状体に形成すればよく
、編むには例えば丸編機、横編機、経編機等で編成すれ
ばよいし、織るには適宜の織機等で製織等を行えばよく
、このことは特に制限はない、PFAフィラメントとP
ETフィラメントの比率は自由に設定でき、フィラメン
ト数も特に制限を受けるものでないが、好ましくはPF
Aフイラが36本以下、PETフイラが72本以下にお
さえるのが望ましい。この数があまり多いと人工血管と
しての柔軟性、縫合性等にとって好ましいものでなくな
る場合もある。PFAフィラとPETフィラとは目的の
比率に引き揃えて用いても、撚をかけても、その他自由
であり、また編むに際しては適宜数の反目毎に交互に給
糸してもよいし、織るに際しては経糸、緯糸を適宜本数
毎に交互に織り上げてもよく、これらのことは特に制限
をうけず、適宜に編、織等を行えばよい。この際、PF
Aフィラメントの容量に換算した配合比率は、筒状体全
容量の好ましくは2〜98容量%、更に好ましくは10
〜60容量%であるが、この値は特に制限を受けるもの
でない。
As a specific example of producing an artificial blood vessel, for example, an appropriate PF
A cylindrical body may be formed by knitting or weaving the A filament and a suitable PET filament as appropriate, and knitting may be performed using, for example, a circular knitting machine, flat knitting machine, warp knitting machine, etc. However, the weaving can be carried out using an appropriate loom, etc., and there is no particular restriction on this. PFA filament and PFA filament
The ratio of ET filaments can be set freely, and the number of filaments is not particularly limited, but preferably PF
It is desirable to keep the number of A fillers to 36 or less and the number of PET fillers to 72 or less. If this number is too large, the flexibility and sutability of the artificial blood vessel may not be desirable. PFA filler and PET filler can be used in any desired ratio, such as by aligning them in the desired ratio, twisting them, or otherwise using them. Also, when knitting, the yarns can be alternately fed every appropriate number of stitches, or they can be woven. In this case, warp threads and weft threads may be woven alternately in appropriate numbers, and there are no particular restrictions on these, and knitting, weaving, etc. may be performed as appropriate. At this time, PF
The blending ratio in terms of volume of filament A is preferably 2 to 98% by volume, more preferably 10% by volume of the total volume of the cylindrical body.
~60% by volume, but this value is not particularly limited.

熱収縮性を有するPFAフィラメントと熱収縮性を有す
るPETフィラメントを用いて、例えば前記の如く人工
血管を作製する場合は、筒状体に例えば編み、もしくは
織った後、必要ならば熱処理を行い筒状体の組織を密に
することも可能である。熱処理を行う場合には、その前
に前記筒状体に適宜の芯材を挿入する必要があり、芯材
としては棒状体、パイプ状体等適宜のものを例示できる
。熱処理温度は特に制限はないが、好ましくは160〜
240℃、更に好ましくは180〜220℃程度を例示
でき、こうした熱処理により、組織密度を密にすること
ができる。この際、芯材の径を筒状体の内径より小さく
しておくと、その度合により筒状体の円周方向(織地の
場合ウェール数)の組la密度が定まり、筒状体の軸方
向(編地の場合コース数)の組織密度はフィラメントの
熱収縮性、円周方向の密になった度合、その他の要因に
より定まるのが通常である。勿論、上記熱収縮性を有す
るPFAフィラメントと熱収縮性を有するPETフィラ
メントの代りに、他の熱収縮性を有する異質の繊維を適
宜に用い、同様の方法により組織密度を密にすることも
可能である。
When making an artificial blood vessel as described above using a heat-shrinkable PFA filament and a heat-shrinkable PET filament, for example, they are knitted or woven into a cylindrical body, and then heat-treated if necessary to form a cylindrical body. It is also possible to make the tissue of the body denser. When performing heat treatment, it is necessary to insert an appropriate core material into the cylindrical body before heat treatment, and examples of the core material include a rod-shaped body, a pipe-shaped body, and the like. The heat treatment temperature is not particularly limited, but preferably 160~
An example of heat treatment is 240°C, more preferably about 180 to 220°C, and the tissue density can be increased by such heat treatment. At this time, if the diameter of the core material is made smaller than the inner diameter of the cylindrical body, the la density in the circumferential direction of the cylindrical body (number of wales in the case of woven fabric) is determined by the degree of diameter, and the la density in the axial direction of the cylindrical body is determined by the degree of diameter of the core material. The tissue density (number of courses in the case of knitted fabrics) is usually determined by the heat shrinkability of the filaments, the degree of density in the circumferential direction, and other factors. Of course, in place of the heat-shrinkable PFA filament and heat-shrinkable PET filament, it is also possible to appropriately use other heat-shrinkable fibers and increase the tissue density by the same method. It is.

