JPH02235348A - Vapor epitaxial growth equipment - Google Patents

Vapor epitaxial growth equipment

Info

Publication number
JPH02235348A
JPH02235348A JP5674789A JP5674789A JPH02235348A JP H02235348 A JPH02235348 A JP H02235348A JP 5674789 A JP5674789 A JP 5674789A JP 5674789 A JP5674789 A JP 5674789A JP H02235348 A JPH02235348 A JP H02235348A
Authority
JP
Japan
Prior art keywords
gas
substrate
epitaxial growth
gases
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5674789A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5674789A priority Critical patent/JPH02235348A/en
Publication of JPH02235348A publication Critical patent/JPH02235348A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an epitaxial layer whose composition and film thickness are stable by a method wherein two or more kinds of gas for epitaxial growth is supplied on a substrate so as not to mix with one another, and the substrate is arranged so as to be inclined to the gas flow direction enabled to rotate. CONSTITUTION:Into the upper side of a reaction vessel 1 separated by a separating plate 11, the following are introduced: hydrogen gas as carrier gas, and dimethyl cadmium gas and diethyl tellurium gas carried by hydrogen gas. Into the lower side of the separating plate 11, the following are introduced: hydrogen gas as carrier gas, and mercury gas and diethyl tellurium gas carried by hydrogen gas. A substrate 2 is heated at 410 deg.C as the temperature of a susceptor 3 on which the substrate 2 is mounted. These gases are carried On the substrate 2 without reacting to one another; CdTe crystal formed on the upper side of the substrate 2 surface, and HgTe crystal formed on the lower side are mutually diffused by the rotation of the substrate 2, thereby obtaining an epitaxial layer of Hg1-xCdxTe.

Description

【発明の詳細な説明】 〔概 要] 気相エピタキシャル成長装置に関し、 組成の均一なエピタキシャル層を得る装置の提供を目的
とし、 エピタキシャル成長用基板を設置したサセプタを反応容
器内に設置し、前記反応容器内に導入された複数種のエ
ピタキシャル成長用ガスを加熱分解して基板上にエピタ
キシャル層を成長する装置であって、 前記複数種のエピタキシャル成長用ガスがエピタキシャ
ル成長用基板に到達する直前までに相互に混合しないよ
うなガス混合防止手段を設けるとともに、前記基板を前
記複数種のガス流に当たるように斜め方向に、かつ回転
可能に設置したことで構成する。
[Detailed Description of the Invention] [Summary] Regarding a vapor phase epitaxial growth apparatus, the purpose is to provide an apparatus for obtaining an epitaxial layer with a uniform composition. An apparatus for growing an epitaxial layer on a substrate by thermally decomposing a plurality of types of epitaxial growth gases introduced into the substrate, wherein the plurality of types of epitaxial growth gases do not mix with each other immediately before reaching the epitaxial growth substrate. In addition to providing such gas mixing prevention means, the substrate is installed obliquely and rotatably so as to be exposed to the plurality of gas flows.

r産業上の利用分野〕 本発明は気相エピタキシャル成長装置に関する。r Industrial application field] The present invention relates to a vapor phase epitaxial growth apparatus.

赤外線検知素子形成材料としてエネルギーバン・ドギャ
ップの狭い水銀・カドミウム・テルル(Hg?−x C
d. Te)よりなる化合物半導体結晶が用いられてい
る。
Mercury, cadmium, tellurium (Hg?-xC) with a narrow energy band gap can be used as materials for forming infrared sensing elements.
d. A compound semiconductor crystal made of Te) is used.

このようなRg+−x Cdx Teの結晶をエピタキ
シャル成長する際、カドミウムテルル(CdTe)のよ
うなエピタキシャル成長用基板を設置したサセプタを反
応管内に設置し、該基板上に水銀(}Ig)とジメチル
カドミウム(Cd(Cllz)z) 、ジエチルテルル
〔Te(C!■s)■〕のような分解温度のそれぞれ異
なるエピタキシャル成長用ガスを、キャリアガスの水素
ガスと共に反応管内に導入し、基板を設置したセサプタ
を加熱することで反応管内に導入されたエピタキシャル
成長用ガスを分解し、基板上にug−x Cd. Te
の結晶をエピタキシャル成長している。
When epitaxially growing such a crystal of Rg+-x Cdx Te, a susceptor with an epitaxial growth substrate such as cadmium telluride (CdTe) is installed in a reaction tube, and mercury (}Ig) and dimethyl cadmium ( Epitaxial growth gases with different decomposition temperatures, such as Cd(Cllz)z) and diethyltellurium [Te(C!■s)■], are introduced into the reaction tube together with hydrogen gas as a carrier gas, and the septa on which the substrate is placed are heated. By heating, the epitaxial growth gas introduced into the reaction tube is decomposed, and ug-x Cd. Te
crystals are grown epitaxially.

