JPH02236216A - Method and apparatus for heat treatment - Google Patents

Method and apparatus for heat treatment

Info

Publication number
JPH02236216A
JPH02236216A JP5457289A JP5457289A JPH02236216A JP H02236216 A JPH02236216 A JP H02236216A JP 5457289 A JP5457289 A JP 5457289A JP 5457289 A JP5457289 A JP 5457289A JP H02236216 A JPH02236216 A JP H02236216A
Authority
JP
Japan
Prior art keywords
cooling
treated
tray
bubbles
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5457289A
Other languages
Japanese (ja)
Other versions
JP2895499B2 (en
Inventor
Masatoshi Suzuki
正利 鈴木
Seiro Katagiri
片桐 晴郎
Masamichi Sato
佐藤 理通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP5457289A priority Critical patent/JP2895499B2/en
Publication of JPH02236216A publication Critical patent/JPH02236216A/en
Application granted granted Critical
Publication of JP2895499B2 publication Critical patent/JP2895499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To make uniform inner temp. of a material to be treated and to reduce the residual stress by dipping the heated material to be treated into cooling water together with a tray and shifting bubbles covering surface of the material to be treated. CONSTITUTION:A cooling lightening body 11 is arranged at bottom face of the tray 1, and inner part of the tray 1 is parted with wire nets 13, and the materials 9 to be treated are set in the sections, respectively. This is charged into a heat treatment furnace 91 and heated at hot temp., and after that, the materials 9 to be treated are dipped into the cooling water together with the tray 1. The water coming into contact with the surface of the cooling lightening body 11 is boiled with the heated cooling lightening body 11, and vapor bubbles 72 are generated. The bubbles 72 rise while covering the materials 9 to be treated. Further, the bubbles 71 generate from the materials 9 to be treated itself. The materials 9 to be treated are cooled in the cooling water under condition of being covered with the bubbles 71, 72 shifted upward. As a cooling adjusting material is not used, the heat treatment operation and control are facilitated.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は,アルミニウム材,m材等の鋳物5@遺品を熱
処理する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and an apparatus for heat treating castings 5@remains of aluminum materials, m-materials, etc.

〔従来技術〕[Prior art]

アルミニウム材,鋼材等の金属材料は,鋳造.鍛造など
により所望形状に加工した後.必要に応じて熱処理を行
う.即ち.これら金属材料の被処理体を.一旦所定の高
温に加熱した後冷却水中に浸漬して,その熱処理を行う
。この熱処理としては.例えば,アルミニウム材におい
ては溶体化処理が1また鋼材においては焼入れがある。
Metal materials such as aluminum and steel are cast. After being processed into the desired shape by forging etc. Heat treatment is performed as necessary. That is. Objects to be processed made of these metal materials. After being heated to a predetermined high temperature, it is immersed in cooling water for heat treatment. As for this heat treatment. For example, solution treatment is used for aluminum materials, and quenching is used for steel materials.

しかして.二〇熱処理においては2被処理体の表面と内
部.上端と下端とが,成可く同じ温度を保ちながら,つ
まり両者の温度差を成可く小さくした状態で.均等冷却
する必要がある。何故なら両者間の温度差が大きい場合
には1被処理体内に熱応力.熱ひずみが生じ.残留応力
が発生するからである。
However. 20 In heat treatment, 2. The surface and interior of the object to be treated. The upper and lower ends should maintain the same temperature as possible, that is, the temperature difference between them should be as small as possible. Must be cooled evenly. This is because if the temperature difference between the two is large, thermal stress will occur within the object to be processed. Thermal strain occurs. This is because residual stress is generated.

しかしながら,第22図に示すごとく.加熱した被処理
体9を冷却水中に浸漬すると,該被処理体9の表面に接
した冷却水が沸騰して気泡を発生する.そして,発生し
た気泡は上方に移動し,第23A図に示すように被処理
体9の上部は,表面に蒸気膜を形成した膜沸騰状態とな
り.気泡密度の高い膜沸騰部iによって覆われ,その外
側は更に気泡密度の比較的低い領域jによって覆われ,
更にそのまわりを冷却水が囲んでいる.これに対し,被
処理体の下部は同図に示すごとく,表面から気泡発生が
起きる気泡密度の低い核沸騰部hによって覆われ.その
まわりを冷却水が囲んでいる.それ故,被処理体上部は
気泡密度が高く,冷却水の浸入が少ないため.冷却速度
が遅く,一方被処理体下部は気泡密度が低く,冷却水と
接する部分が多いため.冷却速度が速い.加えて核沸騰
部hにおいては被処理体表面の温度境界層を気泡発生に
よって破壊するため.熱伝達率が高くなり冷却速度は更
に速くなる.したがって,被処理体9の下方と上方,更
に表面と内部との間では大きな温度差が生じ,上記均等
冷却ができない。
However, as shown in Figure 22. When the heated object 9 is immersed in cooling water, the cooling water that comes into contact with the surface of the object 9 boils and generates bubbles. Then, the generated bubbles move upward, and the upper part of the object to be treated 9 becomes in a film boiling state with a vapor film formed on the surface, as shown in FIG. 23A. It is covered by a film boiling part i with a high bubble density, and the outside thereof is further covered by a region j with a relatively low bubble density,
Furthermore, cooling water surrounds it. On the other hand, as shown in the figure, the lower part of the object to be processed is covered with a nucleate boiling zone h where bubble density is low, where bubbles are generated from the surface. Cooling water surrounds it. Therefore, the upper part of the object to be treated has a high bubble density and there is little infiltration of cooling water. This is because the cooling rate is slow, and on the other hand, the lower part of the object to be processed has a low bubble density, and there are many parts that come into contact with the cooling water. Cooling speed is fast. In addition, in the nucleate boiling zone h, the temperature boundary layer on the surface of the object to be treated is destroyed by the generation of bubbles. The heat transfer coefficient increases and the cooling rate becomes even faster. Therefore, a large temperature difference occurs between the lower part and the upper part of the object to be processed 9, as well as between the surface and the inside thereof, and the above-mentioned uniform cooling cannot be achieved.

さらに冷却が進み被処理体の温度が下がると第23B図
に示すように核沸騰部hが被処理体上部に移動し被処理
体9の上部のみが気泡密度の低い核沸騰部hによって覆
われ熱伝達率が高くなり急冷される.これに対し,下部
は直接冷却水によって囲まれるため被処理体表面に温度
境界層が形成され,熱伝達率が下がるため徐冷され,冷
却速度に差を生じ,被処理体の均等冷却ができない。
As cooling progresses further and the temperature of the object to be processed falls, the nucleate boiling part h moves to the upper part of the object to be processed, as shown in FIG. 23B, and only the upper part of the object to be processed 9 is covered by the nucleate boiling part h with a low bubble density. The heat transfer coefficient increases and cooling occurs rapidly. On the other hand, since the lower part is directly surrounded by cooling water, a temperature boundary layer is formed on the surface of the object to be processed, which reduces the heat transfer coefficient and causes gradual cooling, causing a difference in cooling rate and making it impossible to cool the object uniformly. .

