JPH02236504A - Extruding method for plastic tube - Google Patents

Extruding method for plastic tube

Info

Publication number
JPH02236504A
JPH02236504A JP1058553A JP5855389A JPH02236504A JP H02236504 A JPH02236504 A JP H02236504A JP 1058553 A JP1058553 A JP 1058553A JP 5855389 A JP5855389 A JP 5855389A JP H02236504 A JPH02236504 A JP H02236504A
Authority
JP
Japan
Prior art keywords
tube
gas
transmission loss
plastic
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058553A
Other languages
Japanese (ja)
Inventor
Kazuhide Oda
和秀 小田
Hideo Takano
英雄 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1058553A priority Critical patent/JPH02236504A/en
Publication of JPH02236504A publication Critical patent/JPH02236504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve a transmission loss and a heat resistance of a plastic optical fiber by using inert gas or air in which at least impurities whose grain size is <=0.5mum are purified to <=10,000 pieces/ft<3> as gas filled in a plastic tube. CONSTITUTION:At the time of bringing a plastic tube to extrusion molding, inert gas or air in which at least impurities whose grain size is <=0.5mum are purified to <=10,000 pieces/ft<3> is used as gas filled in the tube. If a fluoro - tube is extruded by filling the gas in which impurities whose grain size is <=0.5mum are not cleaned to <=10,000 pieces/ft<3>, smoothness of the inside surface of the fluoro - tube is spoiled, and a transmission loss of a fiber becomes extremely high, but by cleaning the impurities to <=10,000 pieces/ft<3>, the transmission loss can be reduced to 1.0 - 2.0dB/m. In such a way, the plastic tube is extruded in a state that the inside surface is smooth, and the roundness is held, and the transmission loss and the heat resistance of the plastic optical fiber using this tube are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラスチックチューブ押出し方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for extruding plastic tubes.

〔従来の技術1 アクリル系熱硬化性樹脂をコアとして光ファイバ化する
際に、そのクラッド材となるプラスチックチューブとし
てふっ素樹脂が主に使用されている。又、アクリル系熱
硬化性樹脂は熱硬化処理以前は可燃性であり、溶融状の
ふっ素チューブの中に直接注入することは極めて困難で
ある。従って冷郎されて固化したふっ素チューブの中に
アクリル系熱硬化性樹脂を加圧注入し、注入後にチュー
ブ外側から100〜120℃に加熱し、熱硬化処理を施
す。又、樹脂が注入される前の冷却されたふっ素チュー
ブ内側はアルコールやアセトンで洗浄処理を実施するの
が一般的である。一方、ふっ素チューブ押出成形する際
にふっ素樹脂は300〜380℃に加熱溶融されて押出
ダイよりチューブ状に押出成形される。この際、溶融チ
ューブの外圧とのバランスをとるために外圧と四しか、
それ以上の内圧を必要とする。これによってチューブは
円形を保ちながら冷却され、寸法精度良好なふっ素ヂュ
ーブを得ることができる。
[Prior Art 1] When making an optical fiber using an acrylic thermosetting resin as a core, a fluororesin is mainly used as a plastic tube serving as a cladding material. Further, the acrylic thermosetting resin is flammable before thermosetting, and it is extremely difficult to directly inject it into a molten fluorine tube. Therefore, an acrylic thermosetting resin is injected under pressure into a fluorine tube that has been cooled and solidified, and after injection, the resin is heated from the outside of the tube to 100 to 120° C. to perform a thermosetting treatment. Furthermore, the inside of the cooled fluorine tube before resin is injected is generally cleaned with alcohol or acetone. On the other hand, when extruding a fluorine tube, the fluororesin is heated and melted at 300 to 380°C and extruded into a tube shape from an extrusion die. At this time, in order to balance the external pressure of the melting tube,
Requires more internal pressure. As a result, the tube is cooled while maintaining its circular shape, and a fluorine tube with good dimensional accuracy can be obtained.