これまでの説明については、フィラメントを例に行って
きたが、以上に記載のフィラメントは必要に応じ繊維と
置きかえてもよく、かかる繊維としては例えば短繊維、
紡績糸等あらゆる繊維状のものが利用可能で、このこと
は本発明の全てに云い得るものである。
The explanation so far has been made using filaments as an example, but the filaments described above may be replaced with fibers as necessary. Examples of such fibers include short fibers,
Any fibrous material such as spun yarn can be used, and this applies to all of the present invention.

本発明における筒状体は、概略的に云うと異質の繊維を
例えば混編または混繊すること等により形成され特に制
限はなく、具体例としては異質の繊維を用い適宜の編機
等で適宜に編み立て、もしくは適宜のm機等で適宜に織
る等により管状としたものを例示でき、この際筒状体に
形成せられた時の形状としては直管、支管付き管、テー
パーを有する管等をあげることがでるが特に制限はない
Generally speaking, the cylindrical body in the present invention is formed by, for example, knitting or blending different types of fibers, and is not particularly limited. As a specific example, the cylindrical body is formed by using different types of fibers, using an appropriate knitting machine, etc. Examples include those made into a tubular shape by knitting or weaving with an appropriate m machine, etc. In this case, the shape when formed into a cylindrical body includes a straight pipe, a pipe with a branch pipe, and a pipe with a taper. etc., but there is no particular restriction.

本発明に係る人工血管のキンキングを防IFするため、
例えば編、織し、必要ならば熱処理した管状物の外面を
、例えばポリプロピレンあるいはPFAモノフィラメン
ト等の糸条にてスパイラル状に巻き、外部サポートをつ
けることも可能である、また、蛇腹状にいわゆるクリン
プ加工を施すことも容易にできる。必要に応じ、内面の
有孔性を保持したまま、外面の有孔性を礪端に低下させ
ることも可能である。
In order to prevent IF from kinking of the artificial blood vessel according to the present invention,
For example, it is possible to provide an external support by winding the outer surface of a knitted, woven and, if necessary, heat-treated tubular product in a spiral with thread, such as polypropylene or PFA monofilament. It can also be easily processed. If necessary, it is also possible to reduce the porosity of the outer surface to a blunt end while maintaining the porosity of the inner surface.

本発明に係る異質の繊維としては、前記に例示した如く
、各種のポリマーからの単独の繊維を適宜に組合わせて
用いるもののみならず、異質のポリマーをブレンドして
複合紡糸することにより得られる繊維等をも含むもので
、特に制限を受けない、上記異質のポリマーをブレンド
(例えば細胞の付着しやすい材料のポリマーと細胞の付
着しにくい材料のポリマーとのブレンド、複数の適宜の
ポリマーのブレンド等、特に制限はない)して複合紡糸
することにより得られる繊維等は5例えば−本の状態で
もミクロ的に見ると不均質構造を有しており、この考え
方からしてもかかる繊維等が本発明の範囲に含まれるこ
とは当然である。
As exemplified above, the heterogeneous fibers according to the present invention can be obtained not only by appropriately combining individual fibers made of various polymers, but also by blending different polymers and performing composite spinning. A blend of the above-mentioned dissimilar polymers, including fibers, etc., and is not particularly limited (for example, a blend of a polymer of a material to which cells easily adhere and a polymer of a material to which cells do not easily adhere, a blend of multiple appropriate polymers) Fibers obtained by composite spinning (such as, but not limited to) have a non-uniform structure when viewed microscopically even in the form of fibers, for example, and from this perspective, such fibers, etc. Naturally, it is included within the scope of the present invention.

以上は本発明の好ましい態様等を例示的に説明したもの
で、本発明はこれらの記載に制限を受けるもので゛なく
、その請求の範囲に記載された範囲内であらゆる態様を
含むものである。
The above is an illustrative explanation of preferred embodiments of the present invention, and the present invention is not limited to these descriptions, but includes all embodiments within the scope of the claims.