上記に関して.被処理体9としてアルミニウム鋳物(以
下.アルミ鋳物という)を例にとり.以下に説明する. 即ち.従来,アルミ鋳物(例えば自動車のシリンダヘッ
ド)の溶体化処理は5第15図に示すごとく,一つのト
レー8内に多数の被処理体9を入れ.同時に処理を行っ
ている。このトレー8は,多量の被処理体9を同時に加
熱 冷却するためその底面及び周囲は通気性.通水性の
良い網状となっている. 即ち,上記トレー8は,第17図及び第18図に示すご
とく,金属製であって底面に金網8lを.側面にはフレ
ーム82を有する通水性の良い枠体である.そして.該
トレー8の金!il81上に40個の被処理体9を立て
てある. アルミ鋳物の熱処理工程は,一般に第16図に示すT6
処理が行われ,第15図に示すごとく熱処理炉91内で
加熱された被処理体9は炉出口の扉92が開《と,トレ
ー8と共に冷却水槽93の上部まで送られ.数秒で冷却
水931内に浸漬される。これにより.アルミ鋳物は水
温まで冷却,固溶化される。
Regarding the above. As an example, the object to be processed 9 is an aluminum casting (hereinafter referred to as aluminum casting). This is explained below. That is. Conventionally, in the solution treatment of aluminum castings (for example, cylinder heads of automobiles), a large number of objects 9 to be treated are placed in one tray 8, as shown in FIG. processing at the same time. This tray 8 is designed to heat and cool a large amount of objects 9 at the same time, so its bottom and surrounding area are breathable. It has a mesh shape with good water permeability. That is, as shown in FIGS. 17 and 18, the tray 8 is made of metal and has a wire mesh 8L on the bottom surface. It has a frame 82 on the side and has good water permeability. and. The money in tray 8! Forty objects 9 to be processed are placed on the il 81. The heat treatment process for aluminum castings is generally performed at T6 as shown in Figure 16.
After the treatment is performed, the object 9 heated in the heat treatment furnace 91 as shown in FIG. 15 is sent to the upper part of the cooling water tank 93 together with the tray 8 when the door 92 at the furnace outlet is opened. It is immersed in cooling water 931 in a few seconds. Due to this. Aluminum castings are cooled to water temperature and converted into a solid solution.

この時,冷却水に最初に接する被処理体の先端(下端)
の冷却は非常に速い.そして.前記第22図に示すごと
《被処理体9の水没方向には沸騰現象により鋳物表面に
多量の蒸気泡7lが発生し.被処理体9内部にはこの気
泡が原因となって大きな温度差が生ずる. 次に,第19A図〜第19C図は被処理体9に熱電対を
取つけ.A,B,Cの位置(第19A図)で温度変化を
測定した例である。第19A図は気泡発生の様子を示し
た図で.水没方向と反対の上方に向かうほど,気泡の領
域が広くなる.そのため.長手方向A,B,C各点の温
度曲線は第19B図に示すように,最初に冷却水に対す
るA点が最も早《冷却され.続いて上方のB,C点が冷
却され,A,B,C点間に大きな温度差が生ず一方.中
央断面のB,D, E点では.ほぼ同時刻に冷却水に接
するため3点の温度差は小さい.一般に,物体内に最大
温度差八Tが生じると物体内には σ=±(0.3〜1.2)・E・β・八Tで表される熱
応力σが生じる。なお,上記Eはヤング率.βは線膨張
係数である. 上記第19A図の場合の冷却方法では.長手方向のA,
B,C間に最大八Tが生じる(第19B図)ことから,
八Tを小さく抑える冷却方法が要求される.なお,中央
断面B,D,E間の温度差は小さく,熱応力差も小さい
(第19C図)。
At this time, the tip (lower edge) of the object to be treated that comes into contact with the cooling water first
cooling is very fast. and. As shown in FIG. 22, a large amount of steam bubbles 7L are generated on the surface of the casting due to the boiling phenomenon in the direction in which the object 9 is submerged. A large temperature difference occurs inside the object to be processed 9 due to these air bubbles. Next, in FIGS. 19A to 19C, a thermocouple is attached to the object to be processed 9. This is an example in which temperature changes were measured at positions A, B, and C (Fig. 19A). Figure 19A is a diagram showing how bubbles are generated. The bubble area becomes wider as you move upwards, which is opposite to the direction of submersion. Therefore. As shown in Figure 19B, the temperature curves at points A, B, and C in the longitudinal direction indicate that point A relative to the cooling water is the fastest (cooled down). Subsequently, the upper points B and C are cooled, and a large temperature difference occurs between points A, B, and C. At points B, D, and E on the central section. The temperature difference between the three points is small because they come into contact with the cooling water at almost the same time. Generally, when a maximum temperature difference of 8T occurs within an object, a thermal stress σ expressed as σ=±(0.3 to 1.2)·E·β·8T occurs within the object. Note that E above is Young's modulus. β is the coefficient of linear expansion. In the case of the cooling method shown in Fig. 19A above. A in the longitudinal direction,
Since a maximum of 8 T occurs between B and C (Figure 19B),
A cooling method that keeps 8T small is required. Note that the temperature difference between central sections B, D, and E is small, and the thermal stress difference is also small (Fig. 19C).

次に,第20A図〜第20C図はトレー8内にアルミ鋳
物の被処理体9を横に置いた例である。
Next, FIGS. 20A to 20C show an example in which an aluminum casting object 9 to be processed is placed horizontally in the tray 8.

この場合は,ほぼ同時に冷却されるため.長手方向の温
度差(第20B図)は小さい.しがし2断面B,D,E
においては,下方Bは速く冷却され,上方は気泡によっ
て表面熱伝達率が低下するため冷却は遅くなり,断面間
の温度差が大きい(第2OC図). なお,第20B図.第20C図中の破線は.冷却調整剤
を使用したものであり.冷却速度は気泡の多少にかかわ
らず非常に遅い。
In this case, they are cooled almost simultaneously. The temperature difference in the longitudinal direction (Figure 20B) is small. Shigashi 2 cross sections B, D, E
In this case, the lower part B is cooled faster, and the upper part B is cooled more slowly because the surface heat transfer coefficient decreases due to air bubbles, and the temperature difference between the cross sections is large (Fig. 2 OC). In addition, Figure 20B. The dashed line in Figure 20C is . It uses a cooling adjustment agent. The cooling rate is very slow regardless of the amount of bubbles.

