JPH02241039A - Growth method of epitaxial crystal - Google Patents

Growth method of epitaxial crystal

Info

Publication number
JPH02241039A
JPH02241039A JP6478689A JP6478689A JPH02241039A JP H02241039 A JPH02241039 A JP H02241039A JP 6478689 A JP6478689 A JP 6478689A JP 6478689 A JP6478689 A JP 6478689A JP H02241039 A JPH02241039 A JP H02241039A
Authority
JP
Japan
Prior art keywords
crystal
substrate
layer
epitaxial
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6478689A
Other languages
Japanese (ja)
Inventor
Kazuo Ozaki
尾崎 一男
Tetsuo Saito
哲男 齊藤
Hiroshi Takigawa
宏 瀧川
Toru Maekawa
前川 通
Kosaku Yamamoto
山本 功作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6478689A priority Critical patent/JPH02241039A/en
Publication of JPH02241039A publication Critical patent/JPH02241039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the generation of mutual diffusion between atom constituting a substrate and atom constituting an epitaxial layer by a method wherein, after a crystal layer formed of atom constituting the epitaxial layer of compound semiconductor crystal to be formed is previously formed on the substrate, the epitaxial layer of compound semiconductor crystal is grown on said crystal layer. CONSTITUTION:On a substrate 1, crystal layers 12, 13 are formed of atom constituting an epitaxial layer 14 of compound semiconductor crystal to be formed. Said layers 12, 13 are previously formed on the substrate 11 in the manner in which, as the result of heating at the time of epitaxial growth of the substrate 11, said layers 12, 13 mutually diffuse and turn to the same composition. Then the epitaxial layer 14 of the above-mentioned compound semiconductor crystal is grown on the crystal layers 12, 13. For example, on a sapphire substrate 11, the crystal layer 12 of CdTe is formed to be about 100 and several Angstrom thick by MOCVD method, and thereon the crystal layer 13 of HgTe is formed to be about 400Angstrom thick by MOCVD method. On the crystal layers 12, 13, the epitaxial layer 14 of Hg1-xCdxTe is grown by liquid epitaxial growth.

Description

【発明の詳細な説明】 〔概 要〕 化合物半導体結晶のエピタキシャル成長方法に関し、 基板を構成する原子と該基板上に形成されるエピタキシ
ャル結晶を構成する原子とが相互拡散しないようなエピ
タキシャル結晶の成長方法の提供を目的とし、 基板上に形成予定の化合物半導体結晶のエピタキシャル
層を構成する原子で形成された結晶層を、前記基板のエ
ピタキシャル成長時の加熱で前記結晶層が相互拡散して
その上に形成予定のエピタキシャル層と同一組成となる
ようにして、前記基板上に予め形成した後、該結晶層上
に前記化合物半導体結晶のエピタキシャル層を成長する
ことで構成する。
[Detailed Description of the Invention] [Summary] A method for growing an epitaxial crystal in which atoms constituting a substrate and atoms constituting an epitaxial crystal formed on the substrate do not interdiffuse with each other, regarding a method for epitaxial growth of a compound semiconductor crystal. A crystal layer formed of atoms constituting an epitaxial layer of a compound semiconductor crystal to be formed on a substrate is formed on the crystal layer by interdiffusing the crystal layer by heating during epitaxial growth of the substrate. It is constructed by forming the epitaxial layer of the compound semiconductor crystal in advance on the substrate so as to have the same composition as the intended epitaxial layer, and then growing the epitaxial layer of the compound semiconductor crystal on the crystal layer.

〔産業上の利用分野〕[Industrial application field]

本発明は化合物半導体結晶の液相エピタキシャル成長方
法に関する。
The present invention relates to a method for liquid phase epitaxial growth of compound semiconductor crystals.

赤外線検知素子形成材料として従来よりエネルギーバン
ドギャップの狭い、水銀・カドミウム・テルル(Hg+
−ヨCdXTe)より成る化合物半導体結晶が用いられ
ている。
Mercury, cadmium, tellurium (Hg+
A compound semiconductor crystal consisting of CdXTe) is used.

