JPH02238141A - Idle rotation frequency control device of engine - Google Patents

Idle rotation frequency control device of engine

Info

Publication number
JPH02238141A
JPH02238141A JP1056613A JP5661389A JPH02238141A JP H02238141 A JPH02238141 A JP H02238141A JP 1056613 A JP1056613 A JP 1056613A JP 5661389 A JP5661389 A JP 5661389A JP H02238141 A JPH02238141 A JP H02238141A
Authority
JP
Japan
Prior art keywords
engine
control
generator
control amount
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1056613A
Other languages
Japanese (ja)
Inventor
Hiroyasu Shiichi
広康 私市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1056613A priority Critical patent/JPH02238141A/en
Priority to KR1019900002900A priority patent/KR930006051B1/en
Priority to US07/490,205 priority patent/US5140960A/en
Priority to DE4007396A priority patent/DE4007396C2/en
Publication of JPH02238141A publication Critical patent/JPH02238141A/en
Priority to KR1019930002167A priority patent/KR930006091B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To decide the adequate control amount constantly and to make it possible to control the engine rotation frequency accurately by deciding the control amount to control the engine rotation frequency depending on the exciting period of a generator, and correcting the control amount responding to the temperature of the generator. CONSTITUTION:A generator 1 driven by an engine is composed of a Y-connected armature winding 10 an diodes 12-14 to rectify the threephase current of a field coil 11 and the armature winding 10. In this case, a switching device 2 to control the exciting period of the field coil 11 to make the battery voltage at a specific voltage and to control the exciting current is provided. Moreover, a control unit 5 to control the opening of an electromagnetic valve 7 arranged in a bypass passage 8 of a throttle valve 9 is provided, which detects the exciting period of the field coil 11 between specific crank angles. And the system is composed to correct the control amount determined depending on the exciting period, and the opening of the electromagnetic valve 7 is controlled by the control amount after the correction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はエンジンのアイドル回転数制御装置に関し、
特にエンジンに供給される吸入空気量を電気負荷量に応
じて補正することに関するものである. 〔従来の技術〕 従来のアイドル回転数制御装置においては、目標アイド
ル回転数と実エンジン回転数との偏差に応じてエンジン
に供給される吸入空気量を制御し、エンジン回転数を目
標回転数に保つことが行われている. 〔発明が解決しようとする課題〕 上記した従来装置においては、大量に電力を消費する電
気負荷(ヘッドライト、電動ラジエータファン等)が使
用されると、電気負荷に電力を供給する発電機の作動が
エンジンの負荷増大となり、エンジン回転数が低下する
.このエンジン回転数の低下は、上記制御動作によって
やがては目標回転数に復帰するが、制御応答が遅いため
電気負荷の大きさによってはエンジンストールに至る場
合もある. 又、例えば特開昭58 − 197449号公報等では
、複数の電気負荷に対応した電気負荷スイッチを設け、
この電気負荷スイッチのオンオフを検出して吸入空気量
を補正することが提案されているが、電気負荷の数に対
応したスイッチや入力回路が必要となり、制御装置の規
模を複雑化するものであった.そこで、例えば特開昭5
9 − 5855号公報では発電機のフィールド電流を
制御するスイッチング手段の励磁期間を検出する励磁期
間検出手段を設け、この検出手段の出力に基づいて決定
される制御量によりエンジン回転数を制御し、エンジン
ストールや制御応答遅れの解消を図るようにしていた。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an engine idle speed control device,
In particular, it relates to correcting the amount of intake air supplied to the engine according to the amount of electrical load. [Prior Art] Conventional idle speed control devices control the amount of intake air supplied to the engine according to the deviation between the target idle speed and the actual engine speed, and adjust the engine speed to the target speed. It is being maintained. [Problems to be Solved by the Invention] In the conventional device described above, when an electrical load that consumes a large amount of electricity (headlights, electric radiator fan, etc.) is used, the generator that supplies electricity to the electrical load is activated. The load on the engine increases and the engine speed decreases. This decrease in engine speed will eventually return to the target speed through the control operation described above, but because the control response is slow, the engine may stall depending on the magnitude of the electrical load. Further, for example, in Japanese Patent Application Laid-Open No. 58-197449, an electric load switch corresponding to a plurality of electric loads is provided,
It has been proposed to correct the intake air amount by detecting the on/off status of this electrical load switch, but this would require switches and input circuits corresponding to the number of electrical loads, which would complicate the scale of the control device. Ta. Therefore, for example,
No. 9-5855 provides an excitation period detection means for detecting an excitation period of a switching means for controlling the field current of a generator, and controls the engine rotation speed by a control amount determined based on the output of this detection means, Efforts were made to eliminate engine stalls and control response delays.

