JPH0223626B2 - - Google Patents

Info

Publication number
JPH0223626B2
JPH0223626B2 JP57124496A JP12449682A JPH0223626B2 JP H0223626 B2 JPH0223626 B2 JP H0223626B2 JP 57124496 A JP57124496 A JP 57124496A JP 12449682 A JP12449682 A JP 12449682A JP H0223626 B2 JPH0223626 B2 JP H0223626B2
Authority
JP
Japan
Prior art keywords
resin
fabric
glass fabric
glass
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57124496A
Other languages
Japanese (ja)
Other versions
JPS5915563A (en
Inventor
Norio Tsujioka
Takayasu Oota
Shigeyoshi Tai
Magoichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SHUEEBERU KK
Original Assignee
ASAHI SHUEEBERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SHUEEBERU KK filed Critical ASAHI SHUEEBERU KK
Priority to JP57124496A priority Critical patent/JPS5915563A/en
Publication of JPS5915563A publication Critical patent/JPS5915563A/en
Publication of JPH0223626B2 publication Critical patent/JPH0223626B2/ja
Priority to JP3030167A priority patent/JPH0625975A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、樹脂ワニスを含浸せしめた形態でプ
リント基板として用いられるガラス織物のほつれ
を防止する方法に関する。 従来、ガラス織物は有杼織機により製織される
ことが多かつたが、近年は革新織機と称される断
片織機が開発され、その能率性、品質の良好性か
ら急激に広まりつつある。断片織械で織られたガ
ラス織物は、緯糸が織物端部で折返して隣接の緯
糸を形成する有杼織機での織物と異り、各々独立
して一定長で緯入れされた後、織物の端部で織物
巾より若干長目にカツトされ、いわゆる“房耳”
を形成している。このような房耳を有するガラス
織物は樹脂ワニス含浸用途に用いた場合、房耳部
が多量のワニスを含浸する。また、この部分はカ
ツトしなければならないため、コスト面からも工
程上からも好ましくない。更に房耳部の他の欠点
の一つは、緯糸が折返されていないため、ワニス
の含浸工程などで経糸が容易にほつれ、これがロ
ールに巻きつくといつたトラブルを生ずることで
ある。房耳部での樹脂損失を減ずるべく、房耳の
長さを可能な限り短くすればするほどこのほつれ
が発生しやすくなるため、この問題を同時に解決
することは困難とされてきた。一方、断片織機で
織られた織物に限らず、有杼織機で織られた織物
であつても、二分割または三分割して使用される
ことが多々あるが、この場合も単なる普通の機械
的な切断を施したときは容易に経糸がほつれ出
す。 上述のほつれを防止するため、房耳部あるいは
織物の地部をレーザー光線でガラス糸を熔融接着
しながら切断することが検討された。しかしなが
ら、レーザーでの熔融接着力は弱く、強いしごき
に対しては容易に接着部分が剥離したり、熔融し
たガラスが微小な球形物を形成し、樹脂ワニス含
浸工程中にワニスバスに落下するなどの欠点を有
し完全な対策とはなつていない。 一方、ホツトメルト接着剤を房耳部、切断され
短かくされた房耳部あるいは切断部に施してほつ
れを防止する試みがなされた。しかしながら、樹
脂ワニスには、アセトン、メチルエチルケトン、
メチルセロソルブ、メタノール、エタノール、ジ
メチルホルムアミド、トルエン、ヘキサンなど多
種多様の有機溶剤が使用されており、こうした溶
剤に接着剤がワニスバス中あるいはワニス含浸後
に溶出した場合、そのワニスの性能に影響を与え
る恐れがある。特にプリント回路基板などの高度
な品質保証が要求される分野に使用されるワニス
含浸用ガラス織物では、接着剤が溶出しないこと
が必須であるが、従来常用されてきたエチレン―
酢酸ビニル共重合体あるいは重合脂肪酸と脂肪族
アミンを反応させて得られるポリアミドを主成分
とする共重合体などは耐溶剤性が十分でなく、使
用不可能である。 また、接着剤にエポキシ系樹脂や、フエノール
系樹脂などの熱硬化性樹脂を用いることも試みら
れている。これら熱硬化性樹脂は耐薬品性は比較
的良好であるが、ガラスクロスに塗布後硬化する
