JPH064490B2 - Method of manufacturing constant polarization optical fiber - Google Patents

Method of manufacturing constant polarization optical fiber

Info

Publication number
JPH064490B2
JPH064490B2 JP62309385A JP30938587A JPH064490B2 JP H064490 B2 JPH064490 B2 JP H064490B2 JP 62309385 A JP62309385 A JP 62309385A JP 30938587 A JP30938587 A JP 30938587A JP H064490 B2 JPH064490 B2 JP H064490B2
Authority
JP
Japan
Prior art keywords
base material
core
hole
optical fiber
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62309385A
Other languages
Japanese (ja)
Other versions
JPH01153551A (en
Inventor
寛 菅沼
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62309385A priority Critical patent/JPH064490B2/en
Publication of JPH01153551A publication Critical patent/JPH01153551A/en
Publication of JPH064490B2 publication Critical patent/JPH064490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は偏波保持特性に優れた定偏波光フアイバの製造
方法に係わる。偏波面を保持したまま光を伝搬させる定
偏波光フアイバはコヒーレント光通信や光応用計測その
他の分野での利用が期待されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a method of manufacturing a constant polarization optical fiber having excellent polarization maintaining characteristics. A constant polarization optical fiber that propagates light while maintaining the polarization plane is expected to be used in coherent optical communication, optical application measurement, and other fields.

〔従来の技術〕[Conventional technology]

従来、定偏波フアイバとして、コアに異方性を応力を与
えてコアに複屈折性を持たせることにより、偏波面を保
持する方式のものが提案されている。第2図にこの種の
定偏波フアイバの構造の一例を示すが、1はコア、2は
クラツド、3は応力付与部であり、図では簡単に2本の
例を示し、31,32とした。コア1、クラツド2、応
力付与部31,32は一般に石英系ガラスからなり、コ
ア1はクラツド2よりも高い屈折率を有し、応力付与部
31,32にはコア、クラツドよりも熱膨張係数の大き
いガラス材例えばSiO2-B2O3等が用いられる。第2図の
構造と同様の構造のガラス母材を線引炉で加熱・溶融し
て張力をかけて線引してフアイバ化すると、線引時の冷
却過程において熱膨張係数差による応力が図中の矢印に
示すように生じ、この応力によりコア1に異方性応力が
与えられ、コアが複屈折性を持つのである。
Conventionally, as a constant polarization fiber, there has been proposed a system in which an anisotropy stress is applied to the core to make the core have birefringence so as to maintain the polarization plane. FIG. 2 shows an example of the structure of a constant polarization fiber of this kind. Reference numeral 1 is a core, 2 is a cladding, 3 is a stress applying portion, and in the figure, two examples are briefly shown. did. The core 1, the cladding 2, and the stress applying portions 31 and 32 are generally made of silica glass, the core 1 has a higher refractive index than the cladding 2, and the stress applying portions 31 and 32 have a thermal expansion coefficient higher than that of the core and the cladding. A large glass material such as SiO 2 —B 2 O 3 is used. When a glass base material with a structure similar to that of Fig. 2 is heated and melted in a drawing furnace and tension is applied to draw it into fibers, the stress due to the difference in the coefficient of thermal expansion in the cooling process during drawing is illustrated. The stress is generated as shown by the arrow in the middle, and this stress gives an anisotropic stress to the core 1 so that the core has birefringence.

第2図の定偏波フアイバの製法としては、コア部とクラ
ツド部を有する石英系ガラスロツドを用意し、コア部を
中心とした対称な位置に応力付与部材を挿入すべき孔を
あけ、この孔に応力付与部材を挿入した状態で高温に加
熱して軟化させ、線引してフアイバ化する方法(特開昭
59−92929号公報)がある。
As a method of manufacturing the constant polarization fiber shown in FIG. 2, a silica glass rod having a core portion and a cladding portion is prepared, and a hole into which a stress applying member is inserted is formed at a symmetrical position around the core portion. There is a method (Japanese Patent Laid-Open No. 59-92929) in which a stress-applying member is inserted into a sheet to heat it to a high temperature to soften it and draw it to form a fiber.