しかしながら、上記励磁期間は発電機の温度によって変
化するものであり、同一電気負荷量であっても発電機の
温度が高くなるほど上記励磁期間が長くなり、従って上
記励磁期間に基づき決定される制御量は要求される制御
量より大きくなり、エンジン回転数の上昇が発生する.
同様に、同一電気負荷量であっても発電機の温度が低く
なるほど上記励磁期間は短くなり、上記励磁期間に基づ
き決定される制御量は要求される制御量より小さくなり
、エンジン回転数の低下を招くことになる.この発明は
上記のような課題を解決するために成されたものであり
、エンジン回転数を常に正確に制御することができるエ
ンジンのアイドル回転数制御装置を得ることを目的とす
る. 〔課題を解決するための手段〕 この発明に係るエンジンのアイドル回転数制御装置は、
発電機の温度を直接又は間接的に検出する温度検出手段
と、エンジン回転数を制御する制御量を発電機の励磁期
間に基づいて決定するとともにこの制御量を発電8!温
度に応じて補正する補正手段を設けたものである. 〔作 用〕 この発明においては、エンジン回転数を制御する制御量
は発電機の励磁期間に基づいて決定され、この制御量は
発電機温度に応じて補正される.〔実施例] 以下、この発明の実施例を図面とともに説明する.第1
図はこの実施例によるエンジンのアイドル回転数制御装
置の構成を示し、1は発電機、2はフィールドコイル1
1の励磁電流を制御するスイッチング手段、3はエンジ
ンスイッチ、4は車載バッテリである.発電lja1は
Y接続された電機子巻線10、フィールドコイル11及
び電機子巻vA10の三和交流出力を整流するダイオー
ド12〜14より構成されている。スイッチング手段2
は、バッテリ4の電圧値を検出する電圧検出回路21、
フィールドコイル11に直列に接続され、バッテリ4の
電圧が所定値より低くなったとき電圧検出回路21の出
力により導通される半導体スイッチング素子22及びこ
の半導体スイッチング素子22が非導通になったときフ
ィールドコイル11に流れる励磁電流を転流させるダイ
オード23より構成される.5はフィールドコイル11
と半導体スイッチング素子22の接続点のオンオフ信号
(以下励磁信号と呼ぶ.)とエンジンの所定クランク角
に同期して発生するクランク角信号及びエンジンの冷却
水温センサ(図示せず)の出力を入力され、エンジンの
所定クランク間のフィールドコイル11の励磁期間(半
導体スイッチング素子22のオン期間)及びエンジンの
冷却水温を検出し、その結果に応じて制御量を演算する
制御ユニットである.6は制御ユニット5の出力である
制御量により電磁弁7を開閉制御するソレノイドであり
、電磁弁7の開閉によりエンジンの吸気通路15に配設
されたスロットルバルプ9のバイパス通路8の開閉が行
われる. 次に、上記構成の動作について説明する.発電機1はエ
ンジンにより駆動され、バッテリ4を充電する.スイッ
チング手段2は発電機1の発電々圧又はバッテリ4の電
圧が所定値となるようフィールトコイル11の励磁期間
を制御してその励磁電流を制御する.第2図は制御ユニ
ット5の詳細を示し、第3図はその動作を示すタイムチ
ャートである.51は所定周波数のパルスA(第3図(
C)に示す.)を発生するパルス発生器で、パルスAは
抵抗52を介してカウンタ53に入力される。
However, the above excitation period changes depending on the temperature of the generator, and even if the amount of electricity is the same, the higher the temperature of the generator, the longer the above excitation period becomes. Therefore, the control amount determined based on the above excitation period becomes larger than the required control amount, causing an increase in engine speed.
Similarly, even if the electrical load is the same, the lower the temperature of the generator, the shorter the excitation period, and the control amount determined based on the excitation period will be smaller than the required control amount, resulting in a decrease in engine speed. This will invite This invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an engine idle speed control device that can always accurately control the engine speed. [Means for Solving the Problems] An engine idle speed control device according to the present invention includes:
Temperature detection means that directly or indirectly detects the temperature of the generator, and a control amount that controls the engine rotation speed are determined based on the excitation period of the generator, and this control amount is used to generate electricity. It is equipped with a correction means that corrects according to the temperature. [Operation] In this invention, the control amount for controlling the engine speed is determined based on the excitation period of the generator, and this control amount is corrected according to the generator temperature. [Examples] Examples of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of the engine idle speed control device according to this embodiment, where 1 is a generator, 2 is a field coil 1
1 is a switching means for controlling the excitation current, 3 is an engine switch, and 4 is an on-vehicle battery. The power generation lja1 is composed of a Y-connected armature winding 10, a field coil 11, and diodes 12 to 14 that rectify the Sanwa AC output of the armature winding vA10. Switching means 2
is a voltage detection circuit 21 that detects the voltage value of the battery 4;
A semiconductor switching element 22 connected in series with the field coil 11 and turned on by the output of the voltage detection circuit 21 when the voltage of the battery 4 becomes lower than a predetermined value, and a field coil when the semiconductor switching element 22 becomes non-conductive. It consists of a diode 23 that commutates the excitation current flowing through the magnet 11. 5 is the field coil 11
An on/off signal (hereinafter referred to as an excitation signal) at the connection point between the semiconductor switching element 22 and the semiconductor switching element 22, a crank angle signal generated in synchronization with a predetermined crank angle of the engine, and the output of an engine cooling water temperature sensor (not shown) are input. , is a control unit that detects the excitation period of the field coil 11 (on period of the semiconductor switching element 22) and the engine cooling water temperature between predetermined cranks of the engine, and calculates the control amount according to the results. Reference numeral 6 denotes a solenoid that controls the opening and closing of the solenoid valve 7 according to a control amount that is the output of the control unit 5. The opening and closing of the solenoid valve 7 opens and closes the bypass passage 8 of the throttle valve 9 disposed in the intake passage 15 of the engine. It will happen. Next, the operation of the above configuration will be explained. The generator 1 is driven by the engine and charges the battery 4. The switching means 2 controls the excitation period of the field coil 11 and its excitation current so that the generated voltage of the generator 1 or the voltage of the battery 4 becomes a predetermined value. FIG. 2 shows details of the control unit 5, and FIG. 3 is a time chart showing its operation. 51 is a pulse A of a predetermined frequency (Fig. 3 (
Shown in C). ), and pulse A is input to a counter 53 via a resistor 52.