〈実施例1〉 PFA樹脂(Ml値は7〜18が望ましい)をハステロ
イ製押出機を用い溶融紡糸する。その際ノズルのL/D
をlOとしくD・0.5)、押し出された樹脂を徐冷と
する為に、加温空気中にて紡糸した。その時の温度はノ
ズルから5c+a下方にて310℃、20cm下方にて
120℃とした0次いで室温(約25℃)近くに自然冷
却されたフィラメントを、引き続き冷間(室温、約25
℃)にて3倍の延伸操作を行い直接ワインジーへと巻き
取った。
<Example 1> PFA resin (desirably Ml value is 7 to 18) is melt-spun using a Hastelloy extruder. At that time, the nozzle L/D
The extruded resin was spun in heated air in order to slowly cool the extruded resin. The temperature at that time was 310°C below 5c+a from the nozzle, and 120°C 20cm below the nozzle.The filament was then naturally cooled to near room temperature (approximately 25°C).
The film was stretched 3 times at 30°C (°C) and directly wound onto a wine sieve.

通常、延伸後行われるアニーリングは除いた。このよう
にして得られたフィラメントは200℃の乾式オーブン
中で15%の熱収縮率があった。
Annealing, which is usually done after stretching, was excluded. The filament thus obtained had a heat shrinkage of 15% in a dry oven at 200°C.

こうして得られたPFAフィラメント(21μφ×24
フイラ)と、200℃の乾式オーブン中で19%の熱収
縮率を有するPETフィラメント(loμΦX60フィ
ラ)とを、釜径12mmΦ、針本数24本の丸liA機
を用い、筒状に編立てを行った。この際、これら2種類
のフィラメントを同時に引き揃えて給糸し、生地に対し
てかけるテンションは約30g程度とした。こうして得
られた筒状体の経方向の度目は30〜33目/1nch
、内径は4.8mmΦであった。さらにこの筒状体に4
.2v+eΦのステンレス製の棒状治具を挿入し、22
0℃乾式オーブンにて熱収縮させ編密度を詰めた。その
時の経方向の度目は50〜55目/1nchであり、編
密度がかなり密となった。
The PFA filament thus obtained (21μφ×24
Filler) and PET filament (loμΦX60 filler) having a heat shrinkage rate of 19% in a dry oven at 200°C were knitted into a cylindrical shape using a round liA machine with a pot diameter of 12 mmΦ and 24 needles. Ta. At this time, these two types of filaments were simultaneously drawn and fed, and the tension applied to the fabric was approximately 30 g. The diameter of the thus obtained cylindrical body in the longitudinal direction is 30 to 33 stitches/1 nch.
, the inner diameter was 4.8 mmΦ. Furthermore, this cylindrical body has 4
.. Insert a stainless steel rod-shaped jig of 2v+eΦ,
The fabric was heat-shrinked in a 0°C dry oven to reduce the knitting density. The stitches in the warp direction at that time were 50 to 55 stitches/1 nch, and the knitting density was quite dense.

こうして得られた筒状体からなる人工血管は、充分な柔
軟性、伸縮性を持ち、また長手方向に裂けるという問題
もなかった。
The artificial blood vessel made of a cylindrical body thus obtained had sufficient flexibility and elasticity, and there was no problem of tearing in the longitudinal direction.

〈実施例2〉 実施例1で用いたと同様のPFAフィラメント(21μ
Φ×24フイラのマルチ)と、PETフィラメント(1
0μΦ×60フイラのマルチ)とを用い、筒状に製織し
た。この際、経糸の総本数を300本(PFAマルチフ
ィラ240本、PETマルチフィラ60本とし、前者4
本、後者1本の比率で交互に配置した)とし、緯糸には
PETマルチフィラを用い、緯密度は76.81,86
本/1nchの三通りのものとし、内径はそれぞれ4−
醜Φであった。なお、こうして得られた筒状体は熱処理
による熱収縮工程を行わなかった。
<Example 2> PFA filament similar to that used in Example 1 (21μ
Φ×24 filler multi) and PET filament (1
It was woven into a cylindrical shape using a mulch of 0μΦ×60 fillers. At this time, the total number of warp threads was 300 (240 PFA multifila, 60 PET multifila, the former 4
PET multifila was used for the weft, and the weft density was 76.81, 86.
Three types of wire/1nch, each with an inner diameter of 4-
It was ugly. Note that the cylindrical body thus obtained was not subjected to a heat shrinking process by heat treatment.

これらの三通りの筒状体の漏水テストを120■■Hg
の水圧下で1分間行ったところ、その結果は表1の通り
であった。
Water leakage test of these three types of cylindrical bodies was conducted at 120■■Hg.
The results are shown in Table 1.

このように織密度を変えることにより、漏水量を任意に
調整でき、このことは人工血管として用いるに際し、所
望の有孔性のものを選択できることを示している。
By changing the weaving density in this manner, the amount of water leakage can be adjusted as desired, and this indicates that a desired porosity can be selected when used as an artificial blood vessel.