までにかなりの時間を要し、設備面や生産性の面
で必ずしも満足できるとは言い難い。 更に、ナイロン6、ナイロン66、ポリエチレン
テレフタレート、ポリブチレンテレフタレート、
ポリフエニレンエーテルなどの熱可塑性樹脂を溶
融加熱して微少量押し出したり、あるいはフイル
ム化して接着するなどの検討が試みられている
が、これら樹脂は融点が比較的高く、また熔融熱
度も高いため、かなりの高度で微量の樹脂をガラ
ス織物上に適用し且つ含浸させることは困難であ
る。本発明者らの研究によれば、この方法が可能
なのは熱可塑性樹脂の融点が200℃以下でかつ220
℃における熔融粘度が500000センチポイズ以下で
あることが必要である。この場合含浸が不十分で
あれば、切断部からガラス糸の毛羽が発生する恐
れがあり、また、塗布部分の織物厚みが他の部分
に比較して著しく厚くなるため、ガラス織物をロ
ールに巻き取る際にいわゆる“耳高”などの支障
を生ずる。耳高になると所望の長さに巻きとれな
い。強い緊張力を以つて巻くと耳部でガラス織物
の破断を生じ易く、また、ゆるく巻くと織目が崩
れ形態安定性のよい製品とならない。 結局、多量のほつれ防止剤を適用すればほつれ
防止効果は大きいが、上述のようにロール形態に
巻く際の支障が大きい。反面、ほつれ防止剤の適
用量が少なければロール巻きの支障はなくなるが
十分なほつれ防止効果が得られないという矛盾を
生じる。 また、従来常用されてきたエチレン―酢酸ビニ
ル共重合体などの接着剤は有機溶剤溶液の形態で
適用するとき、オープンタイムが長いという難点
がある。すなわち、ガラス繊維織物にエチレン―
酢酸ビニル共重合体など常用される接着剤の溶液
を適用した際、この溶液は容易に固化せず、接着
剤が長時間粘着性を保持するためロール形態に巻
取つた際、隣接ガラス繊維織物層が互に接着する
という問題がある。 本発明者らは、上述の欠点を完全に克服するガ
ラス織物ほつれ防止法について鋭意研究した結
果、ほつれ防止法としてある種の共重合ポリエス
テル系樹脂を有機溶剤溶液の形態で適用すること
が非常に効果的であることを見出し、本発明を完
成するに至つた。 すなわち、本発明に係るガラス織物のほつれ防
止方法は、カルボン酸成分の40〜90モル%がテレ
フタル酸であり、10〜60モル%がイソフタル酸お
よび炭素原子数4〜20の飽和脂肪族ジカルボン酸
の中から選ばれた少くとも1種であるジカルボン
酸成分と炭素原子数2〜10のアルキレングリコー
ルから選ばれた少くとも1種のグリコール成分と
から構成される共重合ポリエステル樹脂であつ
て、軟化点100℃以上の樹脂のクロル化炭化水素
溶液を、樹脂適用後における織物厚みが樹脂適用
前の織物厚みと実質的に同じとなるような割合
で、断片織機で織られたガラス織物の房耳部また
は切断されたガラス織物の切断部に含浸し次いで
溶剤を揮散するか、あるいはガラス織物に含浸し
次いで溶剤を揮散した後切断することを特徴とす
る。本発明方法によつてほつれを防止したガラス
織物は特にワニス含浸用等に有用である。 本発明に用いる共重合ポリエステル樹脂におい
て、該樹脂を構成するジカルボン酸成分として
は、テレフタル酸、イソフタル酸及び炭素数4〜
20の脂肪族ジカルボン酸、例えば、コハク酸、グ
ルタル酸およびセバシン酸などが使用でき、ま
た、グリコール成分としては炭素数2〜10のアル
キレングリコール、例えば、エチレングリコー
ル、1,2―プロパンジオール、1,3―プロパ
ンジオール、1,4―ブタンジオール、1,6―
ヘキサンジオールなどが使用できるが、もとより
これらの例に限定されるものでない。これらのグ
リコール成分は一種を単独使用しても、2種以上
を用いてもよい。また、全カルボン酸成分中のテ
レフタル酸の割合は耐溶剤性の観点から重要であ
り、テレフタル酸が40モル%未満である時は、ア
セトン、メチルエチルケトン、ジメチルホルムア
ミド等に溶解しやすくなるためワニス含浸工程い
おける溶出が問題となる。全カルボン酸中のテレ
フタル酸の割合が90モル%を越えると、塩化メチ
レンのような低沸点有機溶剤への溶解性に劣る。 共重合ポリエステル樹脂をガラス織物に含浸さ
せるには、例えば塩化メチレン等の有機溶剤に溶
解して、その溶液を塗布する方法を採ることがで
きる。該樹脂は耐溶剤性にすぐれており、樹脂ワ
ニス含浸工程で溶出しないことを特徴とするが、
塩化メチレン、トリクレン等のクロル化炭化水素
には微溶である。しかしながら、ガラス織物を樹
脂ワニスに含浸する工程ではほとんど溶出が認め
られない程度であり、しかもガラス織布を樹脂ワ
ニス含浸用の基材として用いる分野ではエポキシ
樹脂、不飽和ポリエステル樹脂、ポリイミド樹
脂、シリコン樹脂などがよく知られておるが、こ
れらには塩化メチレン、トリクレン等のクロル化
炭化水素溶媒が使用されることは稀であること、
これら溶剤は沸点が低く揮散しやすいこと、及び
燃焼性がないことなどから本発明の目的に十分に
かなうものである。溶液を塗布且つ含浸した後、
溶剤は熱風曝露等の適当な方法で揮散されるべき
である。溶剤揮散後、更に十分に樹脂を含浸させ
且つほつれ効果を上げるために熱風等に曝露せし
めたり、または熱ロール等を用いて加圧すること
は効果的である。この場合注意しなければならな
いのは、加熱の為にガラスクロス表面に通常施さ