また改良法として、クラツドとなる石英ガラス棒にコア
用材と応力付与部用材の形状に合せた孔を開け、次に石
英ガラス棒と同径の蓋で石英ガラス棒の一端を閉じてお
き、上記の孔にそれぞれコア用材、応力付与部用材を挿
入し、さらに応力付与部用材を入れた孔の上部にも蓋を
して閉じておく。この状態で石英ガラス棒内を真空に減
圧しながら加熱して各部を融着一体化し、線引きすると
いう方法が提案されており、この方法によれば線引時の
応力付与部の変形を抑制し、対称性が良く、界面での泡
発生も防止できて偏波特性の向上したフアイバが得られ
ると言われている(特公昭62−28098号公報)。
As an improved method, a hole corresponding to the shape of the core material and the stress applying portion material is opened in the quartz glass rod to be the cladding, and then one end of the quartz glass rod is closed with a lid having the same diameter as the quartz glass rod. The core material and the stress imparting portion material are respectively inserted into the holes, and the upper portion of the hole in which the stress imparting portion material is put is also covered and closed. In this state, a method has been proposed in which the inside of the quartz glass rod is heated while reducing the pressure to a vacuum to fuse and integrate each part, and drawing is performed. According to this method, the deformation of the stress applying part during drawing is suppressed. It is said that a fiber having good symmetry, preventing bubbles from being generated at the interface, and having improved polarization characteristics can be obtained (Japanese Patent Publication No. 62-28098).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の特公昭62−28098号公報に提案されるよう
な、クラツド用材の孔にコア用材,応力付与部用材を挿
入し、真空にて線引する方法は種々の利点を持つ方法で
ある反面、界面に水分が混入してOH基による吸収が増
加するという、伝送損失に係わる重大な欠点があること
が判明した。
The method of inserting the core material and the stress applying portion material into the holes of the cladding material and wire drawing in vacuum as proposed in Japanese Patent Publication No. 62-28098 has various advantages. It has been found that there is a serious defect related to transmission loss that water is mixed into the interface and absorption by the OH group increases.

本発明の上記の問題点を解決した、定偏波フアイバの製
造方法を提案することを目的としてなされたものであ
る。
The object of the present invention is to propose a method for manufacturing a constant polarization fiber which solves the above problems of the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の従来の真空にして線引きする方法に
ついて種々検討した結果、減圧時の気密が完全でない
と、大気のまま込みが起こり、この大気中の水分が母材
中で取り込まれ、OH基の吸収増加をきたしているこ
と、さらに母材の保管中に母材の孔内部に不純物が辷り
込むことが上記の問題点の原因となつていると気付き、
この点を改良して本発明に致つた。
As a result of various studies on the above-described conventional vacuum drawing method, the present inventors have found that if the airtightness during depressurization is not perfect, trapping in the atmosphere occurs, and moisture in the atmosphere is taken up in the base material, I noticed that the increase of absorption of OH groups and that the impurities sneak into the pores of the base material during storage of the base material are the cause of the above problems,
This point was improved and the present invention was achieved.