表  1 こうして得られた筒状体を人工血管として用いたところ
、実施例1と同様充分な柔軟性、伸縮性を持ち、また長
手方向に裂けるという問題もなかった参 〈発明の効果〉 本発明は以上の通りであり、本発明に係る異質の繊維を
用いて形成してなる人工血管は、縫合時の針穴による裂
開、キンキング等の諸問題を回避できる等の特性を有す
る上に、異質の繊維として、例えば細胞の付着しやすい
繊維と細胞の付着しにくい繊維とを用いることにより、
従来のものに比して抗血栓性や偽内膜の過形成による内
腔閉塞の防W性等で掻めて有利である。特に異質の繊維
として例えばPFAフィラメントとPET繊維とを用い
たものはこのような傾向が纒めて顕著である。
Table 1 When the thus obtained cylindrical body was used as an artificial blood vessel, it had sufficient flexibility and elasticity as in Example 1, and there was no problem of tearing in the longitudinal direction. (Effects of the Invention) The present invention As described above, the artificial blood vessel formed using the foreign fiber according to the present invention has characteristics such as being able to avoid various problems such as tearing and kinking caused by needle holes during suturing, and For example, by using fibers to which cells easily adhere and fibers to which cells do not adhere as different fibers,
Compared to conventional products, it is advantageous in that it has antithrombotic properties and prevents lumen occlusion due to pseudointimal hyperplasia. This tendency is particularly noticeable when using different types of fibers, such as PFA filaments and PET fibers.

また、本発明の人工血管は、生体由来材料や細胞を組合
わせたハイブリット型の人工血管を含め、多方面での用
途が期待される好ましいものである。
Furthermore, the artificial blood vessel of the present invention is a desirable product that is expected to be used in a wide variety of fields, including a hybrid type artificial blood vessel that combines biologically derived materials and cells.

更に、本発明に係る特定の製造法により得られた人工血
管は、組成、有孔状態を任意に制御することが容易に可
能であり、前記したハイブリット型人工血管を含め、更
に広範な用途が期待されている。
Furthermore, the composition and pore state of the artificial blood vessel obtained by the specific manufacturing method according to the present invention can be easily controlled as desired, and can be used in a wider range of applications, including the above-mentioned hybrid type artificial blood vessel. It is expected.

Claims (1)

【特許請求の範囲】 (1)、 異質の繊維を用いて編まれ、もしくは織られ
、筒状体に形成されたことを特徴とす る人工血管。 (2)、 異質の繊維が、細胞の付着しやすい繊維と細
胞の付着しにくい繊維である請求項 (1)に記載の人工血管。 (3)、 溶融紡糸されたテトラフルオロエチレン−パ
ーフルオロアルキルビニルエーテル 共重合体フィラメントとポリエステル系繊 維とにより筒状体に形成されたことを特徴 とする人工血管。 (4)、 テトラフルオロエチレン−パーフルオロアル
キルビニルエーテル共重合体フィラメ ントの混合比率が2〜98容量%である請 求項(3)に記載の人工血管。 (5)、 溶融紡糸され、200℃の乾式オーブン中で
長手方向に10%以上の熱収縮性を有 するテトラフルオロエチレン−パーフルオ ロアルキルビニルエーテル共重合体フィラ メントと、熱収縮性を有するポリエステル 系繊維とにより編まれ、もしくは織られた 筒状体に芯材を挿入し、しかる後熱処理を 行うことにより、前記筒状体の組織密度を 密にしてなる人工血管の製造法。 (6)、 テトラフルオロエチレン−パーフルオロアル
キルビニルエーテル共重合体フィラメ ントの混合比率が2〜98容量%である請 求項(5)に記載の人工血管の製造法。
[Scope of Claims] (1) An artificial blood vessel characterized by being knitted or woven using foreign fibers and formed into a cylindrical body. (2) The artificial blood vessel according to claim (1), wherein the foreign fibers are fibers to which cells easily adhere and fibers to which cells do not adhere easily. (3) An artificial blood vessel characterized by being formed into a cylindrical body from melt-spun tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer filaments and polyester fibers. (4) The artificial blood vessel according to claim (3), wherein the mixing ratio of the tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer filaments is 2 to 98% by volume. (5) A tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer filament that is melt spun and has a heat shrinkability of 10% or more in the longitudinal direction in a dry oven at 200°C, and a polyester fiber that has heat shrinkability. A method for manufacturing an artificial blood vessel, in which the tissue density of the cylindrical body is made dense by inserting a core material into a cylindrical body that is knitted or woven by a method, and then heat-treating the cylindrical body. (6) The method for producing an artificial blood vessel according to claim (5), wherein the mixing ratio of the tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer filaments is 2 to 98% by volume.
JP1064153A 1989-03-15 1989-03-15 Artificial blood tube and manufacture thereof Pending JPH02241448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1064153A JPH02241448A (en) 1989-03-15 1989-03-15 Artificial blood tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1064153A JPH02241448A (en) 1989-03-15 1989-03-15 Artificial blood tube and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02241448A true JPH02241448A (en) 1990-09-26