このような化合物半導体結晶を検知素子製造に都合が良
いように大面積でかつ薄層の状態で得るようにするため
に、CdTeのような化合物半導体基板上に液相エピタ
キシャル成長方法等を用いて、Hgt−x Cd、lT
eのエピタキシャル結晶が形成されている。
In order to obtain such a compound semiconductor crystal in a large area and in a thin layer state convenient for manufacturing a sensing element, a liquid phase epitaxial growth method or the like is used on a compound semiconductor substrate such as CdTe. Hgt-x Cd, lT
An epitaxial crystal of e is formed.

〔従来の技術〕[Conventional technology]

このようなCdTeの基板上にHg、XCdx Teの
エピタキシャル結晶を液相エピタキシャル成長方法で形
成する場合、第2図に示すようにCdTeの基板2と該
基板2に対向する位置に水銀・カドミウム・テルルをそ
れぞれ所定量混合して合金化したHgとCdとTeとの
メルト3を設置した状態で加熱炉(図示せず)に挿入し
、加熱炉の温度を上昇させて上記メルトを溶融させた後
、基板2を溶融メルト3に接触させた後、加熱炉の温度
を降下させることで溶融メルト3の温度を降下させ、基
板上にHgI−xCd、 Teのエピタキシャル結晶を
形成している。
When forming an epitaxial crystal of Hg, XCdx Te on such a CdTe substrate by a liquid phase epitaxial growth method, as shown in FIG. A melt 3 of Hg, Cd, and Te alloyed by mixing predetermined amounts of each is inserted into a heating furnace (not shown), and the temperature of the heating furnace is raised to melt the above melt. After the substrate 2 is brought into contact with the molten melt 3, the temperature of the molten melt 3 is lowered by lowering the temperature of the heating furnace, and epitaxial crystals of HgI-xCd and Te are formed on the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上記エピタキシャル成長の過程でCdTeの基
板が加熱されるため、該基板を構成するCd原子と、該
基板上に形成されたHgI−x Cdx Teの水銀(
Hg)原子とが相互拡散して第3図に示すように基板と
エピタキシャル層との境界面でHgとCdの相互拡散層
が形成される不都合が生じる。
By the way, since the CdTe substrate is heated in the above epitaxial growth process, the Cd atoms constituting the substrate and the mercury (of HgI-x Cdx Te formed on the substrate)
A problem arises in that Hg and Cd atoms are interdiffused and a mutually diffused layer of Hg and Cd is formed at the interface between the substrate and the epitaxial layer as shown in FIG.

この相互拡散層内では、Cd原子やHg原子の濃度が所
定の濃度勾配を有して拡散されており、このような相互
拡散層が有ると、その相互拡散層は所望のHgI−1C
d、 Teの組成と成っておらず、検知すべき所定の波
長に対して赤外線検知素子の検知感度が低下する等問題
が多い。
Within this interdiffusion layer, the concentration of Cd atoms and Hg atoms is diffused with a predetermined concentration gradient, and if such an interdiffusion layer exists, the interdiffusion layer will contain the desired HgI-1C
d, Te, and there are many problems such as a decrease in the detection sensitivity of the infrared detection element for a predetermined wavelength to be detected.

上記した赤外線検知素子を形成するエピタキシャル結晶
は、基板とエピタキシャル層の境界面で水銀の原子の濃
度、或いはCdの原子の濃度が急峻に変化し、かつエピ
タキシャル層が所定の組成で所定の厚さに形成されてい
ることが望ましい。
In the epitaxial crystal forming the above-mentioned infrared sensing element, the concentration of mercury atoms or the concentration of Cd atoms changes sharply at the interface between the substrate and the epitaxial layer, and the epitaxial layer has a predetermined composition and a predetermined thickness. It is desirable that the

つまり上記第3図で、所望のHgI−x Cdx Te
の組成と成らない相互拡散層が無い状態が望ましい。
In other words, in FIG. 3 above, the desired HgI-x Cdx Te
It is desirable that there is no interdiffusion layer that does not have a composition of .