このような方法をM O C V D (Metal 
Organic Chesical Vapor De
position;有機金属化学気相成長方法)と称し
ている. 〔従来の技術〕 従来のこのようなエピタキシャル成長装置について第7
図を用いて説明する。
This method is called MOCVD (Metal
Organic Chemical Vapor De
position; organometallic chemical vapor deposition method). [Prior art] Regarding the conventional epitaxial growth apparatus, the seventh
This will be explained using figures.

図示するように反応容器l内に、CdTeよりなるエピ
タキシャル成長用基板2を載置したグラファイトよりな
るサセプタ3を設置し、該反応容器1のガス導入口4よ
りキャリアガスの水素ガスと共に、水銀蒸発器5を通過
して前記キャリアガスに担持された水銀ガス、ジメチル
カドミウム蒸発器6を通過して前記キャリアガスに担持
されたジメチルカドミウムガス、ジエチルテルル蒸発器
7を通過して前記キャリアガスに担持されたジエチルテ
ルルガスよりなるエピタキシャル成長用ガスを、前記反
応容器1内に導入する。そして前記反応容器1の周囲に
設けた高周波誘導コイル8に高周波電力を通電してサセ
プタ3を加熱し、その上の基板2を加熱し、反応容器1
内に導入された上記エピタキシャル成長用ガスを基板上
で熱分解して、基板上にHg+−x Cdx Teのエ
ピタキシャル層を形成している. 〔発明が解決しようとする課題〕 このようなエピタキシャル成長装置を用いてCdTeよ
りなる基板2上にHg+−,1 cctX Teの結晶
を気相エピタキシャル成長する際、上記水銀は既に単体
元素の状態であり、ジメチルカドミウムが分解してCd
原子が形成される分解温度は約260゜Cであり、また
ジエチルテルルが分解してTe原子が形成される分解温
度は約380″Cであるので、通常は基板2の温度は前
記ジエチルテルルの分解温度に近接した約400゜Cの
温度に保つようにしている。
As shown in the figure, a susceptor 3 made of graphite on which an epitaxial growth substrate 2 made of CdTe is mounted is installed in a reaction vessel 1, and a mercury evaporator is supplied with hydrogen gas as a carrier gas from a gas inlet 4 of the reaction vessel 1. 5, the mercury gas is carried on the carrier gas, the dimethyl cadmium gas is passed through the dimethyl cadmium evaporator 6, and the dimethyl cadmium gas is carried on the carrier gas, and the dimethyl cadmium gas is passed through the diethyl tellurium evaporator 7, and is carried on the carrier gas. An epitaxial growth gas consisting of diethyl tellurium gas is introduced into the reaction vessel 1. Then, high-frequency power is applied to the high-frequency induction coil 8 provided around the reaction vessel 1 to heat the susceptor 3 and the substrate 2 thereon.
The epitaxial growth gas introduced into the substrate is thermally decomposed on the substrate to form an epitaxial layer of Hg+-xCdxTe on the substrate. [Problems to be Solved by the Invention] When a crystal of Hg+-, 1 cct Dimethyl cadmium decomposes into Cd
The decomposition temperature at which atoms are formed is approximately 260°C, and the decomposition temperature at which diethyl tellurium decomposes to form Te atoms is approximately 380°C. The temperature is maintained at approximately 400°C, close to the decomposition temperature.

ところで基板2を上記400゜Cに加熱するために、サ
セプタ3は400゜C以上の温度に加熱しており、この
サセプタ3の加熱によって、該サセプタのガス導入側の
反応容器1内の温度は上昇しており、この反応容器内の
温度上昇によって分解温度の低いジメチルカドミウムガ
スが、基板2に到達する以前に分解する恐れがある。
By the way, in order to heat the substrate 2 to the above-mentioned 400°C, the susceptor 3 is heated to a temperature of 400°C or higher, and by heating the susceptor 3, the temperature inside the reaction vessel 1 on the gas introduction side of the susceptor increases. Due to this temperature rise in the reaction vessel, dimethyl cadmium gas, which has a low decomposition temperature, may be decomposed before reaching the substrate 2.