すなわち本発明は主として光の伝送路となるコア、コア
より低屈折率のクラツドおよび応力付与部からなる定偏
波光フアイバの製造において、コア部とクラツド部から
なるガラス母材のコアの両側に軸方向に貫通する孔を開
けて、該孔に応力付与部用ガラスロツドを挿入した後、
該孔内に塩素系ガスを流しつつ孔内の温度が1500℃
を越えない範囲で外部より加熱して不純物除去および脱
水処理を行ない、続けて該孔内に塩素系ガスを流しなが
ら該母材の一端を加熱して融着封止し、完全に融着した
のち孔内を不純物を含まない雰囲気に保ちながら孔内を
減圧にしてゆき、その後に母材のもう一方の端部を加熱
して融着封止することによりその内部が真空状に封止さ
れた光フアイバ用母材とし、その後該光フアイバ用母材
を線引くことを特徴とする定偏波光フアイバの製造方法
である。
That is, the present invention is mainly used in the manufacture of a constant polarization optical fiber consisting of a core that serves as an optical transmission line, a cladding having a lower refractive index than the core, and a stress imparting portion, and an axis is provided on both sides of the core of the glass base material that is composed of the core portion and the cladding portion. After opening a hole penetrating in the direction, after inserting the glass rod for stress imparting portion into the hole,
The temperature in the hole is 1500 ° C while flowing a chlorine-based gas into the hole.
To remove impurities and perform dehydration treatment by heating from the outside within a range that does not exceed the temperature, and then continuously heat one end of the base material while flowing a chlorine-based gas into the hole to perform fusion sealing and complete fusion. After that, the inside of the hole is depressurized while keeping the inside of the hole free of impurities, and then the other end of the base material is heated and fusion-sealed, thereby sealing the inside in a vacuum state. A base material for optical fibers, and then drawing the base material for optical fibers.

以下図面を参照して本発明を詳細に説明する。第1図
(a)〜(h)は本発明の実施態様を工程順に示した説明図で
あつて、コア用材1′とクラツド用材2′からなるガラ
ス母材のコア用材1′の両側の対称位置に応力付与部用
材3′を挿入する孔41,42を開けてガラス母材パイ
プとする〔第1図(a)〕、開孔手段としては例えば超音
波開孔機等を用いる。また孔41,42の内面は光学研
磨を行なうか、またはフツ素系ガス例えばSF6を流しな
がら熱処理する等により平滑化することが好ましい。こ
の孔41,42の中に応力付与部用材31′,32′を
挿入する。〔第1図(b)〕。この工程までは従来法と同
じである。次にガラス母材パイプの両端に石英ガラス製
のダミー管5の取りつけておく。このダミー管5の取り
つけは必須ではないが、これを用いた方が母材の有効利
用長さが大きくとれて有利である。〔第1図(c)〕。次
に母材パイプもしくはダミー管5の一端をガス通路6に
連結した蓋7と融着し、この状態でガラス旋盤8に取り
つける。蓋7のガス通路6は図示されない雰囲気ガス供
給源及び真空ポンプ9に連通しており、通路6と真空ポ
ンプ9の間にはバルブ10が設けてある。まずバルブ1
0を閉じた状態で塩素系ガスを母材パイプ内つまり孔4
1,42の中空部分に導入して、移動する外部加熱源例
えば酸水素バーナ11等で母材パイプを1000℃程度
に加熱して、孔41,42の内面側から不純物除去と脱
水処理を行なう〔第1図(d)〕。次に塩素系ガスは流し
たままで、ダミー管5の一端A部分を酸水素バーナ11
で加熱融着させて、完全にパイプを封止する〔第1図
(e)〕。一端Aが完全に封止すると同時にバルブ10を
開いてポンプ9で減圧にしながら、塩素系ガスを流し続
ける〔第1図(f)〕。パイプ内を0.1〜20Torrに減圧で
きた時点で、もう一方のダミー管5のB部分を融着して
封止する〔第1図(g)〕。これにより、その内部の中空
部分がほぼ完全に真空となつたプリフオームが得られ
る。該プリフオームを線引炉12で加熱して線引きして
第2図の構造のフアイバ13を得る〔第1図(h)〕。
Hereinafter, the present invention will be described in detail with reference to the drawings. Fig. 1
(a) ~ (h) is an explanatory view showing an embodiment of the present invention in the order of steps, in which stress is applied to symmetrical positions on both sides of the core material 1'of the glass base material comprising the core material 1'and the cladding material 2 '. The holes 41 and 42 into which the material 3'for the applying part is inserted are opened to form a glass preform pipe [Fig. 1 (a)], and as the opening means, for example, an ultrasonic perforator is used. The inner surfaces of the holes 41 and 42 are preferably smoothed by optical polishing or by heat treatment while flowing a fluorine-based gas such as SF 6 . The materials 31 'and 32' for stress applying portions are inserted into the holes 41 and 42. [Fig. 1 (b)]. Up to this step, it is the same as the conventional method. Next, the dummy tubes 5 made of quartz glass are attached to both ends of the glass base material pipe. Although it is not essential to mount the dummy pipe 5, it is advantageous to use the dummy pipe 5 because the effective use length of the base material can be increased. [Fig. 1 (c)]. Next, one end of the base material pipe or the dummy pipe 5 is fused with the lid 7 connected to the gas passage 6, and is attached to the glass lathe 8 in this state. The gas passage 6 of the lid 7 communicates with an atmosphere gas supply source (not shown) and the vacuum pump 9, and a valve 10 is provided between the passage 6 and the vacuum pump 9. First valve 1
Chlorine gas is closed inside the base metal pipe, that is, hole 4
Introduced into the hollow portions of 1, 42, the base material pipe is heated to about 1000 ° C. by a moving external heating source such as an oxyhydrogen burner 11 to remove impurities from the inner surfaces of the holes 41, 42 and perform dehydration treatment. [Fig. 1 (d)]. Next, while the chlorine-based gas is still flowing, the end portion A of the dummy tube 5 is connected to the oxyhydrogen burner 11
And heat seal to completely seal the pipe [Fig. 1
(e)]. At the same time as the one end A is completely sealed, the valve 10 is opened and the pressure of the pump 9 is reduced to keep the chlorine-based gas flowing [Fig. 1 (f)]. When the inside of the pipe can be depressurized to 0.1 to 20 Torr, the portion B of the other dummy pipe 5 is fused and sealed [Fig. 1 (g)]. As a result, a preform can be obtained in which the hollow portion inside is almost completely evacuated. The preform is heated in a drawing furnace 12 and drawn to obtain a fiber 13 having the structure shown in FIG. 2 (FIG. 1 (h)).