一方、この入力信号はトランジスタ54により第3図働
)に示す励磁信号の非導通期間だけマスクされるため、
カウンタ53には第3図(イ)の信号Bが入力される.
カウンタ53は信号Bをカウントし、第3図(e)に示
すカウント値CをCPU55に送出する,CPU55は
第3図(a)に示すクランク角信号の発生毎(この実施
例では立上りエッジ毎)にカウント値Cpを読み込むと
共に、初期化信号R(第3図(f))を出力してカウン
タ53の初期化を行う.以上の動作により、CPU55
に読み込まれたカウント値CPが所定クランク期間毎の
励磁期間に対応した値となる. 又、CPU5 5はエンジン冷却水温情報を読み込み、
このエンジン冷却水温とカウント値C,及びクランク角
信号から吸入空気量を制御する制御量を演算するが、そ
の動作を第4図〜第8図を用いて説明する.第4図及び
第5図は上記制御量の演算手順を示すフローチャートで
あり、制御プログラムに従って第5図のフローが繰り返
し実行され、この実行中にクランク角信号が発生したと
き第5図のフローが中止され、第4図のクランク角信号
割込ルーチンが実行される.ステップ351ではカウン
ト値CPを読込み、ステップS52で外部に設けられた
カウンタ53の初期化を行う.即ち、CPU5 5に読
み込まれたカウント値CPはクランク角信号毎に更新さ
れる.次に、ステップS53ではクランク角信号周朋T
を計測し、ステップ354では次式によりクランク角信
号周期T間に対する励磁期間率Dを求める. ここで、K1 は励磁期間率Dを所定分解能に変換する
ための変換係数である。即ち、励磁期間率Dが意味する
値は、フィールドコイル11に流れる励磁電流に対応し
た値となる.以上のようにして、第4図のクランク角信
号割込ルーチンは完了する.次に、第5図のルーチンで
励磁期間率Dを基に、まずステップS61で第6図に示
す励磁期間率DとIEの関係図からI,を検索する。こ
のI,はエンジンが充分に暖機された状態即ち発電機1
が充分に暖機された状態での発電機lの出力電流に対応
した値となる,D  Itの関係がエンジン回転数N.
によって設定されるのは、Dがフィールドコイル11の
励磁電流に対応し、I,が発電機1の出力電流に対応す
るためである.即ち、発電機1の出力は励磁電流の大き
さとエンジン回転数によって与えられるためである.次
に、ステップS62では、発電機出力電流I,と補正量
P,との関係を示す第7図より、発電機1が充分に暖機
された状態での標準補正量P,が発電機出力電流I,に
応じて検索される.第7図に設定されるデータは、電気
負荷がないときの発電機出力■,。の点を補正量零とし
、電気負荷増加分に対応した補正量を設定する.ステッ
プS63では、エンジンの冷却水温情報W7を読み込み
、ステップS64では第8図に示す冷却水温W,と補正
係数KtTテーブルから、エンジンの冷却水温Wアに対
応した補正係数KETが検索される.ステップS65で
は補正量P.に補正係数Kf?を乗算する.ここで、補
正係数K!Tは、エンジンが充分に暖機された状態即ち
発電機lが充分に暖機された状態でのエンジンの冷却水
温に対応した補正係数K.を1.0とし、これよりも冷
却水温即ち発電機1の温度が低い状態では補正量P,の
不足を補うように補正係数KtTを大きくし、またエン
ジンの冷却水温即ち発電機1の温度が暖機状態よりも高
い状態では補正量P!が過大とならないように補正係数
KtTを小さくする.これにより、補正量P,と補正係
数K1との積Ptアは、発電機1の温度に関らず常に電
気負荷に対応した制御量となるように設定される.ステ
ップS66では、PETに吸入空気量の基本制御量P,
が加算され、最終制御量Pアが求められる.こうして、
PETに応じて吸入空気量が増加する. なお、上記実施例では冷却水温により補正係数Kえiを
検索したが、エンジンの吸入空気温により補正係数Kt
Tを検索しても同様な効果が得られる.又、補正量Pえ
に補正係数KETを乗じたが、励磁期間又は励磁期間率
Dに補正係数KETを乗じてpttを求めても同様の効
果を有する。
On the other hand, this input signal is masked by the transistor 54 only during the non-conducting period of the excitation signal shown in FIG.
Signal B shown in FIG. 3 (a) is input to the counter 53.
The counter 53 counts the signal B and sends the count value C shown in FIG. 3(e) to the CPU 55.The CPU 55 counts the signal B every time the crank angle signal shown in FIG. ) and outputs an initialization signal R (FIG. 3(f)) to initialize the counter 53. With the above operation, the CPU55
The count value CP read into becomes a value corresponding to the excitation period for each predetermined crank period. In addition, the CPU 5 reads engine cooling water temperature information,
The control amount for controlling the intake air amount is calculated from this engine cooling water temperature, count value C, and crank angle signal, and its operation will be explained using FIGS. 4 to 8. 4 and 5 are flowcharts showing the procedure for calculating the above-mentioned control amount. The flow shown in FIG. 5 is repeatedly executed according to the control program, and when a crank angle signal is generated during this execution, the flow shown in FIG. The process is canceled and the crank angle signal interrupt routine shown in FIG. 4 is executed. In step 351, the count value CP is read, and in step S52, the externally provided counter 53 is initialized. That is, the count value CP read into the CPU 55 is updated every crank angle signal. Next, in step S53, the crank angle signal
In step 354, the excitation period ratio D with respect to the crank angle signal period T is determined using the following equation. Here, K1 is a conversion coefficient for converting the excitation period rate D to a predetermined resolution. That is, the value meant by the excitation period rate D is a value corresponding to the excitation current flowing through the field coil 11. As described above, the crank angle signal interrupt routine shown in FIG. 4 is completed. Next, in the routine of FIG. 5, based on the excitation period rate D, first, in step S61, I is searched from the relationship diagram between the excitation period rate D and IE shown in FIG. This I is a state in which the engine is sufficiently warmed up, that is, the generator 1
The relationship between D It is the value corresponding to the output current of the generator l when the engine is sufficiently warmed up.