この分解したCd原子と単体元素の形で反応容器内に導
入されたHg原子とが反応し、前記水銀ガスおよびジメ
チルカドミウムガスが基板上に到達する以前にカドミウ
ムアマルガムが生成される。そして゛エピタキシャル成
長用ガスとしてのHgガス中のHg原子、或いはジメチ
ルカドミウムガス中のCd原子が一部消費されたエピタ
キシャル成長用ガスが基板上に到達するようになり、こ
のようなエピタキシャル成長用ガスを用いてエピタキシ
ャル成長すると、所定の組成のHj1−,lCdXTe
のエピタキシャル層が得られない問題がある。
The decomposed Cd atoms react with Hg atoms introduced into the reaction vessel in the form of a single element, and cadmium amalgam is produced before the mercury gas and dimethyl cadmium gas reach the substrate. Then, the epitaxial growth gas in which the Hg atoms in the Hg gas or the Cd atoms in the dimethyl cadmium gas as the epitaxial growth gas are partially consumed reaches the substrate, and when such epitaxial growth gas is used, When epitaxially grown, Hj1-,lCdXTe of a predetermined composition
There is a problem that it is not possible to obtain an epitaxial layer.

本発明は上記した問題点を解決し、エピタキシャル成長
用ガスが、基板に到達する以前に相互に混合して反応し
ないようにした気相エピタキシャル成長装置の提供を目
的とする。
The present invention solves the above-mentioned problems and aims to provide a vapor phase epitaxial growth apparatus in which epitaxial growth gases are prevented from mixing and reacting with each other before reaching a substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の気相エピタキシャル成長装
置は、第1図の原理図に示すように、複数種のエピタキ
シャル成長用ガスがエピタキシャル成長用基板2に到達
する直前までに相互に混合しないようなガス混合防止千
段l1を設けるとともに、該複数種のガスの混合領域で
、前記基板2を前記複数種のガス流に当たるように斜め
方向に、かつ回転可能に設置したことを特徴としている
The vapor phase epitaxial growth apparatus of the present invention that achieves the above object has a gas mixture that prevents the plurality of epitaxial growth gases from mixing with each other immediately before reaching the epitaxial growth substrate 2, as shown in the principle diagram of FIG. It is characterized in that 1,000 stages of prevention l1 are provided, and in the region where the plurality of gases are mixed, the substrate 2 is installed obliquely and rotatably so as to be exposed to the plurality of gas flows.

〔作 用〕[For production]

本発明の気相エピタキシャル成長装置は、反応容器の断
面に、該反応容器内に導入されるエピタキシャル成長用
ガスの種類に対応して、ガスの移動方向に沿って反応容
器のガス導入口より基板の近傍に到る迄、仕切り板を設
けてそれぞれ別個のガスの通路を設け、その各々のガス
の通路内に成分の異なった複数種のガスを別個に導入し
、これらのガスが基板に到達する迄に相互に混合して反
応しないようにすることで、所定の成分が所定の濃度で
混合されたエピタキシャル成長用ガスが基板上に供給さ
れる。そして基板をこれら複数種のエピタキシャル成長
用ガスのガス流が当たるように斜め方向に設置し、かつ
基板を回転することでこれら供給されたガスで基板の所
定領域に微小な厚さで形成された結晶同士が互いに相互
拡散して組成の安定したエピタキシャル層が得られる。
In the vapor phase epitaxial growth apparatus of the present invention, the cross-section of the reaction vessel is arranged in a direction from the gas inlet of the reaction vessel to the vicinity of the substrate in accordance with the type of epitaxial growth gas introduced into the reaction vessel. To achieve this, partition plates are provided to provide separate gas passages, and multiple types of gases with different components are separately introduced into each gas passage until these gases reach the substrate. By mixing the components with each other to prevent them from reacting, an epitaxial growth gas in which predetermined components are mixed at a predetermined concentration is supplied onto the substrate. Then, by placing the substrate in an oblique direction so that it is exposed to the gas flow of these multiple types of epitaxial growth gases and rotating the substrate, crystals are formed in a predetermined area of the substrate with a minute thickness using these supplied gases. They interdiffuse with each other, resulting in an epitaxial layer with a stable composition.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の実施例につき詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の気相エピタキシャル成長装置の第1実
施例の正面図、第3図は前記第2図の側面図である。
FIG. 2 is a front view of the first embodiment of the vapor phase epitaxial growth apparatus of the present invention, and FIG. 3 is a side view of FIG. 2.