本発明は上記した問題点を解決するもので、基板とエピ
タキシャル層との境界で、基板を構成する原子とエピタ
キシャル層を構成する原子の間で相互拡散が発生しない
ようにしたエピタキシャル成長方法の提供を目的とする
The present invention solves the above-mentioned problems, and provides an epitaxial growth method that prevents mutual diffusion between atoms constituting the substrate and atoms constituting the epitaxial layer at the boundary between the substrate and the epitaxial layer. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明のエピタキシャル成長方法は
、基板上に形成予定の化合物半導体結晶のエピタキシャ
ル層を構成する原子で形成された結晶層を、前記基板の
エピタキシャル成長時の加熱で前記結晶層が相互拡散し
てその上に形成予定のエピタキシャル層と同一組成とな
るようにして、前記基板上に予め形成した後、該結晶層
上に前記化合物半導体結晶のエピタキシャル層を成長す
ることである。
In the epitaxial growth method of the present invention that achieves the above object, a crystal layer formed of atoms constituting an epitaxial layer of a compound semiconductor crystal to be formed on a substrate is interdiffused by heating during epitaxial growth of the substrate. The compound semiconductor crystal is formed in advance on the substrate so as to have the same composition as the epitaxial layer to be formed thereon, and then the epitaxial layer of the compound semiconductor crystal is grown on the crystal layer.

層と、該エピタキシャル層に対して構成原子の異なるア
ルミナ(Al2O2)を主成分とするサファイアの基板
を用いることで、従来のように基板からエピタキシャル
層に該基板の構成原子が拡散する不都合を防止する。
By using a sapphire substrate whose main component is alumina (Al2O2), which has different constituent atoms for the epitaxial layer and the epitaxial layer, the conventional problem of diffusion of the constituent atoms of the substrate from the substrate to the epitaxial layer is prevented. do.

更に該基板上に形成予定の混晶のエピタキシャル層を構
成する複数の組成の異なる結晶層、つまりCdTeとH
gTeの結晶層を”g+−x Cdx Teのエピタキ
シャル層の成長に先立って予め積層形成する。するとこ
のCdTeとHgTeの結晶層どうしで相互拡散が生じ
て、この結晶層どうしが相互拡散するとHgI、lCd
、 Teのエピタキシャル成長層と同様な組成に成るた
めに、基板とエピタキシャル層との境界面で組成の変動
が急激になったエピタキシャル層が形成される。
Furthermore, a plurality of crystal layers having different compositions, that is, CdTe and H, constituting the mixed crystal epitaxial layer to be formed on the substrate
A crystal layer of gTe is formed in advance before the growth of an epitaxial layer of g+-x Cdx Te. Then, mutual diffusion occurs between the crystal layers of CdTe and HgTe, and when these crystal layers interdifuse, HgI, lCd
Since the composition is similar to that of the epitaxially grown layer of Te, an epitaxial layer is formed in which the composition changes rapidly at the interface between the substrate and the epitaxial layer.

〔作 用〕[For production]

本発明の方法は、エピタキシャル成長用基板上に形成す
べき混晶の化合物半導体結晶、例えばHgTeとCdT
eの混晶のHg1−、 Cd、 Teのエピタキシャル
〔実 施 例〕 以下、図面を用いて本発明の一実施例につき詳細に説明
する。
The method of the present invention applies to a mixed crystal compound semiconductor crystal to be formed on a substrate for epitaxial growth, such as HgTe and CdT.
Epitaxial of Hg1-, Cd, and Te mixed crystals of e [Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に示すようにサファイアのような基板11上にC
dTeの結晶層12をM OCV D (Metal 
Organic Chemical Vapor De
position)法によって約100数人の厚さに形
成する。
As shown in FIG.
The crystal layer 12 of dTe is MOCVD (Metal
Organic Chemical Vapor De
It is formed to a thickness of about 100 layers using the position method.

