JPH02239108A - Production of silicon nitride - Google Patents

Production of silicon nitride

Info

Publication number
JPH02239108A
JPH02239108A JP6263889A JP6263889A JPH02239108A JP H02239108 A JPH02239108 A JP H02239108A JP 6263889 A JP6263889 A JP 6263889A JP 6263889 A JP6263889 A JP 6263889A JP H02239108 A JPH02239108 A JP H02239108A
Authority
JP
Japan
Prior art keywords
gaseous
silicon nitride
type
gas
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6263889A
Other languages
Japanese (ja)
Inventor
Yasuaki Nozawa
野沢 保明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6263889A priority Critical patent/JPH02239108A/en
Publication of JPH02239108A publication Critical patent/JPH02239108A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Abstract

PURPOSE:To produce Si3N4 having a high content of beta type by wet-crushing metallic Si with a ball mill and nitriding the obtained powder using a gaseous reactant contg. N. CONSTITUTION:Metallic Si is wet-crushed with a ball mill. Water, hexane, etc., are preferably used as the medium, and steel balls, Si3N4 balls, etc., are appropriately used as the crushing media. The grain diameter of the treated Si is preferably controlled to about 1-2.5mum, the BET specific surface to about 5-20m<2>/g, the Fe content to about 0.05-0.2wt.% and the O content to about 3-6wt.%. The Si powder is nitrided in a reaction furnace using a gaseous reactant contg. N. Gaseous N2, a mixture of N2 and gaseous H2, gaseous NH3 and/or gaseous Ar, etc., can be used as the gaseous reactant. The nitridation temp. is preferably controlled to about 1200-1450 deg.C. By this method, beta-Si3N4 contg. about 20-90% or especially about 30-80% beta type is obtained.

Description

【発明の詳細な説明】 L叉上夏五凡分災 本発明はβ型の比率の高い(例えばβ−Si,N4が2
o〜90重量%)窒化ケイ素の製造方法に関する。
[Detailed description of the invention] The present invention has a high proportion of β type (for example, β-Si, N4 is 2
o to 90% by weight) relates to a method for producing silicon nitride.

の   び  が  しよ゛と る 近年、窒化ケイ素はその優れた耐熱性、高強度,耐食性
等の特性が注目されており、焼結体として種々の製品に
応用されつつある。この窒化ケイ素の結晶型にはα型と
β型とがあり,目的により使い分けが行なわている。こ
の場合、寸法精度の良い焼結体を得るためには、焼結前
の成形体密度の高いものが要求されるが、窒化ケイ素粉
末としては高α型のものよりβ型の比率の高い粉末ほど
成形体密度が高くなり易く、このため高β型の窒化ケイ
素粉末が望まれる。
In recent years, silicon nitride has been gaining attention for its properties such as excellent heat resistance, high strength, and corrosion resistance, and is being applied in the form of sintered bodies to various products. There are two crystal types of silicon nitride, α type and β type, which are used depending on the purpose. In this case, in order to obtain a sintered body with good dimensional accuracy, a compact with a high density before sintering is required, but silicon nitride powder has a higher ratio of β type than high α type. The higher the density of the compact, the higher the density of the compact, and for this reason a high β-type silicon nitride powder is desired.

従来、窒化ケイ素を製造するには、反応ガスとして窒素
ガス又は窒素ガスと水素ガス,NH,ガス,Arガスと
の混合ガスを用いて反応炉内で金属ケイ素を窒化する方
法が採られているが、この場合反応ガスとして窒素ガス
と水素ガスとを組合せて用いるとα型窒化ケイ素ができ
易く、従ってβ型の比率の高い窒化ケイ素を得るには反
応ガスとして窒素ガスのみを用いる方法が一般に採られ
ている。また、β型の比率を高めるために金属ケイ素に
酸化マグネシウム(MgO)を加える方法(特開昭54
−1200299号広報)なども提案されいる。
Conventionally, to produce silicon nitride, a method has been adopted in which silicon metal is nitrided in a reaction furnace using nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas, NH gas, or Ar gas as the reaction gas. However, in this case, if a combination of nitrogen gas and hydrogen gas is used as the reaction gas, α-type silicon nitride is likely to be formed. Therefore, in order to obtain silicon nitride with a high proportion of β-type, it is generally a method to use only nitrogen gas as the reaction gas. It is taken. In addition, a method of adding magnesium oxide (MgO) to metallic silicon in order to increase the ratio of β-type (Japanese Unexamined Patent Publication No. 54
-1200299 Public Relations) have also been proposed.