なお、本発明におけるコア及びクラツドからなるガラス
母材としては、コアの屈折率がクラツドのそれより高い
ガラス材を組合せた、例えば、コアがGeO2添加石英ガラ
スでクラツドが純粋石英のもの、コアが純粋石英でクラ
ツドがF添加石英ガラスのもの等の組合せが挙げられる
が、勿論これ以外の組合せであつてもよい。これらのコ
ア及びクラツドからなるガラス母材の製法は特に限定さ
れるところはなく、従来公知の例えばVAD法(気相軸
付法)、MCVD法(内付CVD法)、OVPO法(外
付法)、ロツドインチユーブ法等によればよい。
The glass base material comprising the core and the cladding in the present invention is a combination of glass materials in which the refractive index of the core is higher than that of the cladding, for example, the core is a GeO 2 -doped quartz glass and the cladding is pure quartz, the core Examples thereof include a combination of pure quartz and a cladding of F-doped quartz glass, but other combinations may of course be used. The method for producing the glass base material composed of these cores and claddings is not particularly limited, and there are conventionally known methods such as VAD method (vapor phase axis method), MCVD method (internal CVD method), OVPO method (external method). ), The rod-inch-Yeub method or the like.

本発明に用いる応力付与部材としては、コア・クラツド
材より熱膨張係数の大きなガラスが好ましく、例えばB2
O3添加石英ガラス等が挙げられる。
As the stress applying member used in the present invention, glass having a larger thermal expansion coefficient than the core cladding material is preferable, and for example, B 2
Examples thereof include O 3 -doped quartz glass.