このようにしてサファイア基板の上にCdTeの結晶層
を形成する理由は、サファイア基板上に直接Hg1−X
 ca、 Te (x ””0.2)のエピタキシャル
層を形成すると、形成されるHg+−x Cdx Te
の結晶性が悪いので予めサファイア基板ll上にCdT
eの結晶層i12を形成した後、この上にCdTeの結
晶N12からエピタキシャル層にCd原子が拡散するを
防止するHgTeの結晶層13を前記したMOCVD法
により約400人の厚さに形成する。この)IgTeと
CdTeの混晶を形成する場合、11@TeとCdTe
の各々の成分の組成比を8:2とすると、HgTeとC
dTeの混晶はHg+−x Cdx Te(x=0.2
)となる。
The reason for forming the CdTe crystal layer on the sapphire substrate in this way is that the Hg1-X crystal layer is formed directly on the sapphire substrate.
When an epitaxial layer of ca, Te (x""0.2) is formed, Hg+-x Cdx Te
Since the crystallinity of CdT is poor, CdT is coated on the sapphire substrate
After forming the crystal layer i12 of e, a HgTe crystal layer 13 for preventing diffusion of Cd atoms from the CdTe crystal N12 into the epitaxial layer is formed to a thickness of about 400 nm by the MOCVD method described above. When forming a mixed crystal of IgTe and CdTe, 11@Te and CdTe
If the composition ratio of each component is 8:2, HgTe and C
The mixed crystal of dTe is Hg+-x Cdx Te (x=0.2
).

次いでこのようにCdTeの結晶層12とHgTeの結
晶層13とを積層形成した基板11を前記した第2図に
示したエピタキシャル成長用治具1に設置してエピタキ
シャル成長する。
Next, the substrate 11 on which the CdTe crystal layer 12 and the HgTe crystal layer 13 are laminated is placed in the epitaxial growth jig 1 shown in FIG. 2, and epitaxial growth is performed.

すると液相エピタキシャル成長の際の基板の加熱によっ
てCdTe結晶層12のCd原子とHgTe13のHg
原子の相互拡散が仮に生じたとしても、この各々の化合
物半導体結晶の相互拡散によって形成されるCdTeと
HgTeの混晶は基板上にエピタキシャル成長すべきH
g+−x CdXTe(x=0.2)の結晶となるため
、基板とエピタキシャル層の境界組成が急激に変化した
エピタキシャル層が得・られる。
Then, by heating the substrate during liquid phase epitaxial growth, Cd atoms in the CdTe crystal layer 12 and Hg in the HgTe13
Even if interdiffusion of atoms occurs, the mixed crystal of CdTe and HgTe formed by the interdiffusion of these respective compound semiconductor crystals will contain the H to be epitaxially grown on the substrate.
Since the crystal is g+-x CdXTe (x=0.2), an epitaxial layer in which the boundary composition between the substrate and the epitaxial layer changes rapidly can be obtained.