ここで、金属ケイ素を窒化する反応を行なう反応炉とし
てはヒーターとしてタングステンを用いたものが広く使
用されているが、タングステン製ヒーターを用いた場合
は,その酸化を防ぐために反応ガスとして窒素ガスと共
に水素ガスを用いる必要があり、このためβ型が高い窒
化ケイ素が得難いという問題点がある。
Here, reactors that use tungsten as a heater are widely used for the reaction of nitriding metal silicon, but when using a tungsten heater, nitrogen gas is used as a reaction gas to prevent oxidation. It is necessary to use hydrogen gas, which poses a problem in that it is difficult to obtain silicon nitride with a high β-type content.

本発明は、上記事情に鑑みなされたもので、反応ガスと
して窒素ガスのみ又は窒素ガスと水素ガスとを組合せた
いずれの場合においてもβ型の比率が高い窒化ケイ素が
得られ、従って反応炉のヒーター材質等に制限されるこ
となく、β型の比率の高い窒化ケイ素を得ることができ
る窒化ケイ素の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and silicon nitride with a high β-type ratio can be obtained whether only nitrogen gas or a combination of nitrogen gas and hydrogen gas is used as the reaction gas. It is an object of the present invention to provide a method for producing silicon nitride that can obtain silicon nitride with a high β-type ratio without being limited by the heater material or the like.

するための   び 本発明者は、上記目的を達成するため鋭意検討を行なっ
た結果、金属ケイ素を湿式ボールミルで水、ヘキサン等
を媒体として湿式粉砕し、好ましくはBET比表面積で
5〜20ポ/ g t粒径1〜2,5/lm,更にFe
含有量0.05〜0.2重量%、酸素含有量3〜6重量
%に調整し、これを反応炉内で窒素ガスを用いて窒化処
理する方法によれば、ヒーターにタングステンを使用し
た反応炉を使用するなどの水素ガスを混合しなければな
らない場合でも、例えばβ一Si,N.が20〜90重
量%、特に30〜80重量%のβ型の比率が高い窒化ケ
イ素が得られることを知見し、本発明を完成したもので
ある。
In order to achieve the above object, the inventors of the present invention conducted extensive studies and found that silicon metal is wet-pulverized in a wet ball mill using water, hexane, etc. as a medium, and preferably has a BET specific surface area of 5 to 20 po/ g t particle size 1-2.5/lm, further Fe
According to the method of adjusting the content to 0.05 to 0.2% by weight and the oxygen content to 3 to 6% by weight, and nitriding this in a reactor using nitrogen gas, the reaction using tungsten as a heater is performed. Even when hydrogen gas must be mixed, such as by using a furnace, for example, β-Si, N. The present invention was completed based on the finding that silicon nitride with a high β-type content of 20 to 90% by weight, particularly 30 to 80% by weight, can be obtained.

従って、本発明は、金属ケイ素をボールミルで湿式粉砕
し、これを窒素を含有する反応ガスを用いて窒化するこ
とを特徴とするβ型窒化ケイ素の製造方法を提供するも
のである。
Accordingly, the present invention provides a method for producing β-type silicon nitride, which comprises wet-pulverizing metallic silicon in a ball mill and nitriding it using a nitrogen-containing reaction gas.

以下,本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係るβ型比率の高い窒化ケイ素の製造方法は、
原料の金属ケイ素をボールミルを用いて湿式粉砕し、該
ケイ素粉末を反応炉内で窒素ガスを含む反応ガスを用い
、窒化するものである。
The method for producing silicon nitride with a high β type ratio according to the present invention is as follows:
Metallic silicon as a raw material is wet-pulverized using a ball mill, and the silicon powder is nitrided in a reactor using a reaction gas containing nitrogen gas.

ここで,原料の金属ケイ素としては、その粒径に制限は
ないが、通常粒径0.01〜2mlのものが用いられる
。また、湿式粉砕を行なう際に用いられる媒体としては
,水やヘキサンが好ましく用いられるが、これらに限定
されるものではない。
Here, the particle size of the raw material silicon metal is not limited, but those having a particle size of 0.01 to 2 ml are usually used. In addition, water and hexane are preferably used as the medium for wet pulverization, but the medium is not limited to these.