れているシランカツプリング剤等を変質させない
ことであり、その為に低沸点溶剤が望ましい。 共重合ポリエステル樹脂の有機溶剤は、断片織
物で織られたガラス織物の房耳部または地部に経
糸方向に沿つて適用することが望ましい。また、
その適用量は、ガラス織物をロールに巻取つた際
にいわゆる「耳高」などの支障を生じないよう、
樹脂適用後における織物厚みが適用前の織物厚み
と実質的に同一となるようにする。 かくして、本発明のほつれ防止を施すことによ
つて、特に高度な品質が要求されるプリント回路
基板として使用されるワニス含浸用ガラス織物を
極めて有利に得ることができる。 以下、本発明を下記実施例について詳述する
が、本発明はその要旨を逸脱しない限り以下の実
施例に限定されるものではない。 実施例 1 テレフタル酸65%モル%、イソフタル酸10モル
%、アジピン酸25%からなるジカルボン酸成分
と、1,4―ブタンジオールからなるグリコール
成分とから構成される軟化点173℃、200℃での高
架式フローテスターによる溶融粘度400ポイズを
有する共重合ポリエステル樹脂を、テトライソプ
ロピルチタネート触媒を使用しエステル交換反
応、エステル化反応および重縮合反応を行つて得
た。本樹脂の耐溶剤性を表―1に示す。
The present invention relates to a method for preventing fraying of glass fabric impregnated with resin varnish and used as a printed circuit board. In the past, glass fabrics were often woven using shuttle looms, but in recent years, fragment looms called innovative looms have been developed and are rapidly becoming popular due to their efficiency and good quality. Glass fabrics woven using fragmentary weaving machines are different from fabrics produced using shuttle looms, in which the weft yarns are folded back at the ends of the fabric to form adjacent weft yarns, but each weft yarn is inserted independently at a constant length, and then the fabric is wefted. The edges are cut slightly longer than the width of the fabric, creating a so-called "tassel selvage"
is formed. When a glass fabric having such tassels is used for impregnating resin varnish, the tassels impregnate a large amount of varnish. Furthermore, since this portion must be cut, it is not desirable from both a cost and process standpoint. Another drawback of the tassel selvedge is that, since the weft yarns are not folded back, the warp yarns easily fray during the varnish impregnation process, which can cause problems such as winding around the roll. It has been difficult to solve this problem at the same time because the shorter the length of the tufted ears is, the more likely this fraying will occur in order to reduce the resin loss at the tufted ears. On the other hand, not only textiles woven on fragmentary looms but also textiles woven on shuttle looms are often divided into two or three parts. When making severe cuts, the warp threads easily become frayed. In order to prevent the above-mentioned fraying, it has been considered to cut the tassel edges