第1実施例の気相エピタキシャル成長装置は、反応管容
器1の断面に、矢印Aに示すガスの移動方向に沿って石
英製の仕切り板11を設ける。この仕切り板11は該反
応容器lのガス導入口12よりエピタキシャル成長用基
板2の近傍に到るまで設け、またエピタキシャル成長用
基板2を設置する円板状のサセプタ3は、正面より見て
水平方向より手前の方向に傾けるようにして設置し、矢
印Aに示すガスの移動方向に対して所定の角度を持つよ
うに傾斜させ、かつ回転可能にする。
In the vapor phase epitaxial growth apparatus of the first embodiment, a partition plate 11 made of quartz is provided on the cross section of the reaction tube container 1 along the direction of gas movement shown by arrow A. This partition plate 11 is provided from the gas inlet 12 of the reaction vessel l to the vicinity of the epitaxial growth substrate 2, and the disk-shaped susceptor 3 on which the epitaxial growth substrate 2 is placed is arranged from the horizontal direction when viewed from the front. It is installed so as to be tilted toward the front, tilted at a predetermined angle with respect to the direction of gas movement shown by arrow A, and made rotatable.

このように仕切り板11で仕切られた反応容器1の上部
側にはキャリアガスとしての水素ガス、該水素ガスに担
持されたジメチルカドミウムガス、ジエチルテルルガス
が導入され、仕切り板l1で仕切られた反応容器lの下
部側には、キャリアガスとしての水素ガス、水素ガスに
担持された水銀ガス、ジエチルテルルガスを導入する。
Hydrogen gas as a carrier gas, dimethyl cadmium gas supported by the hydrogen gas, and diethyl tellurium gas were introduced into the upper side of the reaction vessel 1 partitioned by the partition plate 11, which was partitioned by the partition plate 11. Hydrogen gas as a carrier gas, mercury gas supported by hydrogen gas, and diethyl tellurium gas are introduced into the lower part of the reaction vessel 1.

そして基板2を載置せるサセプタ3を410゜Cの温度
に加熱する。するとジメチルカドミウムの分解温度は約
260″Cで、ジエチルテルルの分解温度は約380゜
Cであり、仕.切り板11の上部のガス通路13Aに流
れるジエチルテルルは基板2に到達する迄殆ど分解しな
い。そのため、仮にジメチルカドミウムが分解してCd
原子が発生してもジエチルテルルは分解していないので
、ジエチルテルルのTe原子と反応することはなく、仕
切り板11の上部側のガス通路13Aに流れるジメチル
カドミウムガスとジエチルテルルガスは、相互に反応す
ることは無く基板上に搬送される。
Then, the susceptor 3 on which the substrate 2 is placed is heated to a temperature of 410°C. Then, the decomposition temperature of dimethyl cadmium is about 260°C, and the decomposition temperature of diethyl tellurium is about 380°C, and the diethyl tellurium flowing into the gas passage 13A at the top of the partition plate 11 is hardly decomposed until it reaches the substrate 2. Therefore, if dimethyl cadmium decomposes and Cd
Even if atoms are generated, diethyl tellurium has not decomposed, so they will not react with the Te atoms of diethyl tellurium, and the dimethyl cadmium gas and diethyl tellurium gas flowing into the gas passage 13A on the upper side of the partition plate 11 will not interact with each other. It is transported onto the substrate without any reaction.