更に、湿式粉砕はボールミル等によることができるが、
この際に使用する粉砕メディアとしては、?チールボー
ル又はSi,N4ボールが好適に使用される。なお、メ
ディアとしてスチールボールを使用する場合は,粉砕後
に塩酸,硝酸,硫酸又は王水のいずれかで精製処理する
ことが好ましい。
Furthermore, wet pulverization can be performed using a ball mill, etc.
What kind of grinding media should be used in this case? Cheel balls or Si,N4 balls are preferably used. Note that when steel balls are used as the media, it is preferable to perform a purification treatment with either hydrochloric acid, nitric acid, sulfuric acid, or aqua regia after pulverization.

粉砕条件としては特に限定はされないが,処理後の粒径
が1〜2.5戸,BET比表面積が5〜2 0 rd 
/ gとなるように粉砕することが窒素ガスとの反応性
の点から好ましく、またFs含有量をO.OS〜0.2
重量%,酸素含有量を3〜6重量%とすることが好まし
い。
The grinding conditions are not particularly limited, but the particle size after treatment is 1 to 2.5 rds, and the BET specific surface area is 5 to 20 rds.
/ g is preferable from the viewpoint of reactivity with nitrogen gas, and the Fs content is preferably pulverized so that the Fs content is O. OS~0.2
It is preferable that the oxygen content be 3 to 6% by weight.

本発明に係る製造法は、上記金属ケイ素粉末を反応炉内
で窒素ガスを含む反応ガスと反応させるものであるが、
この場合,本発明法においては,反応ガスとして、窒素
ガスのみを使用することもでき、また窒素ガスと共に水
素ガス,NH■ガス,Arガス等を5〜30%程度混合
使用することもでき、このような場合でもβ型の比率が
高い窒化ケイ素を得ることができる。従って、反応炉と
しては,ヒーターの材質などに制限されず、種々のもの
を使用し得、例えばタングステン製のものなどを使用し
,得る。
The production method according to the present invention is one in which the metal silicon powder is reacted with a reaction gas containing nitrogen gas in a reaction furnace,
In this case, in the method of the present invention, only nitrogen gas can be used as the reaction gas, or hydrogen gas, NH gas, Ar gas, etc. can be used in a mixture of about 5 to 30% with nitrogen gas. Even in such a case, silicon nitride with a high proportion of β type can be obtained. Therefore, the reactor is not limited to the material of the heater, and various materials can be used, such as those made of tungsten.

なお、窒化温度は、特に制限されないが、1. 2 0
 0〜1 4 5 0 ’Cが好ましく、その他の窒化
条件は常法とすることができる。
Note that the nitriding temperature is not particularly limited, but 1. 2 0
0 to 1450'C is preferable, and other nitriding conditions can be set as usual.

充1L3.呈 以上説明したように、本発明方法によれば、反応ガスと
して窒素ガスのみ又は窒素ガスと水素ガスとを組合せた
いずれの場合においてもβ型の比率が高い窒化ケイ素が
得られ、従って反応炉のヒーター材質等に制限を受ける
ことなく、β型の比率の高い窒化ケイ素を得ることがで
きる。
Full 1L3. As explained above, according to the method of the present invention, silicon nitride with a high proportion of β type can be obtained whether only nitrogen gas or a combination of nitrogen gas and hydrogen gas is used as the reaction gas, and therefore the reaction furnace Silicon nitride with a high β-type ratio can be obtained without being limited by the material of the heater.

以下,実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔実施例,比較例〕[Example, comparative example]

金属ケイ素粉末(粒径0.03〜0.5mm,02含有
量0.15重量%.Fe含有量0.24重量%)400
gを5Qアトリッションミルで粉砕メディアとしてスチ
ールボールを用い,水を粉砕媒体として湿式粉砕を行な
い、第1表に示した2種類のケイ素微粉末を得た. 第 表 第 表 また比較のため、上記実施例と同様の原料を用い、乾式
ローラーミルを用いて粉砕した後、塩酸処理を施し、下
記第2表に示した2種類のケイ素微粉末を得た。
Metal silicon powder (particle size 0.03-0.5 mm, 02 content 0.15 wt%. Fe content 0.24 wt%) 400
Wet milling was carried out using a 5Q attrition mill using steel balls and water as the milling media to obtain the two types of silicon fine powders shown in Table 1. For comparison, the same raw materials as in the above example were used, and after being pulverized using a dry roller mill, the two types of silicon fine powders shown in Table 2 below were obtained by subjecting them to hydrochloric acid treatment. .