This is because D corresponds to the excitation current of the field coil 11, and I corresponds to the output current of the generator 1. That is, this is because the output of the generator 1 is given by the magnitude of the excitation current and the engine speed. Next, in step S62, from FIG. 7 showing the relationship between the generator output current I and the correction amount P, the standard correction amount P when the generator 1 is sufficiently warmed up is the generator output. The search is performed according to the current I. The data set in Figure 7 is the generator output when there is no electrical load. Set the correction amount to zero at the point , and set the correction amount corresponding to the increase in electrical load. In step S63, the engine cooling water temperature information W7 is read, and in step S64, a correction coefficient KET corresponding to the engine cooling water temperature Wa is searched from the cooling water temperature W and correction coefficient KtT table shown in FIG. In step S65, the correction amount P. Correction coefficient Kf? Multiply. Here, the correction coefficient K! T is a correction coefficient K.T corresponding to the engine cooling water temperature when the engine is sufficiently warmed up, that is, when the generator l is sufficiently warmed up. is set to 1.0, and when the cooling water temperature, that is, the temperature of the generator 1 is lower than this, the correction coefficient KtT is increased to compensate for the shortage of the correction amount P, and the engine cooling water temperature, that is, the temperature of the generator 1 is lower than this. In a state higher than the warm-up state, the correction amount is P! Decrease the correction coefficient KtT so that it does not become excessive. Thereby, the product Pta of the correction amount P and the correction coefficient K1 is set so as to always be a control amount corresponding to the electrical load, regardless of the temperature of the generator 1. In step S66, the basic control amount P of the intake air amount is set to PET,
are added, and the final control amount Pa is obtained. thus,
The amount of intake air increases according to PET. In the above embodiment, the correction coefficient Kt is searched based on the cooling water temperature, but the correction coefficient Kt is searched based on the engine intake air temperature.
A similar effect can be obtained by searching for T. Further, although the correction amount P is multiplied by the correction coefficient KET, the same effect can be obtained by multiplying the excitation period or excitation period rate D by the correction coefficient KET to obtain PTT.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、エンジン回転数を制御
する制′af#を発電機の励磁期間に基づいて決定し、
しかもこの制御量を発電機温度に応じて補正しており、
発電機温度に応じて変化する上記励磁期間が正しく補正
され、従って制御量が正し《決定されてエンジン回転数
を正確に制御することができる.
As described above, according to the present invention, the control 'af# for controlling the engine speed is determined based on the excitation period of the generator,
Moreover, this control amount is corrected according to the generator temperature.
The excitation period, which changes depending on the generator temperature, is corrected correctly, and the control amount is therefore determined correctly, allowing the engine speed to be accurately controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明装置の全体構成図及び制御
ユニットの構成図、第3図はこの発明装置の動作を示す
タイムチャート、第4図及び第5図はこの発明装置の動
作を示すフローチャート、第6図〜第8図はこの発明装
置の制御ユニットに記憶された制御特性図である。 ■・・・発電機、2・・・スイッチング手段、4・・・
バッテリ、5・・・制御ユニット、1l・・・フィール
ドコイル. なお、
1 and 2 are the overall configuration diagram and the configuration diagram of the control unit of this invention device, FIG. 3 is a time chart showing the operation of this invention device, and FIGS. 4 and 5 are diagrams showing the operation of this invention device. The flowcharts shown in FIGS. 6 to 8 are control characteristic diagrams stored in the control unit of the apparatus of the present invention. ■... Generator, 2... Switching means, 4...
Battery, 5...Control unit, 1l...Field coil. In addition,