また仕切り板11の下部側のガス通路13Bを流れる水
銀とジエチルテルルガスは、ジエチルテルルガスが基板
上に到達するまでは反応管内の温度は380゜C以下で
あるので分解せず、従って両者のガスは相互に反応する
ことは無《、基板上に搬送される. このようにしてエピタキシャル成長用基板2表面の上部
側には、仕切り板11の上部側のエピタキシャル成長ガ
スであるジメチルカドミウムとジエチルテルルの分解ガ
スによってCdTeの結晶が形成される。また基板2表
面の下部側に、仕切り板11の下部側のエピタキシャル
成長用ガスであるジエチルテルルの分解ガスと水銀によ
ってIlgTeの結晶が形成される。そしてこれらの結
晶が、例えば数人の微小な厚さに形成される結晶成長速
度よりも早い回転速度で基板を回転すると、前記形成さ
れたCdTeとHgTeが相互拡散して}Igl−.t
Cd. Toのエピタキシャル層が得られる. また、本実施例の他の実施例として第4図より第6図迄
に示すように、反応容器1の底部1^より高さの異なる
ガス導入口21A,21Bと、該ガス導入口21A,2
1Bに対応するガス排出口22A.22Bを複数個設け
、この各々のガス導入口21A,21Bとガス排出口2
2A , 22Bで形成されたガス通路13A,13B
のそれぞれに別個のエピタキシャル成長用ガスを流すよ
うにする. このような反応容器内に於けるガスの流れの状態を第6
図に示す。ガス通路13A. 13B.を流れる複数種
のエピタキシャル成長ガスの流れは、反応容器l内の基
板2の設置領域近傍で立体交差するようにする.そして
基板2はエピタキシャル成長用ガスが立体交差する領域
で、複数種の異なったエピタキシャル成長ガスの各々に
接触するように、各々のガス流に対して所定の角度を持
つように傾斜させる. このような装置に於いてガス導入口21Bより水素ガス
に担持されたジエチルテルルガス、およびジメチルカド
ミウムガスをガス通路13Bに流し、ガス導入口2l^
より水素ガスに担持された水銀、およびジメチルテルル
ガスをガス通路13Aに導入するようにしても第1実施
例と同様な効果が得られる. また本実施例では第4図に示すように、ガス通路l3^
とガス通路13Bとが相互に角度θを直角として直交す
るように立体交差させたが、このガス通路13Aとガス
通路13Bとは直交せずに、θを所定の角度として、立
体交差させるようにしても良い。
Further, the mercury and diethyl tellurium gas flowing through the gas passage 13B on the lower side of the partition plate 11 do not decompose because the temperature inside the reaction tube is below 380°C until the diethyl tellurium gas reaches the substrate. The gases do not react with each other and are transported onto the substrate. In this way, CdTe crystals are formed on the upper side of the surface of the epitaxial growth substrate 2 by the decomposed gas of dimethyl cadmium and diethyl tellurium, which are the epitaxial growth gases on the upper side of the partition plate 11. Further, IlgTe crystals are formed on the lower side of the surface of the substrate 2 by the decomposition gas of diethyl tellurium, which is the epitaxial growth gas on the lower side of the partition plate 11, and mercury. Then, when the substrate is rotated at a rotation speed faster than the crystal growth rate at which these crystals are formed to a minute thickness, for example, the formed CdTe and HgTe interdiffuse and form }Igl-. t
Cd. An epitaxial layer of To is obtained. Further, as shown in FIG. 4 to FIG. 6 as another example of this embodiment, gas inlet ports 21A, 21B having different heights from the bottom 1^ of the reaction vessel 1, and gas inlet ports 21A, 21B, 2
Gas outlet 22A corresponding to 1B. A plurality of gas inlet ports 22B are provided, and each gas inlet port 21A, 21B and gas outlet port 2 are connected to each other.
Gas passages 13A and 13B formed by 2A and 22B
A separate epitaxial growth gas is flowed through each. The state of gas flow in such a reaction vessel is
As shown in the figure. Gas passage 13A. 13B. The flows of the plurality of epitaxial growth gases flowing through the reactor 1 are made to intersect three-dimensionally in the vicinity of the area where the substrate 2 is placed inside the reaction vessel 1. The substrate 2 is tilted at a predetermined angle with respect to each gas flow so as to contact each of a plurality of different epitaxial growth gases in a region where the epitaxial growth gases intersect. In such a device, diethyl tellurium gas supported by hydrogen gas and dimethyl cadmium gas are flowed from the gas inlet 21B to the gas passage 13B, and then the gas inlet 21B is passed through the gas inlet 21B.
Even if mercury supported by hydrogen gas and dimethyl tellurium gas are introduced into the gas passage 13A, the same effect as in the first embodiment can be obtained. Further, in this embodiment, as shown in FIG. 4, the gas passage l3^
Although the gas passage 13A and the gas passage 13B are not orthogonal to each other, they are intersected at a predetermined angle with θ being a predetermined angle. It's okay.