or the base of the fabric using a laser beam while melting and adhering the glass threads. However, the adhesive strength of laser melting is weak, and the adhesive part easily peels off when subjected to strong ironing, and the molten glass forms minute spherical objects that fall into the varnish bath during the resin varnish impregnation process. It has drawbacks and is not a perfect countermeasure. On the other hand, attempts have been made to prevent fraying by applying hot melt adhesive to the tuft selvage, the cut shortened tassel selvage, or the cut portion. However, resin varnishes include acetone, methyl ethyl ketone,
A wide variety of organic solvents are used, such as methyl cellosolve, methanol, ethanol, dimethylformamide, toluene, and hexane, and if adhesives are eluted from these solvents during the varnish bath or after varnish impregnation, the performance of the varnish may be affected. There is. In particular, for varnish-impregnated glass fabrics used in fields that require a high level of quality assurance, such as printed circuit boards, it is essential that the adhesive does not elute.
Vinyl acetate copolymers or copolymers whose main component is polyamide obtained by reacting polymerized fatty acids and aliphatic amines do not have sufficient solvent resistance and cannot be used. Furthermore, attempts have been made to use thermosetting resins such as epoxy resins and phenolic resins as adhesives. Although these thermosetting resins have relatively good chemical resistance, they require a considerable amount of time to harden after being applied to glass cloth, and are not necessarily satisfactory in terms of equipment and productivity. Furthermore, nylon 6, nylon 66, polyethylene terephthalate, polybutylene terephthalate,
Attempts have been made to melt and heat thermoplastic resins such as polyphenylene ether and extrude a small amount, or to form a film and adhere it, but these resins have relatively high melting points and high heats of fusion. However, it is difficult to apply and impregnate trace amounts of resin onto glass fabrics at a significant degree. According to the research conducted by the present inventors, this method is possible only when the melting point of the thermoplastic resin is 200℃ or lower and at 220℃ or lower.
