JPH0223485B2 - - Google Patents

Info

Publication number
JPH0223485B2
JPH0223485B2 JP59227965A JP22796584A JPH0223485B2 JP H0223485 B2 JPH0223485 B2 JP H0223485B2 JP 59227965 A JP59227965 A JP 59227965A JP 22796584 A JP22796584 A JP 22796584A JP H0223485 B2 JPH0223485 B2 JP H0223485B2
Authority
JP
Japan
Prior art keywords
weight
mold
ceramic
blow molding
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59227965A
Other languages
Japanese (ja)
Other versions
JPS61106430A (en
Inventor
Yasuo Kuwayama
Shozo Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP59227965A priority Critical patent/JPS61106430A/en
Publication of JPS61106430A publication Critical patent/JPS61106430A/en
Publication of JPH0223485B2 publication Critical patent/JPH0223485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/48Use of materials for the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の分野) 本発明はガラス器のブロー成形用型に関し、詳
しくはセラミツク焼結体を型材として用い、これ
に良好な吸水性能や耐摩耗性を付与することによ
り、ガラス器製品の品格を向上させ、型の保守を
簡易にし、また型寿命を延長したガラス器ブロー
成形用セラミツク型に関する。 ここでガラス器とは、食卓用ガラス器、ガラス
管球、びんガラス、ガラス装飾品などその形態
(フオルム)自身に一定の価値を有するガラス製
品であり、通常ブロー成形、プレス成形、遠心成
形、鋳込み成形などを成形工程で使用するものを
言う。 (発明の背景) 従来、吹込み成形あるいは回し吹き成形などい
わゆるガラスのブロー成形に使用されているガラ
ス器成形用型としては、鋳鉄製の金型の内面にペ
ーストオイルを塗り、次にコルク粉末を約0.5〜
1.0mm厚で付着させた後、加熱処理によりスポン
ジケーキ状の炭化層を形成させたものが知られて
いる。この型を用いてガラス器を成形する場合
は、ガラスが型内面に触れないようにして、得ら
れる製品の表面を平滑にするため、ガラス吹きの
度毎に炭化層に水を含ませ、型内面とガラスの間
に水蒸気の膜を形成させている。 しかしながら、このような型では炭化層が薄
く、またガラス成形を繰返すことにより炭化層が
摩耗して薄くなつてしまう。したがつて、炭化層
に含まれる水量も次第に少なくなる。そのため、
成形中水蒸気膜が不足しガラス成形品の肌にレコ
ード線状の模様、波打ち等を発生させ製品の品格
を低下させる。また品格の低下を防止するために
は、定期的に炭化層を再形成する必要があるが、
その操作は非常に煩わしいものである。 また、特公昭53−29163号公報には、金型の内
面に石綿、多孔質アルミナ、珪藻土等よりなる断
熱層とアルミナ粉末やセラミツクス粉末等からな
る多孔質層を内張りしたガラス成形用型が開示さ
れている。しかしながら、このような金型では吸
水可能な層が薄いため十分な吸水率が得られない
し、構造が複雑なため製造コストが高いという欠
点がある。 (発明の目的) 本発明は、上述の問題点に鑑みてなされたもの
で、型面とガラスの間の水蒸気膜の形成を成形
中、安定して保ちガラス製品の品格の向上を図
り、かつ型の保守を簡易化し、また型寿命を延長
するガラス器ブロー成形用型を提供することを目
的とし、回し吹き成形あるいは吹き込み成形に用
いられる。 (発明の経緯) 本発明者らは、上記目的を達成するために、型
の内面に特別な処理をしなくても短時間で水を吸
収させることが可能で、しかも耐摩耗性の優れた
型について研究した結果、型材としてセラミツク
焼結体を用い、原料粉末を成形、焼成することに
より、十分な吸水性能および耐摩耗性を有するガ
ラス成形用型が得られることを見い出し本発明に
到達した。 (発明の構成) すなわち、本発明は、セラミツクス原料粉体を
成形、焼成して得られ、 (1) JIS R2205に準拠する吸水率が8〜41重量
%、 (2) 100×70×7mmの板状とした試料を45゜に傾斜
して固定し、試料の真上100cmの位置から、漏
斗に入れた合成ムライト粒(2〜3mm)3Kgを
誘導管を通して試料の上に落下させることによ
り得られる摩耗量が70mg(JIS A1452で規定す
る耐摩耗性試験における80〜90mgの摩耗量に相
当)以下、 (3) 140×100×7mmの板状の試料を25℃、常圧下
で3秒間水中に浸して吸水した重量を測定し、
次式より計算した瞬間吸水率が4〜20重量%、 瞬間吸水率(重量%) =100(3秒間水に浸した後の重量 −乾燥重量)/乾燥重量 であるセラミツク焼結体からなるガラス器ブロー
成形用セラミツク型にある。 本発明において、ガラス成形用型の型材とし
て、セラミツク焼結体を用いる。セラミツク焼結
体の組成としては、特に制限されないが、好まし
くは以下の5グループが挙げられる。 (グループ) Al2O370〜99重量%およびZrO20〜30重量%、
RO0〜20重量%、好ましくは0〜5重量%(但
し、RはMg、Ca、Ba、Znの1種以上を表わ
す)、およびSiO20〜30重量%、R′2O0〜20重量%
(但し、R′はK、Na、Liの1種以上を表わす)お
よびY0〜30重量%(但し、YはP2O5、B2O3
Y2O3の1種以上を表わす)を主成分とするセラ
ミツク焼結体、 (グループ) Al2O310〜80重量%、好ましくは25〜80重量
%、RO0〜25重量%、好ましくは10〜25重量%
(但し、RはMg、Ca、Ba、Znの1種以上を表わ
す)、SiO225〜80重量%、好ましくは25〜55重量
%、より好ましくは30〜55重量%、R′2O0〜5重
量%(但し、R′はK、Na、Liの1種以上を表わ