また第1実施例で仕切り板を2枚設けて、ガス流を3層
構造に流す方法を採っても良いし、更に第2実施例でガ
ス流を3層構造にして、この3層構造のガス流が互いに
基板の設置領域近傍で立体交差する方法を採っても良い
In addition, in the first embodiment, two partition plates may be provided to allow the gas flow to flow in a three-layer structure, or in the second embodiment, the gas flow may be made into a three-layer structure. A method may be adopted in which the gas flows intersect with each other in the vicinity of the installation area of the substrate.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、基板上
に複数種のエピタキシャル成長用ガスが相互に混合しな
い状態で到達するので、基板上に所定の成分のエピタキ
シャル成長ガスが供給されるため、組成および腰厚の安
定したエピタキシャル層が得られる効果がある. 第5図は第4図のTV−IV ”線に沿った断面図、第
6図は第2実施例に於けるガスの流れを示す模式図、 第7図は従来の気相エピタキシャル成長装置の説明図で
ある。
As is clear from the above description, according to the present invention, multiple types of epitaxial growth gases reach the substrate in a state where they are not mixed with each other, so epitaxial growth gases with predetermined components are supplied onto the substrate. This has the effect of obtaining an epitaxial layer with a stable thickness. Fig. 5 is a cross-sectional view taken along the line TV-IV'' in Fig. 4, Fig. 6 is a schematic diagram showing the gas flow in the second embodiment, and Fig. 7 is an explanation of a conventional vapor phase epitaxial growth apparatus. It is a diagram.

図において、 lは反応容器、1Aは反応容器の底部、2はエピタキシ
ャル成長用基板、3はサセプタ、l1は仕切り板、12
.21A,21Bはガス導入口、13A, 13Bはガ
ス通路、22A , 22Bはガス排出口を示す。
In the figure, l is a reaction vessel, 1A is the bottom of the reaction vessel, 2 is an epitaxial growth substrate, 3 is a susceptor, l1 is a partition plate, 12
.. 21A and 21B are gas inlet ports, 13A and 13B are gas passages, and 22A and 22B are gas outlet ports.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の原理図、 第2図は本発明の装置の第1実施例の正面図、第3図は
第2図の側面図、 第4図は本発明の装置の第2実施例の平面図、本発g7
IIIの某1シ!理聞 第 図 JseW pX’It,822 咲fゴ,.slhfl
J第4図 i4rfJr W− W’*+=3&− n#1fbm
gs S 図 本発明^啜14ケ1突攬トL面回 第 2 図 半勇ル装’Irq’jl更細り’J−>11油のi13
1m 第 図 第 図
Fig. 1 is a principle diagram of the device of the present invention, Fig. 2 is a front view of the first embodiment of the device of the present invention, Fig. 3 is a side view of Fig. 2, and Fig. 4 is a diagram of the device of the present invention. Plan view of 2nd embodiment, present invention g7
A certain one from III! Rimon diagram JseW pX'It, 822 Sakifgo,. slhfl
J Fig. 4 i4rfJr W- W'*+=3&- n#1fbm
GS
1m

Claims (3)