[発明が解決しようとする課題] 上記従来技術でふっ素チューブをクラッド材として使用
する熱硬化性樹脂光ファイバを製造する際に、チューブ
内面をクリーン化する必要がある。
[Problems to be Solved by the Invention] When manufacturing a thermosetting resin optical fiber using a fluorine tube as a cladding material using the above-described conventional technique, it is necessary to clean the inner surface of the tube.

しかし押出成形し冷却されたヂューブ内面を清浄化する
ことは橿めて困難である。−・般的には上述のような溶
剤等で内面を洗浄する方法があるが、溶剤等の洗浄剤に
含有する不純物を除去する処理が必要となる。又、洗浄
時の容器類のクリーン化や作業環境のクリーン化が必要
となる。しかしそれでもチューブ内面の長手方向の洗浄
度合を管理することは極めて困難である。更にチューブ
成形に内圧、外圧をバランスさせるために封入されるク
リーン処理されない気体中の不純物は溶融チューブ内面
に付着し、溶剤等の洗浄剤では除去することが不可能で
ある。そしてこれ等の不純物を含有するふっ素ヂューブ
をクラッド材として使用した時、その光ファイバの伝送
ロスは大きなものとなる。又、光ファイバの耐熱特性も
著しく低下する。
However, it is extremely difficult to clean the inner surface of a tube that has been extruded and cooled. - Generally, there is a method of cleaning the inner surface with a solvent such as the one described above, but a process is required to remove impurities contained in the cleaning agent such as the solvent. In addition, it is necessary to keep containers clean during cleaning and the work environment clean. However, it is still extremely difficult to control the degree of cleaning in the longitudinal direction of the inner surface of the tube. Furthermore, impurities in the uncleaned gas sealed in the tube to balance the internal and external pressures adhere to the inner surface of the molten tube and cannot be removed by cleaning agents such as solvents. When a fluorine tube containing these impurities is used as a cladding material, the transmission loss of the optical fiber becomes large. Furthermore, the heat resistance properties of the optical fiber are also significantly reduced.

本発明は以上の点に鑑みなされたものであり、プラスチ
ック光ファイバの減衰層が少なく、耐熱性の向上を可能
とした押出し方法を提供することをH的とTるものであ
る。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an extrusion method that allows a plastic optical fiber to have fewer attenuation layers and improved heat resistance.

[課題を解決するだめの手段] 上記目的は、プラスチックチューブを押出し成形する際
、チューブに封入する気体として少なくとも粒子径が0
.5μm以下の不純物が10000m/f13以下に清
浄化された不活性気体又は空気を使用することにより、
達成される。
[Means for solving the problem] The above purpose is to extrude a plastic tube so that the gas enclosed in the tube has a particle size of at least 0.
.. By using inert gas or air that has been purified to contain impurities of 5 μm or less and 10,000 m/f13 or less,
achieved.

尚、ここでいう粒子径とは粒子の直径を示す。Incidentally, the particle size here refers to the diameter of the particles.

[作  用] 上2手段により、プラスチックチューブは内面が滑らか
で、真円度を保った状態で押出されるようになって、こ
のチューブを使用したブシスチック光ファイバの伝送損
失及び耐熱性が向上するようになる。
[Function] By the above two means, the plastic tube is extruded with a smooth inner surface and maintains its roundness, and the transmission loss and heat resistance of the plastic optical fiber using this tube are improved. It becomes like this.