次に.第21図は熱処理過程中に組織的変態を伴わない
場合の残留応力の発生について説明したものである。被
処理体は直径100IIII1で8 5 0 ’Cより
水焼入れしている。同図は被処理体の外表部と中心部の
冷却温度,熱応力,残留応力を示している。被処理体の
外表部と中心部とに温度差が生じると.第19A図で示
した冷却法では長手方向に温度差ができ,それがために
残留応力を生じ被処理体に応力割れを発生する原囚とも
なり,冷却方法の改善が要求される。
next. FIG. 21 illustrates the generation of residual stress when no structural transformation occurs during the heat treatment process. The object to be treated had a diameter of 100III1 and was water quenched at 850'C. The figure shows the cooling temperature, thermal stress, and residual stress at the outer surface and center of the object to be processed. When a temperature difference occurs between the outer surface and the center of the object to be processed. In the cooling method shown in FIG. 19A, a temperature difference is created in the longitudinal direction, which causes residual stress, which can cause stress cracks in the object to be processed, and an improvement in the cooling method is required.

また.上記第21図で温度差が最大になる時期Wの状態
まで,引っ張り.圧縮応力が増加する。
Also. Stretch until the temperature difference reaches the maximum point W in Figure 21 above. Compressive stress increases.

Wを通過後は温度差が城少することによって,両部の応
力は減少する.Wまでの時間では.外表部はその温度で
の引っ張り応力を受け,塑性変形を行う.図中のaは弾
性変形を示し,b,cは実際の応力を示す。Wを通過後
は温度差が減少するにつれ,応力分布はUで逆転し.最
終状態として,外表部は圧縮,中心部は引っ張りの残留
応力になる.この残留応力が材料の降状応力を越えると
応力集中による亀裂・割れの原因となる。従って残留応
力の大きさを支配するものはWにおける温度差であり.
材料の強度である。
After passing through W, the stress in both parts decreases as the temperature difference decreases. In the time until W. The outer surface receives tensile stress at that temperature and undergoes plastic deformation. In the figure, a indicates elastic deformation, and b and c indicate actual stress. After passing through W, the stress distribution reverses at U as the temperature difference decreases. The final state is a compressive residual stress in the outer surface and a tensile stress in the center. When this residual stress exceeds the descending stress of the material, it causes cracks and fractures due to stress concentration. Therefore, what controls the magnitude of residual stress is the temperature difference in W.
It is the strength of the material.

前記シリンダヘッドのごとき長いものの熱処理において
は,従来は多量の被処理体を同時に熱処理できるために
,前記第18図,第19A図のごとく,被処理体を立て
置きとしているが,長手方向の温度差が大きく,熱応力
,熱ひずみがみられ,残留応力が発生する.また,第2
0A図に示す横置きでは.冷却時の内部温度はかなり均
一化され,残留応力も小さいが.一度に多量の熱処理が
できないこと,また被処理体を置く位置によって温度差
を生じ,均等冷却ができないことにより,実用的な熱処
理方法ではない. こうした対策の例として,前記第20B図,第20C図
に点線で示したごとく冷却水に冷却調整剤などを混入し
,全体の冷却を遅くして内部温度差を小さくする方法も
用いられている.しかし.冷却水中の冷却調整剤の濃度
管理を必要とする。
Conventionally, in the heat treatment of long items such as cylinder heads, the objects to be treated are placed vertically as shown in Figs. The difference is large, thermal stress and thermal strain are observed, and residual stress occurs. Also, the second
When placed horizontally as shown in figure 0A. The internal temperature during cooling is fairly uniform, and the residual stress is small. It is not a practical heat treatment method because it is not possible to heat treat a large amount at once, and temperature differences occur depending on the position of the object to be treated, making uniform cooling impossible. As an example of such a countermeasure, as shown by the dotted lines in Figures 20B and 20C, a cooling regulator is mixed into the cooling water to slow down the overall cooling and reduce the internal temperature difference. .. but. It is necessary to control the concentration of the cooling regulator in the cooling water.

また.冷却調整剤がワーク面に不均一に付着することが
あるため,内部温度差を低減できないことがあると共に
次工程に移る前に冷却調整剤の水洗工程が必要となる。
Also. Since the cooling adjustment agent may adhere unevenly to the work surface, it may not be possible to reduce the internal temperature difference, and the cooling adjustment agent must be washed with water before proceeding to the next process.

また.シリンダヘッドのようなアルミ鋳物は過酷な耐久
試験においても.熱応力に起因する亀裂の発生を生じな
いような熱処理が要求される。特に溶体化処理時の残留
応力は焼入れ工程における内部温度差が非常に大きいこ
とに起因している.〔解決しようとする課題) 本発明は,上記従来の問題点に鑑み,熱処理時において
被処理体の内部温度の均一化を図り,残留応力の低減が
できる熱処理方法及びその装置を提供しようとするもの
である. 〔課題の解決手段) 本発明は,加熱された被処理体をトレーと共に冷却水中
に浸漬して.該被処理体を熱処理する方法において,上
記被処理体の表面を覆った気泡を移動させながら熱処理
を行うことを特徴とする熱処理方法にある。
Also. Aluminum castings such as cylinder heads can withstand even severe durability tests. A heat treatment that does not cause cracks due to thermal stress is required. In particular, residual stress during solution treatment is caused by the extremely large internal temperature difference during the quenching process. [Problems to be Solved] In view of the above-mentioned conventional problems, the present invention aims to provide a heat treatment method and an apparatus therefor that can equalize the internal temperature of the object to be treated and reduce residual stress during heat treatment. It is something. [Means for Solving the Problems] The present invention involves immersing a heated object together with a tray in cooling water. The method of heat treating the object to be processed is characterized in that the heat treatment is performed while moving bubbles covering the surface of the object to be processed.

本発明において注目すべきことは,加熱された被処理体
をトレーと共に冷却水中に浸漬して熱処理するに当り.
冷却水中の被処理体を覆った気泡を移動させながら熱処
理することである。
What should be noted in the present invention is that the heated object to be treated is immersed together with the tray in cooling water for heat treatment.
Heat treatment is performed while moving air bubbles covering the object in the cooling water.

かかる,気泡を供給する手段としては,上記のごとく被
処理体と共に冷却水中に入れたトレーの表面から,冷却
水の沸騰による気泡を供給すること,或いは冷却水槽中
の冷却水中に外部より空気等のガスを供給することがあ
る。しかして,上記トレー自体の表面から気泡を発生さ
せる手段としては,後述する熱処理装置がある。
As a means for supplying air bubbles, as mentioned above, air bubbles are supplied by boiling of the cooling water from the surface of the tray placed in the cooling water together with the object to be treated, or air, etc. is supplied from the outside into the cooling water in the cooling water tank. gas may be supplied. As a means for generating air bubbles from the surface of the tray itself, there is a heat treatment device described below.

また,上記熱処理方法を実施するための装置としては,
冷却水槽と,該冷却水槽中の冷却水中に加熱した被処理
体を運び入れるトレーとよりなる熱処理装置において,
上記トレーは少なくともその底部に.冷却水中に浸漬し
たときに気泡を発生する冷却緩和体を存することを特徴
とする熱処理装置がある。
In addition, the equipment for carrying out the above heat treatment method is as follows:
In a heat treatment device comprising a cooling water tank and a tray for carrying a heated object into the cooling water in the cooling water tank,
At least the tray above is at its bottom. There is a heat treatment apparatus characterized by including a cooling relaxation body that generates bubbles when immersed in cooling water.