Claims (1)

【特許請求の範囲】[Claims] エンジンにより駆動され、バッテリを充電する発電機と
、該発電機の発電々圧又は上記バッテリ電圧が所定電圧
となるよう発電機のフィールドコイルの励磁期間を制御
してその励磁電流を制御するスイッチング手段と、エン
ジンの所定クランク期間毎の励磁期間を検出する励磁期
間検出手段と、発電機の温度を直接又は間接的に検出す
る温度検出手段と、エンジン回転数を制御する制御量を
上記励磁期間に基づいて決定するとともにこの制御量を
温度検出手段の出力に応じて補正する補正手段を備えた
ことを特徴とするエンジンのアイドル回転数制御装置。
A generator that is driven by an engine and charges a battery, and a switching device that controls the excitation current by controlling the excitation period of the field coil of the generator so that the generated voltage of the generator or the battery voltage becomes a predetermined voltage. , excitation period detection means for detecting the excitation period for each predetermined crank period of the engine, temperature detection means for directly or indirectly detecting the temperature of the generator, and a control amount for controlling the engine speed during the excitation period. What is claimed is: 1. An engine idle speed control device comprising a correction means for determining the control amount based on the temperature detection means and correcting the control amount according to the output of the temperature detection means.
JP1056613A 1989-03-08 1989-03-08 Idle rotation frequency control device of engine Pending JPH02238141A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1056613A JPH02238141A (en) 1989-03-08 1989-03-08 Idle rotation frequency control device of engine
KR1019900002900A KR930006051B1 (en) 1989-03-08 1990-03-06 Idle rotation frequency control device of engine
US07/490,205 US5140960A (en) 1989-03-08 1990-03-08 Apparatus for controlling idling revolving rate of engine
DE4007396A DE4007396C2 (en) 1989-03-08 1990-03-08 Device for regulating the idling speed of a machine
KR1019930002167A KR930006091B1 (en) 1989-03-08 1993-02-17 Idle rotation frequency control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056613A JPH02238141A (en) 1989-03-08 1989-03-08 Idle rotation frequency control device of engine