It is necessary that the melt viscosity at °C is 500,000 centipoise or less. In this case, if the impregnation is insufficient, fuzz of the glass thread may occur from the cut part, and the thickness of the fabric in the coated area will be significantly thicker than in other areas, so the glass fabric may be wound into a roll. This causes problems such as so-called "ear height" when taking the head. If it reaches the height of the ears, it will not be possible to wind it to the desired length. If the glass fabric is rolled with strong tension, the glass fabric is likely to break at the edges, and if it is rolled too loosely, the weave will collapse and the product will not have good shape stability. After all, if a large amount of anti-fray agent is applied, the effect of preventing fraying is large, but as mentioned above, it is a big problem when winding into a roll form. On the other hand, if the amount of anti-raveling agent applied is small, there will be a contradiction in that although there will be no problem with rolling, a sufficient anti-fraying effect will not be obtained. Furthermore, conventionally used adhesives such as ethylene-vinyl acetate copolymer have a drawback of long open time when applied in the form of an organic solvent solution. In other words, ethylene-
When a solution of a commonly used adhesive such as vinyl acetate copolymer is applied, the solution does not solidify easily and when wound into a roll form, the adhesive retains its tack for a long time, causing the adjoining glass fiber fabric to bind. There is a problem with the layers adhering to each other. As a result of intensive research into a method for preventing fraying of glass fabrics that completely overcomes the above-mentioned drawbacks, the present inventors have found that it is extremely effective to apply a certain type of copolymerized polyester resin in the form of an organic solvent solution as a method for preventing fraying. They have found that this is effective and have completed the present invention. That is, in the method for preventing fraying of glass fabric according to the present invention, 40 to 90 mol% of the carboxylic acid component is terephthalic acid, and 10 to 60 mol% is isophthalic acid and a saturated aliphatic dicarboxylic acid having 4 to 20 carbon atoms. A copolymerized polyester resin composed of at least one dicarboxylic acid component selected from among and at least one glycol component selected from alkylene glycols having 2 to 10 carbon atoms, A chlorinated hydrocarbon solution of resin at a temperature of 100°C or higher is applied to the tassel selvage of a glass fabric woven on a piece loom in such a proportion that the fabric thickness after application of the resin is substantially the same as the fabric thickness before application of the resin. It is characterized by impregnating a portion or cut portion of a cut glass fabric and then volatilizing the solvent, or impregnating the glass fabric and volatilizing the solvent before cutting. Glass fabrics whose fraying has been prevented by the method of the present invention are particularly useful for impregnation with varnish. In the copolyester resin used in the present invention, dicarboxylic acid components constituting the resin include terephthalic acid, isophthalic acid, and carbon atoms of 4 to 4.
20 aliphatic dicarboxylic acids, such as succinic acid, glutaric acid and sebacic acid, can be used, and as the glycol component, alkylene glycols having 2 to 10 carbon atoms, such as ethylene glycol, 1,2-propanediol, 1 , 3-propanediol, 1,4-butanediol, 1,6-
Although hexanediol and the like can be used, the present invention is not limited to these examples. These glycol components may be used alone or in combination of two or more. In addition, the proportion of terephthalic acid in the total carboxylic acid component is important from the viewpoint of solvent resistance, and if the terephthalic acid content is less than 40 mol%, it will dissolve easily in acetone, methyl ethyl ketone, dimethyl formamide, etc., so varnish impregnation. Elution during the process becomes a problem. If the proportion of terephthalic acid in all carboxylic acids exceeds 90 mol%, the solubility in low-boiling organic solvents such as methylene chloride will be poor. In order to impregnate the glass fabric with the copolymerized polyester resin, for example, a method can be adopted in which the copolyester resin is dissolved in an organic solvent such as methylene chloride and the resulting solution is applied. The resin has excellent solvent resistance and is characterized by not eluting during the resin varnish impregnation process.
It is slightly soluble in chlorinated hydrocarbons such as methylene chloride and trichlene. However, in the process of impregnating glass fabric with resin varnish, almost no elution is observed, and in the field where glass fabric is used as a base material for resin varnish impregnation, epoxy resin, unsaturated polyester resin, polyimide resin, silicon Although resins are well known, chlorinated hydrocarbon solvents such as methylene chloride and trichlene are rarely used for these.
These solvents fully meet the purpose of the present invention because they have a low boiling point, are easily volatilized, and are not flammable. After applying and impregnating the solution,
The solvent should be stripped off by a suitable method such as exposure to hot air. After volatilizing the solvent, it is effective to expose the resin to hot air or pressurize it using a heated roll or the like in order to further sufficiently impregnate the resin and improve the fraying effect. In this case, care must be taken to avoid deteriorating the silane coupling agent, etc., which is usually applied to the surface of the glass cloth due to heating, and for this reason, a low boiling point solvent is preferable. It is desirable that the organic solvent for the copolymerized polyester resin be applied along the warp direction to the selvage portion or ground portion of the glass fabric woven using the fragmented fabric. Also,
The amount to be applied is determined so as not to cause problems such as so-called "edge height" when winding the glass fabric into a roll.