また基板はアルミナを主成分としたサファイアの基板を
用いているため、その上に形成されるl1g+−x C
dXTeの結晶とは組成が異なっており、またアルミナ
は液相エピタキシャル成長の際の基板の加熱によっても
容易に分解しないため、従来の方法に於けるように基板
からエピタキシャル層へ基板を構成する原子の拡散する
のが防止され、基板とエピタキシャル層の組成が急激に
エピタキシャル層成長境界面で変化したエピタキシャル
層が得られる。
In addition, since the substrate is a sapphire substrate whose main component is alumina, the l1g+-x C
The composition is different from that of dXTe crystals, and since alumina does not easily decompose even when the substrate is heated during liquid phase epitaxial growth, the atoms constituting the substrate cannot be transferred from the substrate to the epitaxial layer in the conventional method. An epitaxial layer is obtained in which diffusion is prevented and the composition of the substrate and epitaxial layer changes abruptly at the epitaxial layer growth interface.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、基板を
構成する原子が、該基板上に形成されるエピタキシャル
層に拡散することが無(なるので、基板とエピタキシャ
ル層との境界で急激な組成の変動を有するエピタキシャ
ル層が形成される効果がある。
As is clear from the above explanation, according to the present invention, the atoms constituting the substrate are prevented from diffusing into the epitaxial layer formed on the substrate, so that there is no sudden diffusion of the atoms forming the substrate into the epitaxial layer formed on the substrate. The effect is that an epitaxial layer with compositional variations is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いるエピタキシャル成長用基
板の断面図、 第2図は液相エピタキシャル成長方法の説明図、第3図
は従来の方法に於ける不都合な状態の図である。 図において、 11はサファイア基板、12はCdTe結晶層、13は
ngTe結晶層、14はHg+−x Cd、ITeエピ
タキシャル層、15は相互拡散層を示す。 第1図 メL相エピダキシψL4肴力迭っ説明国第2図
FIG. 1 is a sectional view of a substrate for epitaxial growth used in the method of the present invention, FIG. 2 is an explanatory diagram of the liquid phase epitaxial growth method, and FIG. 3 is a diagram of an inconvenient state in the conventional method. In the figure, 11 is a sapphire substrate, 12 is a CdTe crystal layer, 13 is an ngTe crystal layer, 14 is a Hg+-x Cd, ITe epitaxial layer, and 15 is an interdiffusion layer. Figure 1: Explanation of L-phase epidaxy ψL4 power consumption Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板(11)上に形成予定の化合物半導体結晶のエピタ
キシャル層(14)を構成する原子で形成された結晶層
(12、13)を、前記基板のエピタキシャル成長時の
加熱で前記結晶層(12、13)が相互拡散してその上
に形成予定のエピタキシャル層と同一組成となるように
して、前記基板(11)上に予め形成した後、該結晶層
(12、13)上に前記化合物半導体結晶のエピタキシ
ャル層(14)を成長することを特徴とするエピタキシ
ャル結晶の成長方法。
The crystal layers (12, 13) formed of atoms constituting the epitaxial layer (14) of a compound semiconductor crystal to be formed on the substrate (11) are heated during the epitaxial growth of the substrate. ) is formed in advance on the substrate (11) so that it interdiffuses to have the same composition as the epitaxial layer to be formed thereon, and then the compound semiconductor crystal is deposited on the crystal layer (12, 13). A method for growing an epitaxial crystal, the method comprising growing an epitaxial layer (14).
JP6478689A 1989-03-15 1989-03-15 Growth method of epitaxial crystal Pending JPH02241039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6478689A JPH02241039A (en) 1989-03-15 1989-03-15 Growth method of epitaxial crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6478689A JPH02241039A (en) 1989-03-15 1989-03-15 Growth method of epitaxial crystal

Publications (1)

Publication Number Publication Date
JPH02241039A true JPH02241039A (en) 1990-09-25

Family

ID=13268261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6478689A Pending JPH02241039A (en) 1989-03-15 1989-03-15 Growth method of epitaxial crystal

Country Status (1)

Country Link
JP (1) JPH02241039A (en)

Similar Documents

Publication Publication Date Title
US8021914B2 (en) Manufacture of cadmium mercury telluride
Kavanagh et al. The interdiffusion of Si, P, and In at polysilicon/GaAs interfaces
JPH02241039A (en) Growth method of epitaxial crystal
Loo et al. Epitaxial Ge-on-Nothing and Epitaxial Ge on Si-on-Nothing as Virtual substrates for 3D device stacking Technologies
JPS62171999A (en) Epitaxy of iii-v compound semiconductor
JP2746497B2 (en) Method for manufacturing semiconductor device
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
JPH02263432A (en) Manufacture of epitaxial crystal
JP3295481B2 (en) Method of forming aluminum dopant distribution
JPH02263433A (en) Liquid phase epitaxial growth
JPS63302524A (en) Manufacture of semiconductor device
JPH0242719A (en) Manufacture of semiconductor device
JP2575525B2 (en) Method for producing superconducting-dielectric crystal epitaxial film
JPS59124711A (en) Manufacture of semiconductor device
JPH03265595A (en) Inp epitaxial wafer
JPS63126245A (en) Semiconductor device
JPS61276316A (en) Manufacture of semiconductor device
Brown Structural defects in II-VI epitaxial Layers
Padam et al. Solution grown CdTe thin films
JPH0582458A (en) Manufacture of semiconductor crystal
JPS5939026A (en) Manufacture of semiconductor device
JPH0210742A (en) Thin film semiconductor element and its manufacture
JPH04162708A (en) Semiconductor substrate and manufacture thereof
JPS63318766A (en) Manufacture of semiconductor device
JPH04106928A (en) Formation of oxide film on the surface of compound semiconductor