す)、およびY0〜30重量%(但し、YはP2O5
よび/またはB2O3を表わす)を主成分とし、RO
+R′2Oが2〜30重量%を主成分とするセラミツ
ク焼結体、 (グループ) Al2O310〜70重量%、好ましくは15〜70重量
%、より好ましくは20〜45重量%、RO0〜37重
量%、好ましくは10〜25重量%(但し、Rは
Mg、Ca、Ba、Znの1種以上を表わす)、SiO240
〜90重量%、好ましくは20〜80重量%、より好ま
しくは55〜75重量%、R′2O0〜10重量%、好まし
くは1〜8重量%、より好ましくは3〜6重量%
(但し、R′はK、Na、Liの1種以上を表わす)お
よびY0〜30重量%(但し、YはP2O5および/ま
たはB2O3を表わす)を主成分とし、RO+R′2Oが
5〜47重量%でSiO2+Yが30〜90重量%である
セラミツク焼結体、 (グループ) Al2O35〜30重量%、RO0〜10重量%(但し、
RはMg、Ca、Ba、Znの1種以上を表わす)、
SiO270〜95重量%、R′2O0〜2重量%(但し、
R′はK、Na、Liの1種以上を表わす)を主成分
とし、RO+R′2Oが2〜10重量%であるセラミツ
ク焼結体、 (グループ) SiC、Si3N4、AlN、ZrO2のいずれか1種ない
し3種を70〜99重量%、RO0〜37重量%(但し、
RはMg、Ca、Ba、Znを表わす)、SiO20〜30重
量%、R′2O0〜2重量%(但し、R′はK、Na、
Liの1種以上を表わす)およびY0〜30重量%
(但し、YはP2O5、B2O3、Y2O3の1種以上を表
わす)を主成分とするセラミツク焼結体、 また、本発明に用いるセラミツクスにおいて
は、これら主成分に加えて、PbO、SnO2
Gd2O3、CeO2、SrO、Be3N2、Sc2O3等の任意成
分またはTiO2、Fe2O3等の不可避不純物成分が少
量含有されていてもよい。 このような組成を有するセラミツク焼結体を得
るためには、造岩鉱物および土壌鉱物を適宜選択
することが必要であり、例えば長石、珪石、タル
ク、ドロマイト、粘土等の鉱物およびシヤモツト
等の鉱物仮焼品が適宜選択される。 さらに、本発明のガラス器ブロー成形用型にお
いては、これらセラミツクス原料に加えて高吸水
性能を持たせるために、クルミ粉、オガクズ、石
炭粉、連通気孔を有するスポンジ等を混合するこ
ともできる。 このようにして配合された型材用原料は、ロク
ロ成形、鋳込み成形、プレス成形等の任意の方法
で成形され、次いで焼成される。焼成温度および
焼成時間はセラミツクス組成および配合比によつ
て異なるが、例えば、グループでは、1300〜
1400℃、1〜2時間保持、グループでは1100〜
1400℃、1〜2時間保持、グループでは950〜
1200℃、1〜2時間保持、グループでは1250〜
1400℃、1〜2時間保持、グループでは1400〜
1900℃、0.5〜2時間保持がそれぞれ好ましい範
囲である。 本発明のガラス器ブロー成形用型の好ましい成
形および焼成方法の一例としては以下の方法が挙
げられる。 すなわち、第1図に示すような石膏型1および
1′よりなる鋳込型の隙間2に、第2図に示すよ
うに任意の密度のスポンジ3を挟む。次に、セラ
ミツク原料粉体に媒体として水を加え粘度500〜
1000cpsの泥漿(型材原料)4とし、これを第3
図に示すように注入パイプ5上方から加圧状態で
流し込み、圧力を加えてスポンジ3の連気孔6内
に泥漿4を充填する。一定時間経過後、泥漿4は
石膏型1および1′により水分を奪われ固形体と
なり、脱型すると第4図に示すようにスポンジ3
を内部に構成した型となる。このようにして成形
された未焼成の型を乾燥した後、所定温度にて焼
成を行ない、スポンジ3を焼失させる。 このようにして得られた型7Aは第5図に示す
ように、多孔質素材の内部にスポンジ3の焼失に
よりさらに連通気孔8が構成される。この型7
は、多孔質素材により速やかに内部まで水の浸透
が可能となり、また内部が連通気孔8によつて構
成されているため、型7の外側から水を通すこと
も可能であり、吸水率の大小に関係なく、任意の
水量を型7内に簡単に供給することができる。 本発明のガラス成形用型は、JIS R2205に準拠
する吸水率が8〜41重量%、瞬時吸水率4〜20重
量%、摩耗量が70mg以下であることが必要であ
る。なお、摩耗量70mgはJIS A1452で規定する耐
摩耗性試験における80〜90mgの摩耗量にほぼ相当
する。また、吸水率と瞬時吸水率はほぼ比例関係
にある。ここでいう瞬間吸水率と摩耗量は以下の
試験法により測定される。 先ず、瞬時吸水率は140×100×7mmの板状の試
料を常温(25℃)、常圧下で3秒間水中に浸して
吸水した重量を測定し、以下の式より計算した。 瞬間吸水率(重量%)= 100(3秒間水に浸した後の重量−乾燥重量)/(乾
燥重量) また、摩耗量は100×70×7mmの板状とした試
料を45゜に傾斜して固定し、試料の真上100cmの位
置から、漏斗に入れた合成ムライト粒(2〜3
mm)3Kgを誘導管を通して試料の上に落下させ、
試料の重量減を測定しmg単位で示した。 本発明において、ガラス成形用型の瞬間吸水率
が4重量%未満であつたり、吸水率が8重量%未
満だと保水量が少なく、得られるガラス製品の肌
にレコード線状の模様、波打ち等の発生が見ら
れ、また瞬間吸水率が20重量%を越えたり、吸水
率が41重量%を越えると型内に構成される気孔が
多過ぎるか、気孔径が大き過ぎて耐摩耗性が悪く
なる。また、摩耗量が70mgを越えると型内面の摩
耗度が大きいため耐久性が悪く、また摩耗した型
材がガラス表面に付着して傷の発生原因となる。 このようにセラミツクスを成形、焼成して得ら
れ、かつ上記した性状を有する本発明のガラス成
形用型は、水蒸気を逃がす割れ目を型に設けて
も、金属製の型に比べて肌がきれいなガラス製品
が得られる。また、型の垂直方向に縦断する割れ
目を設けることによつて、型そのものの亀裂また
は割れを防止することができ、型寿命をさらに延
長する。 以下、本発明を実施例および比較例に基づいて
詳細に説明するが、本発明はこれらによつて制限
されるものではない。 実施例 1〜2 セラミツクス(グループのセラミツク焼結体
組成)等の型材原料粉体を第1表に示す化学組成
になるよう所定の割合で配合し、ボールミルを使
用して粒度が8μm以下のものが60〜70重量%程度
となるように湿式微粉砕した。その後、フイルタ
ープレスにより脱水処理、ついでスクリユー式混
練機により真空混練を行なつて成形用の坏土と
し、常法によりロクロ成形により未焼成の型を成
形した。さらに、第1表に示す温度にて焼成を行