叩ら、チューブに封入する気体として少なくとも粒子径
が0.5μm以下の不純物が1 0000II/ft3
以下にクリーン化された気体を使用したのは、縦軸に伝
送損失をとり、横軸にクリーン度をとってクリーン度に
よる光ファイバの伝送損失の変化特性が示されている第
2図からも明らかである。即ち、粒子径が0.5μm以
下の不純物が1 0000個/ft3以下にクリーン化
されていない気体を封入してふっ素チューブを押出すと
、ふっ素チューブ内面の平滑性が損なわれ、光ファイバ
の伝送損失は極めて高くなるが、粒子径が0.5μm以
下の不純物を1 0000個/t t?以下にすれば、
伝送損失を1.0〜2.0dB/mにすることができる
からである。
The gas sealed in the tube contains at least 10,000 II/ft3 of impurities with a particle size of 0.5 μm or less.
The reason for using the cleaned gas below is based on Figure 2, which shows the transmission loss on the vertical axis and the degree of cleanliness on the horizontal axis, which shows the change in the transmission loss of an optical fiber depending on the degree of cleanliness. it is obvious. In other words, if a fluorine tube is extruded with a gas that has not been cleaned to a level of 10,000 particles/ft3 or less of impurities with a particle diameter of 0.5 μm or less, the smoothness of the inner surface of the fluorine tube will be impaired and the transmission of optical fibers will be impaired. The loss will be extremely high, but if the impurities with a particle size of 0.5 μm or less are contained at 10,000 particles/t t? If you do the following,
This is because transmission loss can be reduced to 1.0 to 2.0 dB/m.

又、封入する気体を不活性気体又は空気としたのは、ク
ラツド材となるふっ素チューブ及びコア材となるアクリ
ル系樹脂との反応を避けるためである。
Further, the reason why the gas to be sealed is an inert gas or air is to avoid reaction with the fluorine tube which becomes the cladding material and the acrylic resin which becomes the core material.

[実 施 例] 以上、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。本実施例で
はプラスチック光ファイバ用のクラッド材となるふっ素
チューブ1を押出成形する際に、ふっ素チューブ1に封
入する気体に少なくとも粒子径が0.5μm以下の不純
物が1 0000個/ft3以下に清浄化された不活性
気体又は空気を使用し、押出クロスヘッド2から溶融さ
れたふっ素チューブ1内に封入する気体の圧力を150
sAQiX下に制御した。このようにすることによりふ
っ素チューブ1は内面が滑らかで、真円度を保った状態
で押出されるようになって、このふっ素チューブ1を使
用したブシスチック光フ7イバの伝送損失及び耐熱性が
向上するようになり、プラスチック光ファイバの減衰屋
が少なく、耐熱性の向上をnJ能とした押出し方法を得
ることができる。
[Example] The present invention will be described above based on the illustrated example. FIG. 1 shows an embodiment of the invention. In this example, when extrusion molding the fluorine tube 1 which is a cladding material for a plastic optical fiber, the gas sealed in the fluorine tube 1 is cleaned to at least contain 10,000 particles/ft3 or less of impurities with a particle diameter of 0.5 μm or less. The pressure of the gas sealed in the molten fluorine tube 1 from the extrusion crosshead 2 is increased to 150 ml using a fluorinated inert gas or air.
Controlled under sAQiX. By doing this, the fluorine tube 1 has a smooth inner surface and is extruded while maintaining its roundness, which improves the transmission loss and heat resistance of the plastic optical fiber using this fluorine tube 1. It is possible to obtain an extrusion method that improves heat resistance with less attenuation of the plastic optical fiber and improves heat resistance with nJ performance.

即ち不活性気体又は空気のタンク3から減圧弁4によっ
て圧力計5を見ながら圧力を調節し、更にクリーン度を
増すためにフィルター6を通して押出クロスヘッド2の
中にニツブルの中に不活性気体又は空気を封入する。ニ
ツブルの外側を通って押出されてきたふっ素チューブ1
の内側にはクリーン化された不活性気体又は空気が通っ
ているために、ふっ素チューブ1への塵埃等の付着はな
くなり、内面の滑らかなふっ素チューブ1が押出される
。又、150s+Aq以下の圧力で気体を送っているた
めに、真円度を保った状態で押出される。
That is, the pressure is adjusted from a tank 3 of inert gas or air by a pressure reducing valve 4 while observing a pressure gauge 5, and in order to further increase the cleanliness, the inert gas or air is fed into a nibble into the extrusion crosshead 2 through a filter 6. Enclose air. Fluorine tube 1 extruded through the outside of the nibble
Since cleaned inert gas or air passes through the inside of the fluorine tube 1, there is no adhesion of dust or the like to the fluorine tube 1, and the fluorine tube 1 with a smooth inner surface is extruded. Moreover, since the gas is sent under a pressure of 150 s+Aq or less, the extrusion is maintained while maintaining its roundness.