また、本発明において不純物除去、脱水のために用いる
塩素系ガスとしては、Cl2,CCl4等が挙げられ、加熱温
度は1100〜1500℃程度である。1100℃未満
では充分な効果が得られず、1500℃を越えるとガラ
ス化するため好ましくない。
In addition, examples of the chlorine-based gas used for removing impurities and dehydration in the present invention include Cl 2 and CCl 4 , and the heating temperature is about 1100 to 1500 ° C. If it is less than 1100 ° C, no sufficient effect is obtained, and if it exceeds 1500 ° C, vitrification occurs, which is not preferable.

本発明においてプリフオームを線引きする条件は特に限
定されるところはないが、例えば温度1950〜210
0℃に加熱し、線引張力10〜30g、線引張度50〜
200m/min程度で行うのが一般的である。
In the present invention, the conditions for drawing the preform are not particularly limited, but for example, the temperature is 1950 to 210.
Heated to 0 ° C, linear tension force 10-30g, linear tension degree 50-
Generally, it is performed at about 200 m / min.

〔作用〕[Action]

本発明の方法では応力付与部用ガラスロツドを挿入した
状態で加熱しつつ塩素系ガスを中空部分に流すことによ
り、不純物と水酸基が除去できるに加え、そのまま塩素
系ガスを流しながら減圧を行なうので、プリフオーム内
に水酸基が残留したりすることががなく、真空に保持し
て封止できる。これにより線引時に最早、リーク部分か
らの大気まき込み等を起こり得ず、気泡残留や水酸基残
留のない定偏波フアイバを得ることができる。また、従
来方法では、線引時の加熱一体化によつて応力付与部と
の界面に気泡ができやすく、これが構造不整によるロス
増や、構造不均一性によるクロストーク劣化の要因とな
つていた。これに対し、本発明では塩素系ガスを流しな
がら空焼きして、ゴミ、異物等を焼きとばす洗浄効果に
より、孔の表面と応力付与部材の表面が清浄化されるの
で、水酸基によるロスが従来のものより低減できるに加
え、構造不整によるロスやクロストーク劣下も抑えられ
て、良好な特性の定偏波フアイバが得られるのである。
In the method of the present invention, by flowing the chlorine-based gas into the hollow portion while heating while inserting the glass rod for the stress-applying part, in addition to removing impurities and hydroxyl groups, since decompression is performed while directly flowing the chlorine-based gas, Hydroxyl groups do not remain in the preform and can be sealed in vacuum. As a result, it is possible to obtain a constant polarization fiber free from air bubbles and residual hydroxyl groups, since atmospheric air injection from the leak portion can no longer occur during drawing. Further, in the conventional method, bubbles are likely to be formed at the interface with the stress-applying part due to the heat integration during drawing, which is a cause of increased loss due to structural irregularity and deterioration of crosstalk due to structural nonuniformity. . On the other hand, in the present invention, since the surface of the pores and the surface of the stress applying member are cleaned by the cleaning effect of burning off the dust, foreign matters, etc. by air-burning while flowing the chlorine-based gas, the loss due to the hydroxyl group is conventionally. In addition to the above, the loss due to structural imperfections and crosstalk degradation can be suppressed, and a constant polarization fiber with good characteristics can be obtained.

なお以上の説明には応力付与部が2個の例を挙げたが、
より多数の応力付与部を有する場合についても本発明の
範囲に包含されることは、言うまでもない。
In the above description, the example in which the stress applying section is two is given.
It goes without saying that the case of having a larger number of stress applying portions is also included in the scope of the present invention.