ない、ガラス成形用型を製造した。得られた型の
吸水率、摩耗量(耐摩耗性測定値)、瞬間吸水率
および見掛気孔率を測定し、その結果を第1表に
示した。 ここにおいて、摩耗量および瞬間吸水率は前述
の方法に従つて行ない、見掛気孔率はJIS R2205
に準拠して測定した。 さらに、このようにして得られた型を回し吹き
成形に使用してガラス器製品を製造し、得られた
ガラス製品の肌の状態および型寿命を第1表に示
した。なお、これらの評価は以下に示す4段階で
評価した。 得られたガラス製品の肌の状態の評価 A…レコード線模様、波打ちが全くなく、非常
に良好。 B…レコード線模様、波打ちなく、良好。 C…レコード線模様、波打ちが多少発生し不
良。 D…レコード線模様、波打ちが多く発生し非常
に不良。 型寿命の評価 A…寿命が非常に長い。 B…寿命が長い。 C…寿命が短い。 D…寿命が非常に短い。 第1表に示されるように、実施例1〜2で得ら
れた型はいずれも吸水率および摩耗量が本発明で
要求される性状の範囲内であり、得られたガラス
製品の肌の状態や型寿命も十分に満足できるもの
であつた。 比較例1および参考例1 焼成温度を変えた以外は、実施例1および2と
同様にして型を製造した。これらの型の吸水率等
の性状を実施例1および2と同様に測定して第1
表に示すと共に、得られた型を回し吹き成形に使
用してガラス製品を製造し、得られたガラス製品
の肌の状態と型寿命を実施例1および2と同様に
測定し、結果を第1表に示した。 比較例1および参考例1で得られた型は吸水率
および摩耗量のいずれかまたは両方が本発明で要
求される性状の範囲外であり、得られたガラス製
品の肌の状態や型寿命も満足できるものではなか
つた。 この結果から明らかなように、前記したグル
ープの範囲のセラミツクス組成では、焼成温度
は、1300〜1400℃の範囲が好ましいことが判つ
た。 実施例 3〜8 セラミツクス(グループのセラミツク焼結体
組成)等の型材原料粉体を第1表に示す化学組成
になるよう所定の割合で配合し、ボールミルを使
用して粒度が8μm以下のものが60〜70重量%とな
るように湿式微粉砕した。その後、フイルタープ
レスにより脱水処理、ついでスクリユー式混練機
により真空混練を行なつて成形用の坏土とし、常
法によりロクロ成形により未焼成の型を成形し
た。さらに、第1表に示す温度にて焼成を行ない
ガラス成形用型を製造し、得られた型の吸水率、
摩耗量、瞬間吸水率および見掛気孔率を実施例1
と同様に測定し、結果を第1表に示した。 また、得られた型を回し吹き成形に使用してガ
ラス器製品を製造し、得られたガラス製品の肌の
状態と型寿命を実施例1と同様に第1表に示し
た。 第1表に示されるように、実施例3〜8で得ら
れた型はいずれも吸水率および摩耗量が本発明で
要求される性状の範囲内であり、得られたガラス
製品の肌の状態や型寿命も十分に満足できるもの
であつた。 参考例2および比較例2 焼成温度を代えた以外は、実施例3〜8と同様
にしてガラス成形用型を製造した。これらの型の
吸水率等の性状を実施例1と同様に測定して第1
表に示すと共に、得られた型を回し吹き成形に使
用してガラス製品を製造し、得られたガラス製品
の肌の状態と型寿命を実施例1と同様に測定し、
結果を第1表に示した。 参考例2および比較例2で得られた型は吸水率
および摩耗量のいずれかまたは両方が本発明で要
求される性状の範囲外であり、得られたガラス製
品の肌の状態や型寿命も満足できるものではなか
つた。 この結果から明らかなように、前記したグル
ープの範囲のセラミツクス組成では、焼成温度は
1100〜1400℃の範囲が好ましいことが判つた。 実施例 9〜13 セラミツクス(グループのセラミツク焼結体
組成)等の型材原料粉体を第1表に示す化学組成
になるよう所定の割合で配合し、ボールミルを使
用して粒度が8μm以下のものが60〜70重量%とな
るように湿式微粉砕した。その後、フイルタープ
レスにより脱水処理、次にスクリユー式混練機に
より真空混練を行なつて成形用の坏土とし、常法
によりロクロ成形により中間製品に成形した。さ
らに、第1表に示す温度にて焼成を行ないガラス
成形用型を製造し、得られた型の吸水率、摩耗
量、瞬間吸水率および見掛気孔率を実施例1と同
様に測定し、結果を第1表に示した。 また、得られた型を回し吹き成形に使用してガ
ラス製品を製造し、得られたガラス製品の肌の状
態と型寿命を実施例1と同様に測定し、結果をそ
れぞれ第1表に示した。 第1表に示されるように、実施例7〜9で得ら
れた型はいずれも吸水率および摩耗量が本発明の
要求される性状の範囲内であり、得られたガラス
製品の肌の状態や型寿命も十分に満足できるもの
であつた。 比較例3および参考例3〜5 焼成温度を変えた以外は、実施例9〜13と同様
にして型を製造した。これらの型の吸水率等の性
状を実施例1と同様に測定して第1表に示すと共
に、得られた型を回し吹き成形に使用してガラス
器製品を製造し、得られたガラス製品の肌の状態
と型寿命を実施例1と同様に測定し、結果を第1
表に示した。 比較例3および参考例3〜5の型は吸水率およ
び摩耗量のいずれかまたは両方が本発明で要求さ
れる性状の範囲外であり、得られたガラス製品の
肌の状態や型寿命も満足できるものではなかつ
た。 この結果から明らかなように、前記したグル
ープの範囲のセラミツクス組成では、焼成温度は
950〜1200℃の範囲が好ましいことが判つた。 実施例 14〜15 セラミツクス(グループのセラミツク焼結体
組成)等の型材原料粉体を第1表に示す化学組成
になるよう所定の割合で配合し、ランキヤスター
(商品名)粉体混合機(マラー型混合器のリボン
またはパドルが水平回転し、かつ容器自体も水平
回転するもの)にて水を5〜7重量%加えて半湿
式混合を行ないプレス成形用坏土とし、プレス成
形により中間製品に成形した。さらに第1表に示
す温度にて焼成を行ないガラス器ブロー成形用型
を製造し、得られた型の吸水率、摩耗量、瞬間吸
水率および見掛気孔率を実施例1と同様に測定
し、結果を第1表に示した。 また得られた型を回し吹き成形に使用してガラ
ス製品を製造し、得られたガラス製品の肌の状態
と型寿命を実施例1と同様に測定し、結果をそれ
ぞれ第1表に示した。 第1表に示されるように実施例14および15で得
られた型はいずれも吸水率および摩耗量が本発明
の要求される性状の範囲内であり、得られたガラ
ス器製品の肌の状態や型寿命も十分に満足できる
ものであつた。 参考例6および比較例4 焼成温度を変えた以外は、実施例15と同様にし
て型を製造した。これらの型の吸水率等の性状を
実施例1と同様に測定して第1表に示すと共に得