次に、上記ケイ素微粉末を50ay++φアルミナ炉心
管を有するミリコニット炉内に仕込み(層高10on)
,反応ガス(NZのみ又はN2+5%H2)を2Q/+
iinで流し,]、400℃で2時間窒化させて窒化ケ
イ素を得た。反応ガスとしてN2ガスのみを使用した場
合とN2+5%Hアガスを使用した場合とについてXa
回折によりα型とβ型との比率を算出した(α型,β型
の割合はα(2 1 0),β(2 1 0)のピーク
高より求めた)。結果を第3表に示す. 第 表 なお、実施例1,2の窒化ケイ素を微粉砕した後,酸に
より精製処理し、不純物量を調べたところ、Fed.0
2重量%以下、酸素1.5重量%以下であり、Siにつ
いてはX線回折で検出されなかった。
Next, the above-mentioned silicon fine powder was charged into a Milliconit furnace having a 50ay++φ alumina furnace core tube (layer height 10on).
, reaction gas (NZ only or N2 + 5% H2) 2Q/+
iin] and nitrided at 400° C. for 2 hours to obtain silicon nitride. Xa for the case of using only N2 gas as the reaction gas and the case of using N2 + 5% H gas
The ratio of α type and β type was calculated by diffraction (the ratio of α type and β type was determined from the peak heights of α (2 1 0) and β (2 1 0)). The results are shown in Table 3. Table 1: After finely pulverizing the silicon nitrides of Examples 1 and 2, the silicon nitrides were purified with acid and the amount of impurities was examined. 0
2% by weight or less, oxygen 1.5% by weight or less, and Si was not detected by X-ray diffraction.

出頭人  信越化学工業株式会社 代理人  弁理士 小 島 隆 司Appearing person: Shin-Etsu Chemical Co., Ltd. Agent: Patent Attorney Takashi Kojima

Claims (1)

【特許請求の範囲】[Claims] 1、金属ケイ素をボールミルで湿式粉砕し、これを窒素
を含有する反応ガスを用いて窒化することを特徴とする
窒化ケイ素の製造方法。
1. A method for producing silicon nitride, which comprises wet-pulverizing metallic silicon in a ball mill and nitriding it using a nitrogen-containing reaction gas.
JP6263889A 1989-03-14 1989-03-14 Production of silicon nitride Pending JPH02239108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6263889A JPH02239108A (en) 1989-03-14 1989-03-14 Production of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6263889A JPH02239108A (en) 1989-03-14 1989-03-14 Production of silicon nitride

Publications (1)

Publication Number Publication Date
JPH02239108A true JPH02239108A (en) 1990-09-21

Family

ID=13206068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6263889A Pending JPH02239108A (en) 1989-03-14 1989-03-14 Production of silicon nitride

Country Status (1)

Country Link
JP (1) JPH02239108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051856A (en) * 2009-09-03 2011-03-17 Denki Kagaku Kogyo Kk Method for producing high-purity silicon nitride fine powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051856A (en) * 2009-09-03 2011-03-17 Denki Kagaku Kogyo Kk Method for producing high-purity silicon nitride fine powder

Similar Documents

Publication Publication Date Title
US3953556A (en) Method of preparing uranium nitride or uranium carbonitride bodies
JPH0250076B2 (en)
US6447742B1 (en) Gas carburizing of tungsten carbide (WC) powder
CA2103896A1 (en) Production of metal and metalloid nitrides
JPH02239108A (en) Production of silicon nitride
JPH0348123B2 (en)
JPH0324429B2 (en)
JP3285621B2 (en) Method for producing silicon nitride powder
JP3246951B2 (en) Method for producing silicon nitride powder
JPH0829923B2 (en) Silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP3348797B2 (en) Silicon nitride grinding aid and silicon nitride powder
JPS6227003B2 (en)
JP3280059B2 (en) Method for producing activated silicon carbide
JPS623007A (en) Production of aluminum nitride powder
JPS60262901A (en) Reduced iron powder for emitting heat slowly in atmosphere and its manufacture
JPH0532405A (en) Silicon nitride powder, its production and sintered compact therefrom
JPH10310473A (en) Production of transition metallic carbide and/or transition metallic carbonitride, their use and new transition metallic xerogel
JP3375182B2 (en) Method for producing easily crushable low oxygen silicon nitride
JPS6340709A (en) Production of easy-to-sinter high-purity silicon nitride fine powder
JPS58217469A (en) Manufacture of silicon nitride-silicon carbide composition
JP3342753B2 (en) Method for producing silicon nitride
JP3250677B2 (en) Silicon nitride powder
JPH06219715A (en) Production of high alpha-type highly pure silicon nitride powder
JP2584252B2 (en) Method for producing β-sialon / silicon carbide composite powder