〔実施例〕〔Example〕

実施例 カツトオフ波長1.22μmに設計された、純石英コア
とF添加石英ガラス(F添加量0.9重量%,比屈折率差
0.3%)クラツドからなるシングルモードフアイバ用の
外径40mmφの母材のコアの両側に、超音波穿孔機で直
径12mmφの孔を2個あけた。この母材の両端にダミー
用石英管を接続した後、2個の孔のそれぞれに応力付与
部となる直径11mmφのB2O3添加石英ガラス(B2O3添加
量26重量%)ロツドを挿入した。
Example Pure quartz core and F-doped quartz glass designed with a cutoff wavelength of 1.22 μm (F-added amount: 0.9% by weight, relative refractive index difference)
0.3%) Two holes with a diameter of 12 mmφ were drilled with an ultrasonic perforator on both sides of a core of a base material having a diameter of 40 mmφ for a single mode fiber made of cladding. After connecting the dummy quartz tubes to both ends of this base material, rods of B 2 O 3 -doped quartz glass (B 2 O 3 addition amount of 26% by weight) with a diameter of 11 mmφ, which become stress-applying portions, are respectively attached to the two holes. Inserted.

この状態で、第1図(d)のように、ガラス旋盤に取り付
け、ダミー管の一方にガス導入、排気口の付いた蓋を取
りつけ、バルブを閉じて母材の中空部内にCl2500cc
/分の流量で流しながら、外部より酸水素バーナで約1
000℃に加熱して、中空部内の不純物除去および脱水
処理を行つた。続けてCl2ガスを流しながら蓋とは反対
側のダミー管を加熱して融着一体化したが、完全に融着
すると同時にバルブを開いて、Cl2は流しながら減圧に
していつた。中空部内を10torr程度まで減圧にした
後、蓋側のダミー管を加熱一体化して、中空部内が真空
封止された定偏波フアイバ用母材(本発明品)を得た
〔第1図(e)〜(h)〕。
In this state, as shown in Fig. 1 (d), it was attached to a glass lathe, gas was introduced into one side of the dummy tube, a lid with an exhaust port was attached, the valve was closed, and Cl 2 500cc was placed inside the hollow part of the base material.
Approximately 1 with an oxyhydrogen burner from the outside while flowing at a flow rate of / min.
By heating to 000 ° C., impurities in the hollow portion were removed and dehydration treatment was performed. Subsequently, while flowing Cl 2 gas, the dummy tube on the side opposite to the lid was heated to be fused and integrated, but at the same time as completely melting, the valve was opened and Cl 2 was depressurized while flowing. After decompressing the inside of the hollow part to about 10 torr, the dummy tube on the lid side was integrated by heating to obtain a base material for constant polarization fiber (invention product) in which the inside of the hollow part was vacuum-sealed [Fig. e) to (h)].

この母材を線引炉で2050℃に加熱し、15gの張力
で線引きして、外径1125μm,カツトオフ波長1.
22μm,応力付与部径34μmのシングルモード定偏
波フアイバが得られた。このフアイバの波長1.30μmで
の伝送損失は0.40dB/kmであり、波長1.38μmにおける
OH基による吸収損失は1.0dB/kmと非常に定損失な
定偏波フアイバが得られていた。また、1.30μmにおけ
るクロストークは−30dB(フアイバ長1000m)と
良好であつた。
This base material was heated to 2050 ° C. in a drawing furnace and drawn with a tension of 15 g to give an outer diameter of 1125 μm and a cutoff wavelength of 1.
A single mode constant polarization fiber having a diameter of 22 μm and a stress applying portion diameter of 34 μm was obtained. The transmission loss of this fiber at a wavelength of 1.30 μm was 0.40 dB / km, and the absorption loss due to the OH group at a wavelength of 1.38 μm was 1.0 dB / km, and a constant polarization fiber with a very constant loss was obtained. The crosstalk at 1.30 μm was -30 dB (fiber length 1000 m), which was good.