られた型を回し吹き成形に使用してガラス製品を
製造し、得られたガラス器製品の肌の状態と型寿
命を実施例1と同様に測定し、結果を第1表に示
した。 この結果から明らかなように前記したグルー
プの範囲のセラミツクス組成では焼成温度は1250
〜1400℃の範囲が好ましいことが判つた。 実施例 16〜18 実施例2、実施例6および実施例12と同様の組
成および配合比の型材原料粉体を用い、第1図に
示すような石膏型1および1′よりなる鋳込型の
隙間2に、第2図に示すように任意の密度のスポ
ンジ3を挟み、次にセラミツクス等の前記型材原
料を粘度500〜1000cpsの泥漿4とし、これを第3
図に示すようにパイプ5に上方より加圧状態で流
し込み、圧力を加えてスポンジ3の連気孔6内に
泥漿4を充填した。40〜90分後、泥漿4は石膏型
1および1′により水分を奪われ固形体となり脱
型すると第4図に示すようにスポンジ3を内部に
構成した型7Aとなつた。このようにして成形さ
れた型を乾燥した後、第1表に示す温度で焼成を
行ない、スポンジ3を焼失させ、ガラス器ブロー
成形用セラミツク型7を製造した。 得られた型の吸水率、摩耗量、瞬間吸水率およ
び見掛気孔率を実施例1と同様に測定し、結果を
第1表に示した。 また、得られた型を回し吹き成形に使用してガ
ラス製品を製造し、得られたガラス製品の肌の状
態と型寿命を実施例1と同様に測定し、第1表に
示した。 第1表に示されるように、実施例16〜18で得ら
れた型はいずれも吸水率および摩耗量が本発明で
要求される性状の範囲内であり、得られたガラス
製品の肌の状態や型寿命も十分に満足できるもの
であつた。 また、これらの型は第5図に示すように、多孔
質素材の内部にスポンジの焼失によりさらに連通
気孔8が構成されており、より速やかに内部まで
水の浸透が可能となつた。さらに、これらの型は
内部が連通気孔8によつて構成されているため、
型の外側から水を通すことも可能であり、吸水率
の大小に関係なく、任意の水量を型内に簡単に供
給することが可能であつた。
(Field of the Invention) The present invention relates to a mold for blow molding glassware, and more specifically, it uses a ceramic sintered body as a mold material, and by imparting good water absorption performance and abrasion resistance to the mold, the quality of glassware products is improved. This invention relates to a ceramic mold for blow molding glassware, which has improved performance, simplified maintenance of the mold, and extended mold life. Here, glassware refers to glass products that have a certain value in their form, such as table glassware, glass tubes, bottle glass, and glass ornaments, and are usually made by blow molding, press molding, centrifugal molding, etc. Refers to products used in molding processes such as cast molding. (Background of the Invention) Conventionally, the mold for molding glassware used in so-called glass blow molding such as blow molding or rotary blow molding is made of cast iron. Paste oil is applied to the inner surface of the mold, and then cork powder is applied. about 0.5~
It is known that a carbonized layer in the form of a sponge cake is formed by applying heat to a thickness of 1.0 mm. When forming glassware using this mold, in order to prevent the glass from touching the inner surface of the mold and to make the surface of the resulting product smooth, the carbonized layer is soaked with water each time the glass is blown. A film of water vapor is formed between the inner surface and the glass. However, in such a mold, the carbonized layer is thin, and repeating glass molding causes the carbonized layer to wear out and become thin. Therefore, the amount of water contained in the carbonized layer also gradually decreases. Therefore,
During molding, the water vapor film is insufficient, causing record-like patterns, waving, etc. on the skin of the glass molded product, reducing the quality of the product. Additionally, in order to prevent deterioration of quality, it is necessary to periodically re-form the carbonized layer.