The fabric thickness after resin application is made to be substantially the same as the fabric thickness before application. Thus, by applying the fray prevention method of the present invention, it is possible to extremely advantageously obtain a glass fabric impregnated with varnish, which is used as a printed circuit board, which particularly requires a high level of quality. Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples unless it departs from the gist thereof. Example 1 A dicarboxylic acid component consisting of 65% mol% terephthalic acid, 10 mol% isophthalic acid, and 25% adipic acid, and a glycol component consisting of 1,4-butanediol, with a softening point of 173°C and at 200°C. A copolymerized polyester resin having a melt viscosity of 400 poise measured using an elevated flow tester was obtained by performing transesterification, esterification, and polycondensation using a tetraisopropyl titanate catalyst. Table 1 shows the solvent resistance of this resin.

【表】【table】

【表】 上記共重合ポリエステル樹脂を塩化メチレンに
4重量%溶解した。溶液粘度は100センチポイズ
であつた。これを有杼織機で製織された0.2mmの
ガラス織物の中央に1m当り1.5c.c.の割合で線状
に塗布した後、熱風乾燥機を用い200℃の雰囲気
中で1分乾燥した。塗布部分の広がりは7mmであ
つた。この塗布部の中央を、ハサミで切断部のほ
つれをテストしたが、全くほつれは発生しなかつ
た。また塗布部の織物の厚みは0.2mmで塗布前と
全く同等であり、本例によりほつれ防止されたガ
ラス織物をロールに巻き取つても、何ら付着部と
非付着部で差は認められなかつた。 比較例 1 テレフタル酸30モル%、イソフタル酸50モル
%、アジピン酸20モル%、からなるジカルボン酸
成分と、1,4―ブタンジオールからなるグリコ
ール成分とから構成される軟化点78℃、200℃で
の高架式フローテスターによる溶融粘度450ポイ
ズを有する共重合ポリエステル樹脂を、実施例1
と同様にして得た。この共重合ポリエステル樹脂
はメチルエチルケトン、ジメチルホルムアルデヒ
ドに20℃、72時間浸漬テストで完全に溶解した。 実施例 2 ジカルボン酸成分及びグリコール成分の種類、
組成を種々変えて基本的には実施例1と同様の手
順でポリエステルを製造した。(なお、エチレン
グリコールをグリコール成分として用いた場合の
みエステル交換触媒として二酸化マンガンを用い
たが、その他は実施例1と同じトリメチルホスフ
エートを用いた。)これらのポリエステルの組成
および性状を表2に示す。 更にこれらのポリエステルを実施例1と同様に
してガラスクロスに適用し、目止め力の強い耳部
を有するガラスクロスを得た。 比較例 2 テレフタル酸38モル%、イソフタル酸32モル
%、アジピン酸30モル%からなるジカルボン酸成
分と、1,4―ブタンジオール100モル%からな
るグリコール成分とから構成される軟化点95℃、
200℃での高架式フローテスターによる溶融粘度
440ポイズを有するポリエステル樹脂を実施例1
と同様にして得た。この樹脂もトルエン、ジメチ
ルホルムアミド等に完全に溶解した。表3にその
性状を示す。 比較例 3 テレフタル酸100モルからなるジカルボン酸成
分と1,4―ブタンジオール100モル%からなる
グリコール成分とから構成されるポリブチレンテ
レフタレートホモポリマーを実施例1と同様にし
て得た。この樹脂の軟化点は230℃であつた。 この樹脂は実施例1の方法では塩化メチレンそ
の他の有機溶剤に難溶であつた。
[Table] The above copolymerized polyester resin was dissolved in methylene chloride in an amount of 4% by weight. The solution viscosity was 100 centipoise. This was applied linearly to the center of a 0.2 mm glass fabric woven using a shuttle loom at a rate of 1.5 cc per meter, and then dried for 1 minute in an atmosphere at 200° C. using a hot air dryer. The spread of the coated area was 7 mm. The center of this coated area was tested for fraying at the cut portion with scissors, but no fraying occurred at all. In addition, the thickness of the fabric in the coated area was 0.2 mm, which was exactly the same as before coating, and even when the glass fabric that had been prevented from fraying in this example was wound into a roll, no difference was observed between the coated area and the non-coated area. . Comparative Example 1 A dicarboxylic acid component consisting of 30 mol% of terephthalic acid, 50 mol% of isophthalic acid, and 20 mol% of adipic acid, and a glycol component consisting of 1,4-butanediol, with a softening point of 78°C and 200°C. Example 1 A copolymerized polyester resin having a melt viscosity of 450 poise measured using an elevated flow tester was