本装置において,冷却緩和体は被処理体と共に加熱され
た状態で冷却水中に浸漬したとき,該冷却緩和体の表面
に接した冷却水の沸騰により気泡を発生するものである
。該冷却緩和体としては金属体がある.そして.該冷却
緩和体は,上記気泡を長い間発生させておくためには.
できるだけ熱容量が大きいものが良い。また,冷却緩和
体は少なくともトレーの底部に設ける。これは.トレー
内に入れた被処理体に.下方より気泡を送るためである
。また,冷却緩和体はトレーの底自体に形成すること(
第1〜第3実施例),或いはトレーの網状底の上に別途
設けること(第4,第5実施例)もできる。また,底部
と共にトレーの側面に設けることもできる。
In this apparatus, when the cooling relaxation body and the object to be treated are immersed in cooling water in a heated state, bubbles are generated by the boiling of the cooling water in contact with the surface of the cooling relaxation body. The cooling relaxation body includes a metal body. and. The cooling relaxation body is necessary to keep the bubbles generated for a long time.
It is best to use one with as large a heat capacity as possible. In addition, a cooling relaxation body is provided at least at the bottom of the tray. this is. For the object to be processed placed in the tray. This is to send air bubbles from below. In addition, the cooling relaxation body must be formed on the bottom of the tray itself (
(first to third embodiments), or it may be provided separately on the net-like bottom of the tray (fourth and fifth embodiments). Moreover, it can also be provided on the side of the tray together with the bottom.

しかして,上記冷却緩和体は,熱処理時に冷却水がトレ
ー内に入り易いようにするため,ハニカム状など,水が
良く流通し易い状態に配設することもできる. 〔作 用〕 本発明方法においては,加熱された被処理体を冷却水中
に入れて熱処理する際に,該披処理体の表面を覆う気泡
を移動させる。そのため,被処理体はその表面全体がほ
ぼ均一に気泡によって包まれると共に気泡の移動に伴い
周囲の冷却水を被処理体表面に均一に接触させつつ,被
処理体への接する冷却水量が適切に保たれながら,冷却
されることになる.それ故,被処理体は,その全体が気
泡を介して適度に冷却水と接することとなり,全体が均
一にしかも適度の速度で冷却され,被処理体の内部の温
度差が小さくなる。更に,本方法において被処理体の表
面を覆う気泡の密度を適切にすることによって,気泡の
間から浸入する冷却水の量が調整され,冷却速度を最適
化することができる. また.前記装置によれば,トレー底面に冷却緩和体を設
けてあるので.被処理体を入れたトレーを冷却水に浸漬
すると,直ちに上記冷却緩和体の表面に接触した冷却水
が沸騰し,その蒸気泡が被処理体の表面を包む。
In order to make it easier for cooling water to enter the tray during heat treatment, the cooling relaxation body described above can be arranged in a honeycomb shape or other shape that facilitates water circulation. [Function] In the method of the present invention, when a heated object to be treated is placed in cooling water and subjected to heat treatment, air bubbles covering the surface of the object to be treated are moved. Therefore, the entire surface of the object to be processed is almost uniformly surrounded by bubbles, and as the bubbles move, the surrounding cooling water is brought into uniform contact with the surface of the object to be processed, and the amount of cooling water that comes into contact with the object to be processed is adjusted appropriately. It will be cooled while being maintained. Therefore, the entire object to be processed comes into contact with the cooling water appropriately through the bubbles, and the entire object is cooled uniformly and at an appropriate rate, reducing the temperature difference inside the object. Furthermore, in this method, by adjusting the density of the bubbles covering the surface of the object to be processed, the amount of cooling water that enters between the bubbles can be adjusted, and the cooling rate can be optimized. Also. According to the device, a cooling relaxation body is provided on the bottom of the tray. When the tray containing the object to be processed is immersed in cooling water, the cooling water that comes into contact with the surface of the cooling relaxation body immediately boils, and its vapor bubbles surround the surface of the object to be processed.

それ故,第24A図に示すように,被処理体9が気泡密
度の高い膜沸騰部iによって覆われその外側は更に気泡
密度の比較的低い領域jによって覆われ.そのまわりを
冷却水が囲んでいる。膜沸騰部iは気泡の密度が高く.
冷却水の浸入が少ないため冷却速度が緩やかであり.被
処理体の全体が均一に徐々に冷却される。更に冷却が進
み,被処理体の温度が下がると.第24b図に示すよう
に被処理体9は気泡密度の低い核沸瞬部hによって覆わ
れ.そのまわりを気泡密度の比較的低い領域jを冷却水
が囲み,冷却速度は徐々に速くなり.被処理体の全体が
均一に徐々に速く冷却される。
Therefore, as shown in FIG. 24A, the object 9 to be processed is covered by a film boiling region i having a high bubble density, and the outside thereof is further covered by a region j having a relatively low bubble density. Cooling water surrounds it. In the film boiling part i, the density of bubbles is high.
Since there is little infiltration of cooling water, the cooling rate is slow. The entire object to be processed is cooled uniformly and gradually. As cooling progresses further, the temperature of the object to be processed decreases. As shown in FIG. 24b, the object 9 to be treated is covered with a nucleate boiling zone h having a low bubble density. Cooling water surrounds a region j with relatively low bubble density, and the cooling rate gradually increases. The entire object to be processed is cooled uniformly and gradually and quickly.

上記のごとく冷却初期において被処理体全体の冷却速度
を緩和し.その後は徐々に冷却速度を増大すると共に,
冷却の全工程を通じて冷却速度を適切にできるため.被
処理体の内部の温度差が小さくなる。
As mentioned above, the cooling rate of the entire object to be processed is relaxed in the early stage of cooling. After that, the cooling rate is gradually increased and
This allows the cooling rate to be adjusted appropriately throughout the entire cooling process. The temperature difference inside the object to be processed becomes smaller.

〔効 果〕〔effect〕

したがって,上記方法によれば.気泡の移動によって周
囲の冷却水を被処理表面に均一に接触させ.熱処理時に
おいて被処理体の内部温度の均一化を図ることができる
.そのため,残留応力を発生させることなく.更に気泡
によって被処理体へ接する冷却水量が適切に保たれ,冷
却速度が最適化されるため,目的とする熱処理を効果的
に達成することができる。また,従来のごとく.冷却調
整剤を用いないので,その濃度管理,熱処理後における
被処理体の水洗の必要がなく.また冷却水の排水処理の
問題も生じない。
Therefore, according to the above method. The movement of air bubbles brings the surrounding cooling water into uniform contact with the surface to be treated. It is possible to equalize the internal temperature of the object to be treated during heat treatment. Therefore, without generating residual stress. Furthermore, the bubbles keep the amount of cooling water in contact with the object to be treated at an appropriate level, optimizing the cooling rate, making it possible to effectively achieve the desired heat treatment. Also, as usual. Since no cooling agent is used, there is no need to control its concentration or wash the object with water after heat treatment. Furthermore, there is no problem with wastewater treatment of cooling water.