The operation is very cumbersome. Furthermore, Japanese Patent Publication No. 53-29163 discloses a glass molding mold in which the inner surface of the mold is lined with a heat insulating layer made of asbestos, porous alumina, diatomaceous earth, etc., and a porous layer made of alumina powder, ceramic powder, etc. has been done. However, such molds have disadvantages in that sufficient water absorption cannot be obtained because the water-absorbing layer is thin, and manufacturing costs are high due to the complicated structure. (Object of the Invention) The present invention was made in view of the above-mentioned problems, and aims to maintain stable formation of a water vapor film between the mold surface and glass during molding, and to improve the quality of glass products. The purpose of this invention is to provide a glassware blow molding mold that simplifies mold maintenance and extends the life of the mold, and is used for rotary blow molding or blow molding. (Background of the invention) In order to achieve the above object, the present inventors developed a mold that can absorb water in a short period of time without any special treatment on the inner surface of the mold and has excellent wear resistance. As a result of research on molds, the inventors discovered that a glass molding mold with sufficient water absorption performance and wear resistance can be obtained by using a ceramic sintered body as the mold material, molding and firing the raw material powder, and arrived at the present invention. . (Structure of the Invention) That is, the present invention is obtained by molding and firing ceramic raw material powder, (1) has a water absorption rate of 8 to 41% by weight according to JIS R2205, and (2) has a size of 100 x 70 x 7 mm. A plate-shaped sample is fixed at an angle of 45°, and 3 kg of synthetic mullite grains (2 to 3 mm) placed in a funnel are dropped onto the sample through a guide tube from a position 100 cm directly above the sample. (3) A plate-shaped sample measuring 140 x 100 x 7 mm was placed in water for 3 seconds at 25°C and normal pressure. Measure the weight of water absorbed by soaking in
Glass made of ceramic sintered body whose instantaneous water absorption rate calculated from the following formula is 4 to 20% by weight, where instantaneous water absorption rate (weight%) = 100 (weight after immersed in water for 3 seconds - dry weight)/dry weight. Ceramic mold for blow molding. In the present invention, a ceramic sintered body is used as a mold material for a glass molding mold. The composition of the ceramic sintered body is not particularly limited, but preferably includes the following five groups. (Group) Al2O3 70-99 % by weight and ZrO2 0-30% by weight,
RO 0 to 20% by weight, preferably 0 to 5% by weight (however, R represents one or more of Mg, Ca, Ba, and Zn), and SiO 2 0 to 30% by weight, R′ 2 O 0 to 20% by weight
(However, R' represents one or more of K, Na, and Li) and Y0 to 30% by weight (However, Y is P 2 O 5 , B 2 O 3 ,
Ceramic sintered body containing as main component (group) Al 2 O 3 10 to 80% by weight, preferably 25 to 80% by weight, RO 0 to 25% by weight, preferably 10-25% by weight
(However, R represents one or more of Mg, Ca, Ba, and Zn), SiO 2 25 to 80% by weight, preferably 25 to 55% by weight, more preferably 30 to 55% by weight, R' 2 O0 ~ The main components are 5% by weight (however, R' represents one or more of K, Na, and Li) and Y0 to 30% by weight (however, Y represents P 2 O 5 and/or B 2 O 3 ). Toshi, RO
+ Ceramic sintered body containing 2 to 30% by weight of R′ 2 O as a main component, (group) Al 2 O 3 10 to 70% by weight, preferably 15 to 70% by weight, more preferably 20 to 45% by weight, RO0~37% by weight, preferably 10~25% by weight (however, R is
represents one or more of Mg, Ca, Ba, Zn), SiO 2 40
~90% by weight, preferably 20-80% by weight, more preferably 55-75% by weight, R′ 2 O 0-10% by weight, preferably 1-8% by weight, more preferably 3-6% by weight
(However, R' represents one or more of K, Na, and Li) and Y0 to 30% by weight (However, Y represents P 2 O 5 and/or B 2 O 3 ) as the main components, and RO + R' Ceramic sintered body containing 5-47% by weight of 2 O and 30-90% by weight of SiO 2 +Y, (group) Al 2 O 3 5-30% by weight, 0-10% by weight of RO (however,
R represents one or more of Mg, Ca, Ba, Zn),
SiO 2 70-95% by weight, R' 2 O 0-2% by weight (however,
Ceramic sintered body containing 2 to 10% by weight of RO + R' 2 O (R' represents one or more of K, Na, Li) (Group) SiC, Si 3 N 4 , AlN, ZrO 70-99% by weight of any one or three of 2 , RO0-37% by weight (However,
R represents Mg, Ca, Ba, Zn), SiO 2 0 to 30% by weight, R′ 2 O 0 to 2% by weight (however, R′ represents K, Na,
represents one or more types of Li) and Y0-30% by weight
(However, Y represents one or more of P 2 O 5 , B 2 O 3 , Y 2 O 3 ) as a main component. In addition, PbO, SnO2 ,
A small amount of optional components such as Gd 2 O 3 , CeO 2 , SrO, Be 3 N 2 , and Sc 2 O 3 or unavoidable impurity components such as TiO 2 and Fe 2 O 3 may be contained. In order to obtain a ceramic sintered body having such a composition, it is necessary to appropriately select rock-forming minerals and soil minerals. A calcined product is selected as appropriate. Furthermore, in addition to these ceramic raw materials, walnut powder, sawdust, coal powder, sponge with continuous holes, etc. can be mixed in the glassware blow molding mold of the present invention in order to provide high water absorption performance. The mold material raw material blended in this way is molded by any method such as potter's wheel molding, casting molding, press molding, etc., and then fired. The firing temperature and firing time vary depending on the ceramic composition and blending ratio, but for example, in the group,
1400℃, held for 1 to 2 hours, 1100℃ for groups
1400℃, held for 1-2 hours, 950℃ for groups
1200℃, held for 1-2 hours, 1250℃ for groups
1400℃, held for 1 to 2 hours, 1400℃ for groups
A preferable range is 1900°C for 0.5 to 2 hours. A preferred method for molding and firing the glassware blow molding mold of the present invention includes the following method. That is, a sponge 3 of an arbitrary density as shown in FIG. 2 is inserted into a gap 2 of a casting mold made up of plaster molds 1 and 1' as shown in FIG. Next, water is added as a medium to the ceramic raw material powder to achieve a viscosity of 500~
1000 cps slurry (raw material for mold material) 4, and this is the third
As shown in the figure, the slurry 4 is poured from above the injection pipe 5 under pressure, and pressure is applied to fill the communication holes 6 of the sponge 3 with the slurry 4. After a certain period of time, the slurry 4 is dehydrated by the plaster molds 1 and 1' and becomes a solid body, and when the mold is removed, a sponge 3 is formed as shown in FIG.