obtained in the same way. This copolyester resin completely dissolved in methyl ethyl ketone and dimethyl formaldehyde in a 72 hour immersion test at 20°C. Example 2 Types of dicarboxylic acid component and glycol component,
Polyesters were produced basically in the same manner as in Example 1 with various compositions. (Note that manganese dioxide was used as the transesterification catalyst only when ethylene glycol was used as the glycol component, but the same trimethyl phosphate as in Example 1 was used in other cases.) The composition and properties of these polyesters are shown in Table 2. show. Furthermore, these polyesters were applied to glass cloth in the same manner as in Example 1 to obtain a glass cloth having ears with strong sealing power. Comparative Example 2 A dicarboxylic acid component consisting of 38 mol% of terephthalic acid, 32 mol% of isophthalic acid, and 30 mol% of adipic acid, and a glycol component consisting of 100 mol% of 1,4-butanediol, with a softening point of 95°C.
Melt viscosity by elevated flow tester at 200℃
Example 1 Polyester resin with 440 poise
obtained in the same way. This resin was also completely dissolved in toluene, dimethylformamide, etc. Table 3 shows its properties. Comparative Example 3 A polybutylene terephthalate homopolymer consisting of a dicarboxylic acid component consisting of 100 moles of terephthalic acid and a glycol component consisting of 100 moles % of 1,4-butanediol was obtained in the same manner as in Example 1. The softening point of this resin was 230°C. This resin was poorly soluble in methylene chloride and other organic solvents by the method of Example 1.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ジカルボン酸成分の40〜90モル%がテレフタ
ル酸であり、10〜60モル%がイソフタル酸及び炭
素原子数4〜20の飽和脂肪族ジカルボン酸の中か
ら選ばれた少くとも1種であるジカルボン酸成分
と炭素数2〜10のアルキレングリコールから選ば
れた少くとも1種のグリコール成分から構成され
る共重合ポリエステル樹脂であつて軟化点100℃
以上の樹脂のクロル化炭化水素溶液を、樹脂適用
後における織物厚みが樹脂適用前の織物厚みと実
質的に同じとなるような割合で、断片織機で織ら
れたガラス織物の房耳部または切断されたガラス
織物の切断部に含浸し次いで溶剤を揮散するか、
あるいはガラス織物に含浸し次いで溶剤を揮散し
た後切断することを特徴とするプリント基板用ガ
ラス織物のほつれを防止する方法。
1 Dicarboxylic acid component in which 40 to 90 mol% is terephthalic acid and 10 to 60 mol% is at least one selected from isophthalic acid and saturated aliphatic dicarboxylic acids having 4 to 20 carbon atoms. A copolyester resin composed of an acid component and at least one glycol component selected from alkylene glycols having 2 to 10 carbon atoms, with a softening point of 100°C.
A chlorinated hydrocarbon solution of the above resin was applied to the tufted edges or cuttings of a glass fabric woven on a fragmentary loom in such a proportion that the fabric thickness after the resin was applied was substantially the same as the fabric thickness before the resin was applied. impregnate the cut part of the glass fabric and then evaporate the solvent, or
Alternatively, a method for preventing fraying of a glass fabric for a printed circuit board, which comprises impregnating the glass fabric, evaporating a solvent, and then cutting the fabric.