また,前記装置によれば.上記方法と同様の効果を得る
ことができると共に.トレー底面の冷却緩和体が熱処理
開始と同時に気泡を発生するので.気泡供給に格別の装
置を必要としない。
Also, according to the device. You can obtain the same effect as the above method. This is because the cooling relaxation body on the bottom of the tray generates bubbles at the same time as the heat treatment begins. No special equipment is required for bubble supply.

〔実施例〕〔Example〕

第1実施例 本発明の実施にかかる熱処理方法及び装置につき,第1
図〜第3図及び第4A図〜第4c図を用いて説明する. 即ち,本例においては.第1図に示すトレー1を用いて
熱処理を行う.該トレー1は,底面に冷却緩和体11を
有し.側面は棚12により囲んだ枠体である。また,該
トレー1内は,被処理体9をそれぞれ1個づつ配置する
ため.前記従来の第17図,第18図と同様に,金網1
3により区切られている。
First Example Regarding the heat treatment method and apparatus according to the present invention, the first example
This will be explained using FIGS. 3 to 3 and 4A to 4c. That is, in this example. Heat treatment is performed using tray 1 shown in Figure 1. The tray 1 has a cooling relaxation body 11 on the bottom surface. The side surface is a frame surrounded by shelves 12. Moreover, in the tray 1, one object to be processed 9 is arranged. Similar to the conventional FIGS. 17 and 18, the wire mesh 1
Separated by 3.

しかして,上記冷却緩和体11は,第2図にその縦断面
を,第3図はその横断面を示すごとくハニカム状を呈し
.零体111と空間部112とを有する。そして.該本
体は鋼材で作製されており.本体111の厚みは約20
uw.幅は約60mmで.空間部112は一辺が40胴
の四角形である。
Therefore, the cooling relaxation body 11 has a honeycomb shape, as shown in FIG. 2 as a vertical cross-section, and as shown in FIG. 3 as a cross-section. It has a zero body 111 and a space 112. and. The main body is made of steel. The thickness of the main body 111 is approximately 20
uw. The width is approximately 60mm. The space 112 is a rectangle with 40 cylinders on each side.

次に,上記トレーlを用いて熱処理を行うに当たっては
.第1図に示すごとく.該トレー1内の冷却緩和体l1
上に,被処理体9を多数(例えば40本)立て置きし,
前記第15図に示したごとく,熱処理炉91内に入れる
。そして,高温に所定時間加熱し,その後トレー1と共
に被処理体9を冷却水中に浸漬する. この浸漬により,第4A図に示すごとく,前記冷却緩和
体1lの表面に接触した水が,加熱された冷却緩和体に
より沸騰し,蒸気泡72が発生する。そして,該気泡7
2は被処理体9を覆いながら上昇する.また,被処理体
9自体からも2従来と同様に気泡71が発生する。
Next, when performing heat treatment using the above tray l. As shown in Figure 1. Cooling relaxation body l1 in the tray 1
A large number of objects 9 to be processed (for example, 40 objects) are placed on top,
As shown in FIG. 15, it is placed in a heat treatment furnace 91. Then, it is heated to a high temperature for a predetermined time, and then the tray 1 and the object 9 to be processed are immersed in cooling water. As a result of this immersion, as shown in FIG. 4A, the water that has come into contact with the surface of the cooling relaxation body 1l is boiled by the heated cooling relaxation body, and steam bubbles 72 are generated. Then, the bubble 7
2 rises while covering the object 9 to be processed. In addition, bubbles 71 are generated from the object 9 itself, as in the case of the conventional method.

それ故.被処理体9は,上記の上方に移動する気泡71
.72によって覆われた状態で.冷却水中で冷却される
.そのため.被処理体9は内部の温度差が小さい状態で
徐々に冷却される。
Therefore. The object to be processed 9 has the above-mentioned upwardly moving air bubbles 71.
.. covered by 72. It is cooled in cooling water. Therefore. The object to be processed 9 is gradually cooled while the internal temperature difference is small.

第4A図〜第4C図は上記冷却状態を示すものである。FIGS. 4A to 4C show the above-mentioned cooling state.

この図は,前記従来技術で説明(第19A図〜第19C
図)したと同様に,第4A図における被処理体9の長手
方向のA,B,Cの各点.中央断面方向のB,D,Hの
各点の温度変化を測定したものである. 長手方向の温度変化を示す第4B図と前記第19B図,
また中央断面方向の第4C図と前記第19C図とをそれ
ぞれ比較すると.本例による場合(第4B図.第4C図
)は,測定点間の温度差が非常に少ないことが分る。こ
のことは2特に長手方向のA,B,Cに関して顕著であ
る。また,本例による場合は.前記従来法(第19B図
,第19C図)に比して冷却速度が緩いことが分る.な
お,上記第4A図〜第4C図は,前記第19A図〜第1
9C図の場合と同じく被処理体として,アルミ鋳物製の
シリンダヘッドを用いたものである。
This figure is explained in the prior art (Figures 19A to 19C).
Similarly to Figure 4A, each point A, B, and C in the longitudinal direction of the object to be processed 9 in Figure 4A. The temperature changes at points B, D, and H in the central cross-sectional direction were measured. FIG. 4B and the above-mentioned FIG. 19B showing temperature changes in the longitudinal direction,
Also, when comparing Fig. 4C in the central cross-sectional direction and Fig. 19C, respectively. In the case of this example (FIGS. 4B and 4C), it can be seen that the temperature difference between the measurement points is very small. This is particularly noticeable for A, B, and C in the longitudinal direction. Also, according to this example. It can be seen that the cooling rate is slower than in the conventional method (Figures 19B and 19C). Note that the above Figures 4A to 4C are the same as the above Figures 19A to 1.
As in the case of Fig. 9C, an aluminum casting cylinder head is used as the object to be processed.

また.その熱処理は溶体化処理であり,熱処理炉内では
約SOO゜Cに加熱される. 上記のごとく本例によれば,被処理体9の内部の温度差
を少なくして熱処理を行うことができる。
Also. The heat treatment is a solution treatment and is heated to approximately SOO°C in a heat treatment furnace. As described above, according to this example, the heat treatment can be performed while reducing the temperature difference inside the object to be processed 9.

それ故,被処理体としてのシリンダヘッドの内部に残留
応力を発生させることなく,効果的に熱処理を行うこと
ができる. また.本例では.冷却緩和体1lを,空間部を有するハ
ニカム状態(第3図)としたので,該空間部を通じて,
トレー内に冷却水が入り易く,通水性が良い. 第2実施例 本例は,第5図,第6図に示すごとく,第1実施例のト
レー1において,その側面にも冷却緩和体l5を設けた
ものである。
Therefore, heat treatment can be performed effectively without generating residual stress inside the cylinder head as the object to be treated. Also. In this example. Since the cooling relaxation body 1l is in a honeycomb state (Fig. 3) having a space, through the space,
Cooling water easily enters the tray and has good water permeability. Second Embodiment In this embodiment, as shown in FIGS. 5 and 6, the tray 1 of the first embodiment is provided with a cooling relaxation body 15 on its side surface as well.