It is a type that is configured internally. After drying the unfired mold formed in this manner, it is fired at a predetermined temperature to burn out the sponge 3. As shown in FIG. 5, the mold 7A obtained in this manner further has communicating holes 8 formed inside the porous material by burning off the sponge 3. This type 7
The porous material allows water to quickly penetrate inside the mold, and since the inside is composed of communicating holes 8, it is also possible to pass water from the outside of the mold 7, and the water absorption rate can be adjusted. Any amount of water can be easily supplied into the mold 7 regardless of the amount of water. The glass molding mold of the present invention needs to have a water absorption rate of 8 to 41% by weight, an instantaneous water absorption rate of 4 to 20% by weight, and an abrasion loss of 70 mg or less according to JIS R2205. Note that the wear amount of 70 mg approximately corresponds to the wear amount of 80 to 90 mg in the wear resistance test specified in JIS A1452. Further, the water absorption rate and the instantaneous water absorption rate are almost proportional to each other. The instantaneous water absorption rate and the amount of wear mentioned here are measured by the following test method. First, the instantaneous water absorption rate was calculated by immersing a 140 x 100 x 7 mm plate-shaped sample in water for 3 seconds at room temperature (25°C) and normal pressure, measuring the weight of water absorbed, and using the following formula. Instant water absorption rate (weight %) = 100 (weight after immersed in water for 3 seconds - dry weight) / (dry weight) In addition, the amount of wear was calculated by measuring a plate-shaped sample of 100 x 70 x 7 mm at an angle of 45 degrees. Synthetic mullite grains (2 to 3
mm) 3Kg is dropped onto the sample through the guide tube,
The weight loss of the sample was measured and expressed in mg. In the present invention, if the instantaneous water absorption rate of the glass molding mold is less than 4% by weight, or if the water absorption rate is less than 8% by weight, the amount of water retained will be small, and the skin of the resulting glass product will have record-like patterns, undulations, etc. If the instantaneous water absorption rate exceeds 20% by weight or exceeds 41% by weight, there are too many pores in the mold or the pore diameter is too large, resulting in poor wear resistance. Become. Furthermore, if the amount of wear exceeds 70 mg, the inner surface of the mold will be worn to a large extent, resulting in poor durability, and the worn mold material will adhere to the glass surface, causing scratches. The glass molding mold of the present invention, which is obtained by molding and firing ceramics and has the properties described above, has a smoother surface than metal molds, even if the mold is provided with cracks to allow water vapor to escape. product is obtained. Furthermore, by providing a vertical crack in the mold, it is possible to prevent the mold itself from cracking or splitting, further extending the life of the mold. EXAMPLES Hereinafter, the present invention will be explained in detail based on Examples and Comparative Examples, but the present invention is not limited thereto. Examples 1 to 2 Raw material powders for mold materials such as ceramics (group ceramic sintered body composition) are mixed in a predetermined ratio so as to have the chemical composition shown in Table 1, and a particle size of 8 μm or less is prepared using a ball mill. Wet pulverization was carried out so that the amount was about 60 to 70% by weight. Thereafter, the mixture was dehydrated using a filter press, and then kneaded under vacuum using a screw-type kneader to obtain a clay for molding, which was then molded into an unfired mold by potter's wheel molding in a conventional manner. Further, firing was performed at the temperatures shown in Table 1 to produce glass molding molds. The water absorption rate, abrasion loss (abrasion resistance measurement value), instantaneous water absorption rate, and apparent porosity of the mold obtained were measured, and the results are shown in Table 1. Here, the wear amount and instantaneous water absorption rate were determined according to the method described above, and the apparent porosity was determined according to JIS R2205.
Measured according to. Further, the mold thus obtained was used for rotary blow molding to produce glassware products, and Table 1 shows the skin condition and mold life of the glassware obtained. In addition, these evaluations were evaluated in the four stages shown below. Evaluation of the skin condition of the obtained glass product A: Very good, with no record line pattern or waving. B...Record line pattern, no waving, good condition. C...Record line pattern and some waving occur, which is defective. D...Very poor record with many line patterns and waving. Evaluation of mold life A: Very long life. B...Long life. C...Short lifespan. D...The lifespan is very short. As shown in Table 1, all of the molds obtained in Examples 1 and 2 had water absorption rates and wear amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also sufficiently satisfactory. Comparative Example 1 and Reference Example 1 Molds were manufactured in the same manner as in Examples 1 and 2, except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Examples 1 and 2.
As shown in the table, the obtained mold was used for rotary blow molding to manufacture glass products, and the skin condition and mold life of the obtained glass products were measured in the same manner as in Examples 1 and 2. It is shown in Table 1. The molds obtained in Comparative Example 1 and Reference Example 1 had water absorption and/or abrasion that were outside the range of properties required by the present invention, and the skin condition and mold life of the resulting glass products were also poor. It wasn't satisfying. As is clear from these results, it was found that for ceramic compositions within the range of the above group, the firing temperature is preferably in the range of 1300 to 1400°C. Examples 3 to 8 Raw material powders for mold materials such as ceramics (composition of ceramic sintered bodies of the group) are mixed in a predetermined ratio so as to have the chemical composition shown in Table 1, and a particle size of 8 μm or less is prepared using a ball mill. Wet pulverization was carried out so that the amount was 60 to 70% by weight. Thereafter, the mixture was dehydrated using a filter press, and then kneaded under vacuum using a screw kneader to obtain a molding clay, which was then molded into an unfired mold by potter's wheel molding in a conventional manner. Furthermore, a glass molding mold was produced by firing at the temperature shown in Table 1, and the water absorption rate of the mold obtained was
Example 1 Wear amount, instantaneous water absorption rate, and apparent porosity
The results are shown in Table 1. Further, the obtained mold was used for rotary blow molding to produce glassware products, and the skin condition and mold life of the obtained glassware are shown in Table 1 as in Example 1. As shown in Table 1, all of the molds obtained in Examples 3 to 8 had water absorption rates and wear amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also sufficiently satisfactory. Reference Example 2 and Comparative Example 2 Glass molds were manufactured in the same manner as Examples 3 to 8, except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Example 1.
As shown in the table, the obtained mold was used for rotary blow molding to produce a glass product, and the skin condition and mold life of the obtained glass product were measured in the same manner as in Example 1.