JP57124496A 1982-07-19 1982-07-19 Fray prevention of glass fabric Granted JPS5915563A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57124496A JPS5915563A (en) 1982-07-19 1982-07-19 Fray prevention of glass fabric
JP3030167A JPH0625975A (en) 1982-07-19 1991-02-25 Method for preventing glass cloth for printed wiring board from fraying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57124496A JPS5915563A (en) 1982-07-19 1982-07-19 Fray prevention of glass fabric
JP3030167A JPH0625975A (en) 1982-07-19 1991-02-25 Method for preventing glass cloth for printed wiring board from fraying

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3030167A Division JPH0625975A (en) 1982-07-19 1991-02-25 Method for preventing glass cloth for printed wiring board from fraying

Publications (2)

Publication Number Publication Date
JPS5915563A JPS5915563A (en) 1984-01-26
JPH0223626B2 true JPH0223626B2 (en) 1990-05-24

Family

ID=26368468

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57124496A Granted JPS5915563A (en) 1982-07-19 1982-07-19 Fray prevention of glass fabric
JP3030167A Pending JPH0625975A (en) 1982-07-19 1991-02-25 Method for preventing glass cloth for printed wiring board from fraying

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3030167A Pending JPH0625975A (en) 1982-07-19 1991-02-25 Method for preventing glass cloth for printed wiring board from fraying

Country Status (1)

Country Link
JP (2) JPS5915563A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194182A (en) * 1984-03-12 1985-10-02 ユニチカユ−エムグラス株式会社 Treatment of glass cloth
JPS61146865A (en) * 1984-12-18 1986-07-04 株式会社アルファ技研 Prevention of dispersion of knitted and bundled article
JP4662398B2 (en) * 2001-01-17 2011-03-30 旭化成イーマテリアルズ株式会社 Earstop glass cloth
JP5130768B2 (en) * 2007-03-30 2013-01-30 大日本印刷株式会社 Protective film for optical member, method for producing protective film for optical member, and protective film raw material for optical member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223626A (en) * 1988-07-13 1990-01-25 Hitachi Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5915563A (en) 1984-01-26
JPH0625975A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JPH0223626B2 (en)
JPH0764972B2 (en) Method for producing polyester resin dispersion
JP2908028B2 (en) Glass cloth made with zero twist yarn
JPH10317250A (en) Reinforcing fiber fabric and its production
JPS6032722B2 (en) hot melt adhesive fiber
JPS59112065A (en) Glass fiber fabric clamped at ear part thereof by polyester resin
JPS6385158A (en) Glass cloth
JPS59168150A (en) Cloth member
JPS6228436A (en) Base cloth for adhesive tape excellent in tearing property
US4507337A (en) Process for producing a prepreg of a glass fiber cloth
JPH05222676A (en) Fixing agent for preventing fray of woven glass fiber fabric
US3663329A (en) Method of reinforcing a knitted or woven fabric
US2868269A (en) Process of treating sheet material and product resulting therefrom
JPS61160209A (en) Preparation of glass fiber cloth prepreg
JP3838710B2 (en) Repair structure of construction sheet and repair method
JPS59199860A (en) Glass fiber fabric tab clamped by polyethylene type copolymer
JPH0860484A (en) Glass cloth substrate and laminated sheet using the same
JPS60194182A (en) Treatment of glass cloth
JPS6375182A (en) Polyester fiber for fabric
JPH0571155B2 (en)
JPH06240578A (en) Fixing agent for preventing fray of woven fabric of glass fiber and woven fabric of glass fiber using the same
JPH02216277A (en) Fixing agent for preventing glass cloth from fraying
JP4686059B2 (en) Glass fiber fabric anti-fraying adhesive and glass fiber fabric with anti-fraying
JPH0751640B2 (en) Resin impregnated sheet for laminated molded body and method for producing the same
JPH0657665A (en) Interlocking agent for preventing fray of woven fabric of glass