比較例 実施例と同様の組成、サイズのコアとクラツドからなる
母材及び応力付与部用ロツドを用いて、コアの両側に開
けた穴内面のCl2ガスにより処理を行なわないまま、真
空引きにより孔内を10torr以下に減圧して該ロッドを
真空封止した。得られた定偏波フアイバ用母材(比較
品)を実施例と同様の条件で線引し、得られたフアイバ
の特性値を測定したところ、波長1.30μmでの伝送損失
が0.76dB/km、波長1.38μmにおけるOH基による吸収
損失は3.7dB/kmといずれも高く、クロストークは−2
5dB(フアイバ長1000m)と本発明フアイバより劣
つていた。
Comparative Example Using a base material consisting of a core and a cladding of the same composition and size as the example and a rod for stress applying part, without performing treatment with Cl 2 gas on the inner surface of the holes formed on both sides of the core, vacuum drawing was performed. The inside of the hole was depressurized to 10 torr or less and the rod was vacuum-sealed. The obtained constant polarization fiber base material (comparative product) was drawn under the same conditions as in the example, and the characteristic value of the obtained fiber was measured. The transmission loss at a wavelength of 1.30 μm was 0.76 dB / km. , The absorption loss due to the OH group at the wavelength of 1.38 μm is 3.7 dB / km, and the crosstalk is -2.
5 dB (fiber length 1000 m), which was inferior to the fiber of the present invention.

〔発明の効果〕〔The invention's effect〕

以上説明のように、本発明の定偏波光フアイバの製造方
法は応力付与部界面へのOH基の汚染を防ぐことができ
るので、伝送損失が低くクロストークも良好な定偏波光
フアイバを容易かつ安定に製造することができる優れた
方法である。
As described above, the method for manufacturing a polarization-maintaining optical fiber of the present invention can prevent contamination of the OH group at the interface of the stress-applying portion, so that a polarization-polarizing optical fiber with low transmission loss and good crosstalk can be easily formed. This is an excellent method that enables stable production.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(h)は本発明の実施態様を工程順に説明した
概略図であり、第2図は本発明に係わる定偏波光フアイ
バの一例の構造を示す断面図である。
1 (a) to 1 (h) are schematic views illustrating an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view showing the structure of an example of a polarization maintaining optical fiber according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主として光の伝送路となるコア、コアより
低屈折率のクラツドおよび応力付与部からなる定偏波光
フアイバの製造において、コア部とクラツド部からなる
ガラス母材のコアの両側に軸方向に貫通する孔を開け
て、該孔に応力付与部用ガラスロツドを挿入した後、該
孔内に塩素系ガスを流しつつ孔内の温度が1500℃を
越えない範囲で外部より加熱して不純物除去および脱水
処理を行ない、続けて該孔内に塩素系ガスを流しながら
該母材の一端を加熱して融着封止し、完全に融着したの
ち孔内を不純物を含まない雰囲気に保ちながら孔内を減
圧にしてゆき、その後に母材のもう一方の端部を加熱し
て融着封止することによりその内部が真空状に封止され
た光フアイバ用母材とし、その後該光フアイバ用母材を
線引くことを特徴とする定偏波光フアイバの製造方法。
1. In the manufacture of a constant polarization optical fiber mainly composed of a core to be an optical transmission line, a cladding having a lower refractive index than the core, and a stress applying portion, both sides of the core of the glass base material composed of the core portion and the cladding portion are provided. After opening a hole penetrating in the axial direction and inserting the glass rod for stress imparting portion into the hole, while heating the inside of the hole from the outside while flowing a chlorine-based gas into the hole, the temperature in the hole does not exceed 1500 ° C. Impurities are removed and dehydrated, and then one end of the base material is heated and fusion-sealed while flowing a chlorine-based gas into the holes, and after completely fusion-bonding, the atmosphere in the holes is free of impurities. The inside of the hole is depressurized while keeping it, and then the other end of the base material is heated and fusion-sealed to obtain a base material for an optical fiber whose inside is sealed in a vacuum state. Characterized by drawing a base material for optical fiber Method of manufacturing that polarization-maintaining optical fiber.
JP62309385A 1987-12-09 1987-12-09 Method of manufacturing constant polarization optical fiber Expired - Lifetime JPH064490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309385A JPH064490B2 (en) 1987-12-09 1987-12-09 Method of manufacturing constant polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309385A JPH064490B2 (en) 1987-12-09 1987-12-09 Method of manufacturing constant polarization optical fiber