The results are shown in Table 1. The molds obtained in Reference Example 2 and Comparative Example 2 had water absorption and/or abrasion that were outside the range of properties required by the present invention, and the skin condition and mold life of the obtained glass products were also poor. It wasn't satisfying. As is clear from this result, the firing temperature is
It has been found that a range of 1100 to 1400°C is preferred. Examples 9 to 13 Raw material powders for mold materials such as ceramics (composition of ceramic sintered bodies of the group) are blended in a predetermined ratio to have the chemical composition shown in Table 1, and a particle size of 8 μm or less is prepared using a ball mill. Wet pulverization was carried out so that the amount was 60 to 70% by weight. Thereafter, the mixture was dehydrated using a filter press, then vacuum kneaded using a screw kneader to obtain a clay for molding, which was then molded into an intermediate product by potter's wheel molding in a conventional manner. Furthermore, a glass molding mold was manufactured by firing at the temperature shown in Table 1, and the water absorption rate, wear amount, instantaneous water absorption rate, and apparent porosity of the resulting mold were measured in the same manner as in Example 1. The results are shown in Table 1. In addition, the obtained mold was used for rotary blow molding to produce glass products, and the skin condition and mold life of the obtained glass products were measured in the same manner as in Example 1. The results are shown in Table 1. Ta. As shown in Table 1, all of the molds obtained in Examples 7 to 9 had water absorption rates and wear amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also sufficiently satisfactory. Comparative Example 3 and Reference Examples 3 to 5 Molds were manufactured in the same manner as Examples 9 to 13, except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Example 1 and are shown in Table 1, and the resulting molds were used for rotary blow molding to produce glassware products. The skin condition and mold life of the skin were measured in the same manner as in Example 1, and the results were
Shown in the table. The molds of Comparative Example 3 and Reference Examples 3 to 5 had either or both of the water absorption rate and the amount of wear outside the range of properties required by the present invention, and the skin condition and mold life of the obtained glass products were also satisfactory. It wasn't something I could do. As is clear from this result, the firing temperature is
It has been found that a range of 950-1200°C is preferred. Examples 14 to 15 Raw material powders for mold materials such as ceramics (composition of ceramic sintered bodies of the Group) were blended in a predetermined ratio to have the chemical composition shown in Table 1, and a Lancaster (trade name) powder mixer Add 5 to 7% water by weight in a mold mixer (the ribbon or paddle of which rotates horizontally, and the container itself also rotates horizontally), perform semi-wet mixing to obtain press molding clay, and press mold to produce intermediate products. Molded. Furthermore, molds for glassware blow molding were manufactured by firing at the temperatures shown in Table 1, and the water absorption rate, wear amount, instantaneous water absorption rate, and apparent porosity of the molds obtained were measured in the same manner as in Example 1. The results are shown in Table 1. In addition, the obtained mold was used for rotary blow molding to produce glass products, and the skin condition and mold life of the obtained glass products were measured in the same manner as in Example 1, and the results are shown in Table 1. . As shown in Table 1, the water absorption rate and amount of wear of the molds obtained in Examples 14 and 15 are within the range of properties required by the present invention, and the skin condition of the obtained glassware products is The mold life and mold life were also sufficiently satisfactory. Reference Example 6 and Comparative Example 4 Molds were manufactured in the same manner as in Example 15, except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Example 1 and are shown in Table 1, and the molds obtained were used in rotary blow molding to manufacture glass products, and the resulting glassware products were The skin condition and mold life were measured in the same manner as in Example 1, and the results are shown in Table 1. As is clear from this result, the firing temperature is 1250 for ceramic compositions in the range of the group mentioned above.
It has been found that a range of 1400°C to 1400°C is preferred. Examples 16 to 18 Using mold material raw material powder with the same composition and blending ratio as in Examples 2, 6, and 12, a casting mold consisting of plaster molds 1 and 1' as shown in Fig. 1 was made. A sponge 3 of arbitrary density is inserted into the gap 2 as shown in FIG.
As shown in the figure, the slurry 4 was poured into the pipe 5 from above in a pressurized state, and pressure was applied to fill the communication holes 6 of the sponge 3 with the slurry 4. After 40 to 90 minutes, the slurry 4 was dehydrated by the plaster molds 1 and 1' and turned into a solid body, which was removed from the mold to form a mold 7A having a sponge 3 inside as shown in FIG. After drying the mold thus formed, it was fired at the temperature shown in Table 1 to burn out the sponge 3 and produce a ceramic mold 7 for blow molding glassware. The water absorption rate, wear amount, instantaneous water absorption rate, and apparent porosity of the mold obtained were measured in the same manner as in Example 1, and the results are shown in Table 1. Further, the obtained mold was used for rotary blow molding to produce a glass product, and the skin condition and mold life of the obtained glass product were measured in the same manner as in Example 1, and are shown in Table 1. As shown in Table 1, all of the molds obtained in Examples 16 to 18 had water absorption rates and abrasion amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also sufficiently satisfactory. Furthermore, as shown in FIG. 5, these molds have additional communication holes 8 formed inside the porous material by burning out the sponge, allowing water to penetrate into the inside more quickly. Furthermore, since the inside of these molds is composed of communicating holes 8,
It was also possible to pass water from the outside of the mold, and it was possible to easily supply any amount of water into the mold, regardless of the water absorption rate.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 以上説明したように、セラミツクス原料粉体を
成形、焼成して得られ、かつ上記した性状を有す
る本発明のガラス器ブロー成形用セラミツク型
は、型の肉厚を任意に選択できるために十分な吸
水性能が得られることから、ガラス器ブロー成形
の際に型とガラスの間に十分な水蒸気を供給する
ことができ、この結果ガラス器製品の肌にレコー
ド線状の模様、波打ち等を発生させず製品の品格
を大幅に向上させることができる。なお、水蒸気
が過剰の場合は水蒸気を逃がす割れ目を型に設け
ても、金属製の型に比べて肌がきれいなガラス製
品が得られる。 また、従来必要であつた型内面の処理が不要と
なることから、型の保守が簡易に行なえ、しかも
耐摩耗性に優れているため、型寿命を大幅に延長
することができる。 さらに、本発明のガラス器ブロー成形用セラミ
ツク型においては、型の垂直方向に縦断する割れ
目を設けることによつて、型そのものの亀裂また
は割れを防止することができ、さらに型寿命を延
長することができる。
[Table] (Effects of the Invention) As explained above, the ceramic mold for glassware blow molding of the present invention, which is obtained by molding and firing ceramic raw material powder and has the above-mentioned properties, has a wall thickness of the mold. Since it can be selected arbitrarily, sufficient water absorption performance can be obtained, and sufficient water vapor can be supplied between the mold and the glass during glassware blow molding. It is possible to significantly improve the quality of the product without causing patterns, waving, etc. Note that if there is an excess of water vapor, even if the mold is provided with cracks to allow the water vapor to escape, a glass product with a cleaner surface than a metal mold can be obtained. Furthermore, since the treatment of the inner surface of the mold, which was conventionally required, is no longer necessary, maintenance of the mold can be easily performed, and since the mold has excellent wear resistance, the life of the mold can be significantly extended. Furthermore, in the ceramic mold for blow molding glassware of the present invention, by providing a vertical crack in the mold, it is possible to prevent the mold itself from cracking or cracking, and furthermore, the life of the mold can be extended. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明のガラス器ブロー成
形用型を製造する際の好ましい成形方法を示す各
工程図および焼成後のセラミツク型の断面図であ
る。 1,1′…石膏型、2…鋳込型の隙間、3…ス
ポンジ、4…泥漿、5…パイプ、6…連気孔、7
A…未焼成セラミツク型、7…セラミツク型、
8:連通気孔。
1 to 5 are process diagrams showing a preferred molding method for manufacturing the glassware blow molding mold of the present invention, and a sectional view of the ceramic mold after firing. 1, 1'... Gypsum mold, 2... Gap between casting mold, 3... Sponge, 4... Slime, 5... Pipe, 6... Connecting hole, 7
A... Unfired ceramic type, 7... Ceramic type,
8: Continuous ventilation hole.