Family

ID=13249846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1064153A Pending JPH02241448A (en) 1989-03-15 1989-03-15 Artificial blood tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02241448A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571038A (en) * 1991-09-04 1993-03-23 Atsusato Kitamura Production of seamless tube product
JP2008161346A (en) * 2006-12-27 2008-07-17 Tokai Medical Products:Kk Medical instrument and its manufacturing method
JP2010240200A (en) * 2009-04-07 2010-10-28 Gunze Ltd Tubular medical material for living tissue regeneration
JP2012179603A (en) * 2012-05-25 2012-09-20 Mitsubishi Rayon Co Ltd Hollow porous membrane and method of manufacturing the same
JP2012187585A (en) * 2012-05-25 2012-10-04 Mitsubishi Rayon Co Ltd Method for producing hollow porous membrane
JP2015505699A (en) * 2011-12-14 2015-02-26 ディーエスエム アイピー アセッツ ビー.ブイ. Method for medical parts and use thereof
CN113330151A (en) * 2019-01-30 2021-08-31 东丽株式会社 Medical base material for cardiovascular indwelling device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571038A (en) * 1991-09-04 1993-03-23 Atsusato Kitamura Production of seamless tube product
JP2008161346A (en) * 2006-12-27 2008-07-17 Tokai Medical Products:Kk Medical instrument and its manufacturing method
JP4582549B2 (en) * 2006-12-27 2010-11-17 株式会社東海メディカルプロダクツ Heart shape correction net and method for manufacturing the same
JP2010240200A (en) * 2009-04-07 2010-10-28 Gunze Ltd Tubular medical material for living tissue regeneration
JP2015505699A (en) * 2011-12-14 2015-02-26 ディーエスエム アイピー アセッツ ビー.ブイ. Method for medical parts and use thereof
JP2012179603A (en) * 2012-05-25 2012-09-20 Mitsubishi Rayon Co Ltd Hollow porous membrane and method of manufacturing the same
JP2012187585A (en) * 2012-05-25 2012-10-04 Mitsubishi Rayon Co Ltd Method for producing hollow porous membrane
CN113330151A (en) * 2019-01-30 2021-08-31 东丽株式会社 Medical base material for cardiovascular indwelling device

Similar Documents

Publication Publication Date Title
FI88460C (en) Aodertransplantat
CA2321907C (en) Braided suture
JP3503069B2 (en) Sterile heterogeneous braid
US4923470A (en) Prosthetic tubular article made with four chemically distinct fibers
US4997440A (en) Vascular graft with absorbable and nonabsorbable components
US3108357A (en) Compound absorbable prosthetic implants, fabrics and yarns therefor
Gupta Manufacture, types and properties of biotextiles for medical applications
US8317826B2 (en) Absorbable bulky multi-filament draw textured yarn, manufacturing method thereof and medical use using them
EP3020368B1 (en) Biological lumen graft substrate, production method for biological lumen graft substrate, and biological lumen graft made using biological lumen graft substrate
JP2001514537A (en) Cloth prosthesis and method of manufacturing the same
JPH02241448A (en) Artificial blood tube and manufacture thereof
JPH05161708A (en) Artificial blood vessel
EP0587461B1 (en) Artificial blood vessel
JPS632620B2 (en)
JP2002180342A (en) Moisture-absorbing polyester mixed yarn
CN118001462A (en) Artificial blood vessel woven based on high molecular yarns and preparation method thereof
JPH02220643A (en) Artificial blood vessel and preparation thereof
CN114470323B (en) Blood vessel suture, artificial branch blood vessel and preparation method thereof
CN115287799B (en) Carboxylated chitosan hollow yarn and preparation method thereof
CN118065029A (en) Polymer yarn woven ureteral stent with scale inhibition performance and preparation method thereof
CN117758415A (en) Gradient degradation composite fiber and preparation method and application thereof
Gupta Biotextiles as medical implants: 1. Manufacture, types and properties of biotextiles for medical applications
JP3975531B2 (en) Stretched polytetrafluoroethylene molded body and method for producing the same
CN116920174A (en) Polyurethane artificial blood vessel with fiber-based bionic structure and preparation method thereof
CN118058877A (en) Polymer woven heart valve and preparation method thereof