Publications (1)

Publication Number Publication Date
JPH02238141A true JPH02238141A (en) 1990-09-20

Family

ID=13032106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056613A Pending JPH02238141A (en) 1989-03-08 1989-03-08 Idle rotation frequency control device of engine

Country Status (1)

Country Link
JP (1) JPH02238141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043774A (en) * 2005-08-01 2007-02-15 Osaka Gas Co Ltd Power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043774A (en) * 2005-08-01 2007-02-15 Osaka Gas Co Ltd Power generation system

Similar Documents

Publication Publication Date Title
JP3997987B2 (en) Power generation control system
KR0125096B1 (en) Apparatus for controlling ac generator
JP2651030B2 (en) Generator control device and control method, and vehicular generator control device and control method using the same
JPH0299731A (en) Idle engine speed control device for engine
KR960039537A (en) Vehicle generator
KR930006051B1 (en) Idle rotation frequency control device of engine
US7183749B2 (en) Vehicle generator control system
US4427931A (en) Speed control apparatus for direct current motor
US6222349B1 (en) Temperature feedback control of alternator output power
JP3592767B2 (en) Engine control device
JP3848903B2 (en) Power converter
JPH078000A (en) Controll of alternating current generator
JPH02238141A (en) Idle rotation frequency control device of engine
US5263447A (en) Apparatus for controlling idling rotation of engine
JP2637543B2 (en) Engine idle speed control device
KR930006091B1 (en) Idle rotation frequency control device of engine
RU2349790C2 (en) Method of starter-generator control and associated device
JP2003074388A (en) Control device for vehicle and alternator device
JP2719195B2 (en) Engine idle speed control device
JP2005147016A (en) Control device for internal combustion engine
JP4660987B2 (en) Inductive load current controller
US4455525A (en) Control unit for generator driven by engine
KR100557885B1 (en) Regulator for permanent magnet type generator
JPH0984342A (en) Power supply
JPH04143430A (en) Idling speed controller for vehicle