又、不活性気体又は空気を使用しているので、その気体
はふっ素チューブ1やコア材となるアクリル系樹脂との
反応がないため、プラスチック光ファイバに悪影響を与
えることはない。
Furthermore, since an inert gas or air is used, the gas does not react with the fluorine tube 1 or the acrylic resin serving as the core material, so that it does not adversely affect the plastic optical fiber.

このように本実施例によればふっ素チューブ内面がクリ
ーン化され、真円度が非常に高いため、プラスチック光
ファイバにした時の伝送損失が1.0〜2,OdB/m
に向上され、更には耐熱性が約50℃アップした。
In this way, according to this example, the inner surface of the fluorine tube is cleaned and the roundness is extremely high, so that when it is made into a plastic optical fiber, the transmission loss is 1.0 to 2,0 dB/m.
Furthermore, the heat resistance was increased by approximately 50°C.

又、一定圧力の気体を封入しながら押出しているため、
外径変動が極めて小さいふっ素チューブを押出すことを
可能とした。
In addition, because it is extruded while enclosing gas at a constant pressure,
This made it possible to extrude fluorine tubes with extremely small outside diameter fluctuations.

上記実施例によって押出されるふっ素チューブは内面が
クリーンであるため、医療用としても使用することがで
きる。例えばふっ素チューブ内に血液が通っても不活性
気体又は空気であるため反応することはない。
Since the fluorine tube extruded according to the above embodiment has a clean inner surface, it can also be used for medical purposes. For example, even if blood passes through a fluorine tube, it will not react because it is an inert gas or air.

又、上記実施例においては、ふっ素チューブの押出し方
法について述べたが、本発明はこれに限られるものでは
なく、プラスチック光ファイバのクラッド材として使用
されるプラスチックチューブの全てに適用可能である。
Further, in the above embodiment, a method for extruding a fluorine tube was described, but the present invention is not limited to this, and is applicable to all plastic tubes used as cladding materials for plastic optical fibers.

[発明の効果] 上述のように本発明はプラスチックチューブに封入する
気体として少なくとも粒子径が0.5μm以下の不純物
が1 0000個/ft3以下に清浄化された不活性気
体又は空気を使用したので、ふっ素ヂューブは内面が滑
らかで、真円度を保った状態で押出されるようになって
、このチューブを使用したプラスチック光ファイバの伝
送損失及び耐熱性を向上させることができる。
[Effects of the Invention] As described above, the present invention uses an inert gas or air that has been purified to contain at least 10,000 impurities with a particle size of 0.5 μm or less/ft3 as the gas sealed in the plastic tube. Since the fluorine tube has a smooth inner surface and is extruded while maintaining its roundness, the transmission loss and heat resistance of the plastic optical fiber using this tube can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の押出し方法の一実施例によるふっ素チ
ューブ押出時のふっ素チューブ内部へのクリーンな気体
を封入する機構を示す説明図、第2図はふっ素ヂュープ
に封入する気体のクリーン度による光ファイバの伝送損
失の変化特性図である。 1:ふっ素チューブ、 2:押出クロスヘッド。 第 1 目
Fig. 1 is an explanatory diagram showing a mechanism for sealing clean gas into the fluorine tube during extrusion of the fluorine tube according to an embodiment of the extrusion method of the present invention, and Fig. 2 shows the degree of cleanliness of the gas sealed in the fluorine tube. FIG. 3 is a characteristic diagram of changes in transmission loss of an optical fiber. 1: Fluorine tube, 2: Extrusion crosshead. 1st item