Publications (2)

Publication Number Publication Date
JPH01153551A JPH01153551A (en) 1989-06-15
JPH064490B2 true JPH064490B2 (en) 1994-01-19

Family

ID=17992370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309385A Expired - Lifetime JPH064490B2 (en) 1987-12-09 1987-12-09 Method of manufacturing constant polarization optical fiber

Country Status (1)

Country Link
JP (1) JPH064490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001555A1 (en) * 2004-06-28 2006-01-05 Ls Cable Ltd. A low attenuation optical fiber and its producing method in mcvd

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655326B1 (en) * 1989-12-01 1992-02-21 Thomson Csf METHOD FOR PRODUCING A HOLLOW OPTICAL FIBER AND DEVICE FOR PRODUCING A HOLLOW OPTICAL FIBER.
AU639125B2 (en) * 1990-08-09 1993-07-15 Sumitomo Electric Industries, Ltd. Method for producing preform for polarization retaining optical fiber
US5152818A (en) * 1990-11-09 1992-10-06 Corning Incorporated Method of making polarization retaining fiber
EP0630864A3 (en) * 1993-05-24 1995-05-24 Sumitomo Electric Industries Fabrication process of polarization-maintaining optical fiber.
CA2161939A1 (en) * 1994-12-20 1996-06-21 George E. Berkey Method of making optical fiber having depressed index core region
JP4759816B2 (en) * 2001-02-21 2011-08-31 住友電気工業株式会社 Optical fiber manufacturing method
JP2003212581A (en) * 2002-01-21 2003-07-30 Sumitomo Electric Ind Ltd Method for producing polarization maintaining fiber
CN100367052C (en) * 2002-03-04 2008-02-06 住友电气工业株式会社 Polarized wave holding optical fiber, and method of producing the same
JP2022521754A (en) * 2019-02-28 2022-04-12 コーニング インコーポレイテッド Vacuum-based method for forming cane-based glass fiber optic premolds
JPWO2023276258A1 (en) * 2021-06-30 2023-01-05

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776104B2 (en) * 1985-07-08 1995-08-16 住友電気工業株式会社 Method of manufacturing constant polarization optical fiber
JPH062599B2 (en) * 1985-08-23 1994-01-12 住友電気工業株式会社 Method for manufacturing base material for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001555A1 (en) * 2004-06-28 2006-01-05 Ls Cable Ltd. A low attenuation optical fiber and its producing method in mcvd

Also Published As

Publication number Publication date
JPH01153551A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
US4453961A (en) Method of making glass optical fiber
US4154591A (en) Fabrication of optical fibers with improved cross sectional circularity
US4251251A (en) Method of making optical devices
US4415230A (en) Polarization retaining single-mode optical waveguide
US6189342B1 (en) Method of making segmented core optical waveguide preforms
US5090980A (en) Method of producing glass bodies with simultaneous doping and sintering
JPH0134938B2 (en)
JPH064490B2 (en) Method of manufacturing constant polarization optical fiber
JPS59156932A (en) Manufacture of solid preform for optical fiber
JPH04231335A (en) Manufacture of unimode optical fiber for polarized wave surface preservation
US4326869A (en) Method of producing optical waveguide
US4784465A (en) Method of making glass optical fiber
US5609665A (en) Method of making optical fiber with low melting glass core
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPH062599B2 (en) Method for manufacturing base material for optical fiber
WO2002098808A1 (en) Method of low pmd optical fiber manufacture
WO2020098186A1 (en) Optical fiber preform rod and preparation method thereof, and optical fiber and preparation method thereof
JPH11199260A (en) Production of preform of constant polarization optical fiber
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JP4106038B2 (en) Photonic crystal optical fiber manufacturing method
JPH0930823A (en) Optical fiber preform, optical fiber and its production
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPH0784334B2 (en) Optical fiber manufacturing method
JPH01148723A (en) Production of constant-polarization fiber
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term