該冷却緩和体15は,トレー1の底面に配設した冷却緩
和体11と同様のハニカム状を呈し,零体151と空間
部152とを存する。
The cooling relaxation body 15 has a honeycomb shape similar to the cooling relaxation body 11 disposed on the bottom surface of the tray 1, and has a zero body 151 and a space 152.

本例によれば,第1実施例と同様の効果が得られる外.
底面の冷却緩和体11に加えて側面の冷却緩和体l5か
らも気泡を発生させるので.一層優れた熱処理を行うこ
とができる。
According to this example, the same effects as the first example can be obtained.
In addition to the cooling relaxation body 11 on the bottom, bubbles are also generated from the cooling relaxation body 15 on the side. Even better heat treatment can be performed.

また,本例においては,側面の上記冷却緩和体15に代
えて.第7図に示す冷却緩和体16を用いることもでき
る。該冷却緩和体16は.零体16l及び空間部162
が.トレー1の内側方向に向かって上昇している。それ
故.該冷却緩和体16によって発生する気泡は.傾斜し
た空間部162にガイドされて,トレー1内に向かって
進む.それ故,一層気泡による効果を得ることができる
Also, in this example, instead of the cooling relaxation body 15 on the side surface. A cooling relaxation body 16 shown in FIG. 7 may also be used. The cooling relaxation body 16 is . Zero body 16l and space 162
but. It is rising toward the inside of the tray 1. Therefore. The air bubbles generated by the cooling relaxation body 16 are. It is guided by the inclined space 162 and advances into the tray 1. Therefore, the effect of the bubbles can be further obtained.

第3実施例 本例は,第8図に示すごとく.前記第1実施例のトレー
lにおいて,冷却緩和体11の上に約3atの空間を隔
てて,金網17を配設したものである.そして,金41
il17上に被処理体9を立て置きする。
Third Embodiment This example is shown in Figure 8. In the tray 1 of the first embodiment, a wire mesh 17 is placed above the cooling relaxation body 11 with a space of about 3 at apart. And gold 41
The object to be processed 9 is placed upright on the il17.

木例によれば,冷却緩和体11と被処理体9との間に空
間があるので.被処理体9の下端部分を気泡によってよ
り多く包むことができる。それ故下端部分の急激な温度
低下を防止でき,被処理体の温度差をより少なくするこ
とができる。
According to the tree example, there is a space between the cooling relaxation body 11 and the object to be treated 9. The lower end portion of the object to be processed 9 can be covered with more air bubbles. Therefore, a sudden drop in temperature at the lower end portion can be prevented, and the temperature difference between the objects to be processed can be further reduced.

第4実施例 本例は,第9図及び第10Ii1に示すごとく2 トレ
ーlとは別個に板状の冷却緩和体21を準備し,該冷却
緩和体2lをトレー1の底金網1B上に載置する例であ
る.そして,該トレー上の冷却緩和体2l上に被処理体
9をil2置して第1実施例と同様に熱処理を行なう。
Fourth Embodiment In this example, as shown in FIGS. 9 and 10Ii1, a plate-shaped cooling relaxation body 21 is prepared separately from the tray 1, and the cooling relaxation body 2l is placed on the bottom wire mesh 1B of the tray 1. This is an example of setting Then, the object to be processed 9 is placed il2 on the cooling relaxation body 2l on the tray, and heat treatment is performed in the same manner as in the first embodiment.

上記冷却緩和体21は1被処理体9の底面より若干大き
い上面を有する厚板であり,その中央に冷却水侵入用の
空間孔211を有する。この冷却緩和体21の大きさは
.例えば縦200ffl.幅250mm,空間孔211
の直径は15〜20m,仮厚み20〜30mmである.
また.被処理体9の底面は上記冷却緩和体21の縦,幅
の長さより若干小さく.高さは400〜500mn+で
ある.また,冷却緩和体2lと被処理体9とはほぼ等価
の熱容量を存する。
The cooling relaxation body 21 is a thick plate having an upper surface slightly larger than the bottom surface of the first object to be processed 9, and has a space hole 211 in the center thereof for inlet of cooling water. The size of this cooling relaxation body 21 is. For example, length 200ffl. Width 250mm, space hole 211
The diameter is 15-20m and the tentative thickness is 20-30mm.
Also. The bottom surface of the object to be processed 9 is slightly smaller than the length and width of the cooling relaxation body 21. The height is 400-500m+. Further, the cooling relaxation body 2l and the object to be processed 9 have approximately equivalent heat capacities.

本例においては.初期冷却では冷却緩和体21と被処理
体9とにより.沸騰気泡が全面から発生し,被処理体9
が急冷されるのが緩和される。そして,更に冷却時間が
経過すると,被処理体9の表面のところどころが気泡の
核となってそこから気泡が発生する核沸騰域に到達する
In this example. In the initial cooling, the cooling relaxation body 21 and the object to be processed 9 are used. Boiling bubbles are generated from the entire surface, and the object to be treated 9
The rapid cooling of the water is alleviated. Then, as the cooling time further elapses, the surface of the object 9 to be processed reaches a nucleate boiling region where the surface becomes bubble nuclei and bubbles are generated therefrom.