Claims (1)

【特許請求の範囲】 1、プラスチックチューブをその中に気体を封入して押
出成形する押出し方法において、前記チューブに封入す
る気体として少なくとも粒子径が0.5μm以下の不純
物が 10000個/ft^3以下に清浄化された不活性気体
又は空気を使用することを特徴とする押出し方法。 2、前記気体の封入圧力を150mmAq以下に制御す
ることを特徴とする特許請求の範囲第1項記載のプラス
チックチューブ押出し方法。
[Claims] 1. In an extrusion method in which a plastic tube is extruded with a gas sealed therein, the gas sealed in the tube contains at least 10,000 impurities with a particle size of 0.5 μm or less/ft^3 An extrusion method characterized by using purified inert gas or air. 2. The method for extruding a plastic tube according to claim 1, characterized in that the sealing pressure of the gas is controlled to 150 mmAq or less.
JP1058553A 1989-03-10 1989-03-10 Extruding method for plastic tube Pending JPH02236504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058553A JPH02236504A (en) 1989-03-10 1989-03-10 Extruding method for plastic tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058553A JPH02236504A (en) 1989-03-10 1989-03-10 Extruding method for plastic tube

Publications (1)

Publication Number Publication Date
JPH02236504A true JPH02236504A (en) 1990-09-19

Family

ID=13087648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058553A Pending JPH02236504A (en) 1989-03-10 1989-03-10 Extruding method for plastic tube

Country Status (1)

Country Link
JP (1) JPH02236504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963257A (en) * 2014-04-03 2014-08-06 江苏长飞中利光纤光缆有限公司 Method for manufacturing optical fiber protection hollow tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963257A (en) * 2014-04-03 2014-08-06 江苏长飞中利光纤光缆有限公司 Method for manufacturing optical fiber protection hollow tube

Similar Documents

Publication Publication Date Title
US4678274A (en) Low loss cladded optical fibers from halides and process for making same
US5090980A (en) Method of producing glass bodies with simultaneous doping and sintering
US5356449A (en) Vad process improvements
JP2637889B2 (en) Method for producing cylindrical member made of glass, especially fluorine glass
JPS60246240A (en) Manufacture of fluorine glass optical fiber and optical element and device for carrying out same
US3899313A (en) Method of producing a light conducting fiber having a core and a casing
JPS5880602A (en) Fiber for infrared light
KR840005418A (en) Manufacturing method of glass optical fiber
JPH02236504A (en) Extruding method for plastic tube
US4925475A (en) Method and apparatus for manufacturing preform for fluoride glass fiber
US5215564A (en) Process for the production of an optical waveguide preform
JPS61232240A (en) Manufacture and apparatus for glass body
DE2827303A1 (en) METHOD FOR MANUFACTURING OPTICAL OBJECTS
JPS62288127A (en) Manufacture of mother material for drawing glass fiber
US5779756A (en) Method of centrifuging a halide glass and forming an optical fiber preform
GB2266524A (en) Method of forming flouride glass fiber preform
JP3434945B2 (en) Method for producing hollow silica glass preform for fiber
JPH0667040A (en) Hollow plastic optical fiber and its production
JPH0680436A (en) Production of porous optical fiber preform
JPS63206323A (en) Production of preform for optical fiber of fluoride glass
JPS596265B2 (en) Optical fiber manufacturing method
JPS61132535A (en) Production of quartz-based optical fiber
US20090193851A1 (en) Core suction technique for the fabrication of optical fiber preforms
JPS6355130A (en) Production of light conducting path
DE3932120A1 (en) Thin glass rods prodn. useful in preforms - by compressing melt under increased pressure using transport gas