【特許請求の範囲】[Claims] (1)エピタキシャル成長用基板(2)を設置したサセ
プタ(3)を反応容器管(1)内に設置し、前記反応容
器内に導入された複数種のエピタキシャル成長用ガスを
加熱分解して基板上にエピタキシャル層を成長する装置
であって、 前記複数種のエピタキシャル成長用ガスがエピタキシャ
ル成長用基板(2)に到達する直前までに相互に混合し
ないようなガス混合防止手段(11)を設けるとともに
、前記基板(2)を前記複数種のガス流に当たるように
斜め方向に、かつ回転可能に設置したことを特徴とする
気相エピタキシャル成長装置。
(1) The susceptor (3) on which the epitaxial growth substrate (2) is installed is installed in the reaction vessel tube (1), and the plurality of epitaxial growth gases introduced into the reaction vessel are thermally decomposed and transferred onto the substrate. An apparatus for growing an epitaxial layer, comprising gas mixing prevention means (11) that prevents the plurality of epitaxial growth gases from mixing with each other immediately before reaching the epitaxial growth substrate (2), and 2) is installed obliquely and rotatably so as to be exposed to the plurality of gas flows.
(2)前記反応容器(1)に導入する複数種のガスの通
路を仕切る仕切り板(11)を、前記反応容器(1)の
ガス導入口(12)から基板近傍に到るまでガス流の方
向に沿って設置し、前記エピタキシャル成長用基板(2
)を設置するサセプタ(3)を前記複数種のガス流に対
して斜め方向に、かつ回転可能に設置したことを特徴と
する請求項1記載の気相エピタキシャル成長装置。
(2) A partition plate (11) that partitions the passage of multiple types of gases introduced into the reaction container (1) is installed to control the gas flow from the gas inlet (12) of the reaction container (1) to the vicinity of the substrate. The epitaxial growth substrate (2
2. The vapor phase epitaxial growth apparatus according to claim 1, wherein the susceptor (3) in which the susceptor (3) is installed is rotatably installed obliquely with respect to the plurality of gas flows.
(3)反応容器(1)の底部(1A)より互いに高さの
異なる複数のガス導入口(21A、21B)と、該ガス
導入口(21A、21B)に対応するガス排出口(22
A、22B)とを設置し、 前記ガス導入口(21A、21B)と前記ガス排出口(
22A、22B)で形成されたガス通路(13A、13
B)を通過する複数種のエピタキシャル成長用ガスのガ
ス流が、前記基板(2)の設置領域近傍で互いに立体交
差するようにするとともに、前記基板(2)を設置する
サセプタを前記複数種のガスのガス流に対して斜め方向
にかつ回転可能に設置したことを特徴とする請求項1記
載の気相エピタキシャル成長装置。
(3) A plurality of gas inlets (21A, 21B) at different heights from the bottom (1A) of the reaction vessel (1), and a gas outlet (22) corresponding to the gas inlets (21A, 21B).
A, 22B), and the gas inlet (21A, 21B) and the gas outlet (21A, 21B) are installed.
22A, 22B) formed by gas passages (13A, 13
B) The gas flows of the plurality of epitaxial growth gases passing through the substrate (2) are arranged to intersect with each other in the vicinity of the installation area of the substrate (2), and the susceptor on which the substrate (2) is installed is connected to the gas flow of the plurality of types of epitaxial growth gases. 2. The vapor phase epitaxial growth apparatus according to claim 1, wherein the vapor phase epitaxial growth apparatus is installed rotatably in an oblique direction with respect to the gas flow.
JP5674789A 1989-03-08 1989-03-08 Vapor epitaxial growth equipment Pending JPH02235348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5674789A JPH02235348A (en) 1989-03-08 1989-03-08 Vapor epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5674789A JPH02235348A (en) 1989-03-08 1989-03-08 Vapor epitaxial growth equipment

Publications (1)

Publication Number Publication Date
JPH02235348A true JPH02235348A (en) 1990-09-18

Family

ID=13036119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5674789A Pending JPH02235348A (en) 1989-03-08 1989-03-08 Vapor epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JPH02235348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287312A (en) * 1991-03-18 1992-10-12 Fujitsu Ltd Device and method for vapor phase epitaxial growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287312A (en) * 1991-03-18 1992-10-12 Fujitsu Ltd Device and method for vapor phase epitaxial growth

Similar Documents

Publication Publication Date Title
JP3442536B2 (en) Improvements on chemical vapor deposition
US5702532A (en) MOCVD reactor system for indium antimonide epitaxial material
JPH02114530A (en) Thin film formation device
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
JP7495882B2 (en) Chemical vapor deposition apparatus with multi-zone injector block
JP2004281836A (en) Semiconductor manufacturing apparatus
JPH02235348A (en) Vapor epitaxial growth equipment
TWI490367B (en) Mocvd (metal organic chemical vapor deposition) method and apparatus thereof
JPH0246558B2 (en)
JPH05251359A (en) Vapor silicon epitaxial growth device
JPS59159980A (en) Vapor growth device
JP2658213B2 (en) Vapor phase epitaxial growth method
JPS63260124A (en) Vapor growth apparatus
JPH0226893A (en) Vapor growth device
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPH04116819A (en) Vapor phase growtgh device for compound semiconductor
JPH026389A (en) Apparatus for vapor growth of semiconductor thin film
JPH02219246A (en) Vapor epitaxial growth method
JPH02181938A (en) Vapor phase epitaxial growth apparatus
JPS6284513A (en) Preparing apparatus for epitaxial crystal
JPS62291021A (en) Vapor growth device
JPS62247520A (en) Vapor phase treating device
JPH06135795A (en) Metal organic vapor phase growth method and system for compound semiconductor
JP2805865B2 (en) Vapor phase growth method of phosphorus compound semiconductor crystal