そのため,冷却緩和体の熱容量により冷却の初期におけ
る被処理体の下部の急激な冷却が緩和される。また,被
処理体上部と下部はほぼ同時期に気泡発生が弱まる.そ
して,被処理体9は,下部と上部が共に核沸騰を起こし
,急冷域に入り,強度が得られることとなる. そして,その後は冷却水温度に近い対流域に入り,熱処
理が完了する. したがって.本例のごとく,被処理体と等熱容量を持つ
冷却緩和体を被処理体の底面に置くことにより.気泡沸
騰の拡大.槙沸騰の全面一様化と.対流域突入の同時刻
化を得ることができる。それ故,被処理体の内部温度の
均一化を図りなから熱処理することができる. 第5実施例 本例は.第4実施例の板状冷却緩和体に代えて第11図
〜第13図に示すごとく,容器状の冷却緩和体23を用
いるものである.該冷却緩和体23は2 トレーの底金
網工8上に載置し.該冷却緩和体23内に被処理体9を
載置して第1実施例と同様に熱処理する. 上記冷却緩和体23は.底板232と側板231とから
なる四角容器状で.底板232には水浸入用の5個の空
間孔233を有する。該冷却緩和体23の大きさは.例
えば縦200am,幅250閣,高さ60mmの内面を
有し,底板及び側仮は厚みloanである。被処理体9
は第4実施例と同様である. 本例においては,第4実施例に比して,被処理体9の下
方側方に,冷却緩和体23の側板23【が位置している
ので,底板232から気泡が生ずると共に.該側板23
1からも多量の気泡が発生する.そのため,第4実施例
に比して,被処理体9の側面を上昇する気泡量が多く.
被処理体9が多くの気泡で覆われることとなる. そのため,本例においても第4実施例と同様に被処理体
9全体がほぼ同時刻に核沸騰を起こすこととなる. また,被処理体9の側面の気泡量が第4実施例よりも多
いので,同例に比して被処理体の均一熱処理をより効果
的に行うことができる。また,そのため,第4実施例と
同一の効果を得ようとする場合には.冷却緩和体23を
前記冷却緩和体2lよりも軽量化することができる。
Therefore, the rapid cooling of the lower part of the object to be processed at the initial stage of cooling is alleviated by the heat capacity of the cooling relaxation body. In addition, bubble generation at the upper and lower parts of the object to be treated weakens at approximately the same time. Then, the object 9 to be treated undergoes nucleate boiling in both the lower part and the upper part, enters the quenching region, and gains strength. After that, it enters the convection area where the temperature of the cooling water is close to that of the cooling water, and the heat treatment is completed. therefore. As in this example, by placing a cooling relaxation body with the same thermal capacity as the object to be processed on the bottom surface of the object to be processed. Expansion of bubble boiling. Fully uniform boiling of Maki. Simultaneous entry into the convective region can be obtained. Therefore, heat treatment can be performed without trying to equalize the internal temperature of the object to be treated. Fifth Embodiment This example is. In place of the plate-shaped cooling relaxation body of the fourth embodiment, a container-shaped cooling relaxation body 23 is used as shown in FIGS. 11 to 13. The cooling relaxation body 23 is placed on the bottom wire meshwork 8 of two trays. The object to be treated 9 is placed in the cooling relaxation body 23 and heat treated in the same manner as in the first embodiment. The cooling relaxation body 23 is. It has a square container shape consisting of a bottom plate 232 and a side plate 231. The bottom plate 232 has five space holes 233 for water intrusion. The size of the cooling relaxation body 23 is . For example, it has an inner surface with a length of 200 am, a width of 250 mm, and a height of 60 mm, and the bottom plate and side walls are loan thick. Object to be processed 9
is the same as the fourth embodiment. In this example, compared to the fourth example, since the side plate 23 of the cooling relaxation body 23 is located on the lower side of the object to be processed 9, air bubbles are generated from the bottom plate 232 and... The side plate 23
A large amount of bubbles are generated even from 1. Therefore, compared to the fourth embodiment, the amount of bubbles rising up the side surface of the object to be processed 9 is large.
The object to be processed 9 will be covered with many bubbles. Therefore, in this example as well, the entire object 9 to be treated undergoes nucleate boiling at approximately the same time, similar to the fourth example. Further, since the amount of bubbles on the side surface of the object to be processed 9 is larger than that in the fourth embodiment, the object to be processed can be uniformly heat-treated more effectively than in the same example. Also, for this reason, when trying to obtain the same effect as the fourth embodiment. The cooling relaxation body 23 can be made lighter than the cooling relaxation body 2l.

第6実施例 本例は,第14図に示すごとく,装置93の下方に空気
ノズル15を設け.該空気ノズル75より,冷却水93
1中に圧縮空気を噴出させて,気泡76を供給するもの
である。
Sixth Embodiment In this embodiment, as shown in FIG. 14, an air nozzle 15 is provided below the device 93. From the air nozzle 75, cooling water 93
Compressed air is jetted into the air bubble 1 to supply air bubbles 76.

トレー8は,前記第17図,第18図に示した従来と同
様のものである。しかして,本例においては.上記圧縮
空気による気泡76を発生させた冷却水931中に.加
熱された被処理体9をトレー8に入れたまま浸漬する。
The tray 8 is similar to the conventional one shown in FIGS. 17 and 18. However, in this example. In the cooling water 931, bubbles 76 are generated by the compressed air. The heated object 9 to be processed is immersed in the tray 8.

気泡76は.トレー8底面の金網81を貫通して上昇し
,トレー8内の被処理体を包みながら上昇する。それ故
3被処理体は.前記のごとく,内部の温度差が少ない状
態で.徐々に冷却される。
The bubble 76 is. It passes through the wire mesh 81 on the bottom of the tray 8 and rises, wrapping the object to be processed inside the tray 8 as it rises. Therefore, the 3 objects to be processed are. As mentioned above, under conditions where there is little difference in internal temperature. Cool down gradually.

本例によれば,気泡は外部より供給するので5必要な時
間だけ被処理体を気泡によって包み,冷却することがで
きる。また,従来のごとく,冷却調整剤を用いないので
,熱処理操作及び管理が容易である。
According to this example, since the bubbles are supplied from the outside, the object to be processed can be wrapped in the bubbles and cooled for the required time. Furthermore, since no cooling adjustment agent is used as in the conventional method, heat treatment operations and management are easy.

なお,かかる空気供給と,前記冷却緩和体とを併用して
,熱処理することもできる。例えば,当初は空気供給な
しで冷却緩和体からの蒸気泡のみとし,該蒸気泡が少な
くなった時点で空気供給を行うなどの態様を採ることも
できる.
Note that the heat treatment can also be performed using the air supply and the cooling relaxation body in combination. For example, it is possible to initially supply only steam bubbles from the cooling relaxation body without supplying air, and then supply air when the number of steam bubbles decreases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4C図は第1実施例のトレーを示し.第1図
はその正面図,第2図は冷却緩和体の紺断面図,第3図
は第2図のA−A線矢視断面図,第4A図〜第4C図は
熱処理状態の概念図および冷却曲線,第5図〜第7図は
第2実施例のトレーを示し,第5図は正面図,第6図は
側面用の冷却緩和体の断面図,第7図は他の冷却緩和体
の断面図,第8図は第3実施例のトレーの正面図,第9
図及び第10図は第4実施例を示し,第9図は冷却緩和
体の斜視図.第10図は熱処理時の状態を示す側面図.
第11図〜第13図は第5実施例を示し第11図は冷却
緩和体の斜視図.第12図は冷却緩和体の平面図.第1
3図は熱処理時の状態を示す側面図,第14図は第6実
施例の概念図,第15図〜第22図は従来例を示し5第
15図は熱処理装置の概念図2第16図は熱処理パター
ンの説明図,第17図及び第18図は従来のトレーの一
部欠載平面図及び正面図,第19A図〜第19C図は従
来の立て置き冷却の状態図及び冷却曲線第20A図〜第
20C図は従来の横置き冷却の状態図及び冷却曲線,第
21図は冷却時の熱応力発生を説明する図,第22図は
冷却時の状態を示す図.第23A図,第23B図は従来
法の冷却過程の模式図,第24A図.第24B図は本発
明の冷却過程の模式図である。 第1図 1,8...}レー 11.  15,  16,  21,23...冷却
緩和体. 71,72.76,...気泡, 9...被処理体
Figures 1 to 4C show the tray of the first embodiment. Figure 1 is its front view, Figure 2 is a dark blue sectional view of the cooling relaxation body, Figure 3 is a sectional view taken along the line A-A in Figure 2, and Figures 4A to 4C are conceptual diagrams of the heat treatment state. and cooling curves, Figures 5 to 7 show the tray of the second embodiment, Figure 5 is a front view, Figure 6 is a sectional view of the side cooling relaxation body, and Figure 7 is another cooling relaxation body. 8 is a front view of the tray of the third embodiment, and FIG. 9 is a sectional view of the body.
Figures 1 and 10 show the fourth embodiment, and Figure 9 is a perspective view of the cooling relaxation body. Figure 10 is a side view showing the state during heat treatment.
11 to 13 show the fifth embodiment, and FIG. 11 is a perspective view of the cooling relaxation body. Figure 12 is a plan view of the cooling relaxation body. 1st
3 is a side view showing the state during heat treatment, FIG. 14 is a conceptual diagram of the sixth embodiment, and FIGS. 15 to 22 are conventional examples.5 FIG. 15 is a conceptual diagram of the heat treatment apparatus. is an explanatory diagram of a heat treatment pattern, FIGS. 17 and 18 are a partially cut-out plan view and front view of a conventional tray, and FIGS. 19A to 19C are state diagrams and cooling curve No. 20A of conventional vertical cooling. Figures 20C to 20C are state diagrams and cooling curves of conventional horizontal cooling, Figure 21 is a diagram explaining the occurrence of thermal stress during cooling, and Figure 22 is a diagram showing the state during cooling. Figures 23A and 23B are schematic diagrams of the cooling process of the conventional method, and Figure 24A. FIG. 24B is a schematic diagram of the cooling process of the present invention. Figure 1 1, 8. .. .. }Leh 11. 15, 16, 21, 23. .. .. Cooling relaxation body. 71,72.76,. .. .. Bubbles, 9. .. .. Processed object

Claims (2)

【特許請求の範囲】[Claims] (1)加熱された被処理体をトレーと共に冷却水中に浸
漬して、該被処理体を熱処理する方法において、上記被
処理体の表面を覆った気泡を移動させながら熱処理を行
うことを特徴とする熱処理方法。
(1) A method of heat-treating the heated object by immersing the heated object together with a tray in cooling water, characterized in that the heat treatment is performed while moving air bubbles covering the surface of the object. heat treatment method.
(2)冷却水槽と、該冷却水槽の冷却水中に加熱した被
処理体を運び入れるトレーとよりなる熱処理装置におい
て、上記トレーは少なくともその底部に、冷却水中に浸
漬したときに気泡を発生する冷却緩和体を有することを
特徴とする熱処理装置。
(2) In a heat treatment apparatus consisting of a cooling water tank and a tray for transporting the heated object into the cooling water of the cooling water tank, the tray has at least a cooling section at the bottom that generates air bubbles when immersed in the cooling water. A heat treatment apparatus characterized by having a relaxation body.
JP5457289A 1989-03-07 1989-03-07 Heat treatment method and apparatus Expired - Lifetime JP2895499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5457289A JP2895499B2 (en) 1989-03-07 1989-03-07 Heat treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5457289A JP2895499B2 (en) 1989-03-07 1989-03-07 Heat treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH02236216A true JPH02236216A (en) 1990-09-19
JP2895499B2 JP2895499B2 (en) 1999-05-24

Family

ID=12974406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5457289A Expired - Lifetime JP2895499B2 (en) 1989-03-07 1989-03-07 Heat treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2895499B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199992A (en) * 2005-01-19 2006-08-03 Nippon Steel Corp Method for water-cooling steel slab
JP2006522219A (en) * 2003-04-03 2006-09-28 オットー ユンカー ゲゼルシャフト ミット ベシュレンクテル ハフツング Annealing rack
JP2012158787A (en) * 2011-01-31 2012-08-23 Nisshin Steel Co Ltd Method for quenching flat article
JP2014162933A (en) * 2013-02-22 2014-09-08 Fuji Heavy Ind Ltd Method and device for heat treatment of shaft parts
JP2016108584A (en) * 2014-12-03 2016-06-20 株式会社不二越 Vacuum heat treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522219A (en) * 2003-04-03 2006-09-28 オットー ユンカー ゲゼルシャフト ミット ベシュレンクテル ハフツング Annealing rack
JP4884208B2 (en) * 2003-04-03 2012-02-29 オットー ユンカー ゲゼルシャフト ミット ベシュレンクテル ハフツング Annealing rack
JP2006199992A (en) * 2005-01-19 2006-08-03 Nippon Steel Corp Method for water-cooling steel slab
JP2012158787A (en) * 2011-01-31 2012-08-23 Nisshin Steel Co Ltd Method for quenching flat article
JP2014162933A (en) * 2013-02-22 2014-09-08 Fuji Heavy Ind Ltd Method and device for heat treatment of shaft parts
JP2016108584A (en) * 2014-12-03 2016-06-20 株式会社不二越 Vacuum heat treatment method

Also Published As

Publication number Publication date
JP2895499B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
EP3088538B1 (en) Apparatus for continuous annealing of a steel strip and method for continuous annealing of the same
CN108220851B (en) A kind of hardware and its processing method
KR101775060B1 (en) Method and apparatus for thermally treating an aluminium workpiece and aluminium workpiece
KR20110016164A (en) Suspension torsion beam manufacturing process line apparatus and hybrid press forming torsion beam thereof
JPH02236216A (en) Method and apparatus for heat treatment
JPH05195083A (en) Method for heat treatment of steel wire
KR102492108B1 (en) Lead-free patterning method and apparatus
JPS63112058A (en) Continuous casting method
JPS6121289B2 (en)
MXPA00008398A (en) Method and apparatus for producing fine wire.
JP2803153B2 (en) Casting quenching method and apparatus
CN111363909B (en) Method for eliminating residual stress of casting by using turbulent water flow
JP2938136B2 (en) Heat treatment method and apparatus
JPH075991B2 (en) Heat treatment method for steel wire
RU2486026C2 (en) Method of casting (versions)
JPS62202019A (en) Method and apparatus for hardening metallic material
KR880004112A (en) Rapid Quenching Process in Fluidized Bed
JPS5839727A (en) Cooling method for heated metal in heat treatment of metal
JP5064624B2 (en) Fluidized bed heat treatment furnace
KR102175425B1 (en) The Method of Manufacturing Continuous Casted Slab
CN107520431A (en) Cooling insulation automation equipment in As-cast Austenite-Bainite Ductile Iron production
CA1198892A (en) Method and apparatus for heat treatment of metals
JPH05320741A (en) Induction heat treatment of cylindrical parts
Han et al. Comparison of lube applications: continuous and pulse spray
US1221397A (en) Method of metal-plating.