Claims (1)

【特許請求の範囲】 1 セラミツクス原料粉体を成形、焼成して得ら
れ、 (1) JIS R2205に準拠する吸水率が8〜41重量
%、 (2) 100×70×7mmの板状とした試料を45゜に傾斜
して固定し、試料の真上100cmの位置から、漏
斗に入れた合成ムライト粒(2〜3mm)3Kgを
誘導管を通して試料の上に落下させることによ
り得られる摩耗量が70mg(JIS A1452で規定す
る耐摩耗性試験における80〜90mgの摩耗量に相
当)以下、 (3) 140×100×7mmの板状の試料を25℃、常圧下
で3秒間水中に浸して吸水した重量を測定し、
次式より計算した瞬間吸水率が4〜20重量%、 瞬間吸水率(重量%) =100(3秒間水に浸した後の重量 −乾燥重量)/乾燥重量 であるセラミツク焼結体からなるガラス器ブロー
成形用セラミツク型。 2 前記セラミツク焼結体の組成がX5〜99重量
%(但し、XはAl2O3、SiC、Si3N4、AlN、
ZrO2のいずれか1種ないし3種を表わす)、RO0
〜37重量%(但し、RはMg、Ca、Ba、Znの1
種以上を表わす)、SiO20〜90重量%、R′2O0〜10
重量%(但し、R′はK、Na、Liの1種以上を表
わす)、およびY0〜30重量%(但し、YはP2O5
B2O3、Y2O3の1種以上を表わす)を主成分とす
る前記特許請求の範囲第1項記載のガラス器ブロ
ー成形用セラミツク型。 3 前記セラミツク焼結体の組成がAl2O370〜99
重量%およびZrO20〜30重量%、RO0〜20重量%
(但し、RはMg、Ca、Ba、Znの1種以上を表わ
す)、SiO20〜30重量%、R′2O0〜2重量%(但
し、R′はK、Na、Liの1種以上を表わす)、およ
びY0〜30重量%(但し、YはP2O5、B2O3
Y2O3の1種以上を表わす)を主成分とする前記
特許請求の範囲第2項記載のガラス器ブロー成形
用セラミツク型。 4 前記セラミツク焼結体の組成がAl2O310〜80
重量%、RO0〜25重量%(但し、RはMg、Ca、
Ba、Zn、の1種以上を表わす)、SiO225〜80重
量%およびR′2O0〜5重量%(但し、R′はK、
Na、Liの1種以上を表わす)およびY0〜30重量
%(但し、YはP2O5および/またはB2O3を表わ
す)を主成分とし、RO+R′2Oが2〜30重量%で
ある前記特許請求の範囲第2項記載のガラス器ブ
ロー成形用セラミツク型。 5 前記セラミツク焼結体の組成がAl2O310〜70
重量%、RO0〜37重量%(但し、RはMg、Ca、
Ba、Znの1種以上を表わす)、SiO220〜90重量
%、R′2O0〜10重量%(但し、R′はK、Na、Li
の1種以上を表わす)およびY0〜30重量%(但
し、YはP2O5および/またはB2O3を表わす)を
主成分とし、RO+R′2Oが5〜47重量%で、SiO2
+Yが30〜90重量%である前記特許請求の範囲第
2項記載のガラス器ブロー成形用セラミツク型。 6 前記セラミツク焼結体の組成がAl2O35〜30
重量%、RO0〜10重量%(但し、RはMg、Ca、
Ba、Znの1種以上を表わす)、SiO270〜95重量
%およびR′2O0〜2重量%(但し、R′はK、Na、
Liの1種以上を表わす)を主成分とし、RO+
R′2Oが2〜10重量%である前記特許請求の範囲
第2項記載のガラス器ブロー成形用セラミツク
型。
[Claims] 1. Obtained by molding and firing ceramic raw material powder, (1) having a water absorption rate of 8 to 41% by weight according to JIS R2205, (2) shaped into a plate of 100 x 70 x 7 mm. The amount of wear obtained by fixing the sample at an angle of 45 degrees and dropping 3 kg of synthetic mullite grains (2-3 mm) in a funnel onto the sample from a position 100 cm directly above the sample through the guide tube is calculated. 70mg (corresponding to the wear amount of 80 to 90mg in the abrasion resistance test specified in JIS A1452) or less (3) A 140 x 100 x 7 mm plate-shaped sample is immersed in water for 3 seconds at 25°C and normal pressure to absorb water. measure the weight of
Glass made of ceramic sintered body whose instantaneous water absorption rate calculated from the following formula is 4 to 20% by weight, where instantaneous water absorption rate (weight%) = 100 (weight after immersed in water for 3 seconds - dry weight)/dry weight. Ceramic mold for blow molding. 2 The composition of the ceramic sintered body is X5 to 99% by weight (where X is Al 2 O 3 , SiC, Si 3 N 4 , AlN,
ZrO 2 ), RO0
~37% by weight (where R is 1 of Mg, Ca, Ba, Zn)
species), SiO 2 0-90% by weight, R′ 2 O0-10
% by weight (however, R' represents one or more of K, Na, and Li), and Y0 to 30% by weight (however, Y is P 2 O 5 ,
A ceramic mold for blow molding glassware according to claim 1, which contains as a main component one or more of B 2 O 3 and Y 2 O 3 . 3 The composition of the ceramic sintered body is Al 2 O 3 70-99
wt% and ZrO2 0-30 wt%, RO0-20 wt%
(However, R represents one or more of Mg, Ca, Ba, and Zn), SiO 2 0 to 30% by weight, R' 2 O 0 to 2% by weight (However, R' represents one or more of K, Na, and Li. or more), and Y0 to 30% by weight (however, Y is P 2 O 5 , B 2 O 3 ,
A ceramic mold for blow molding glassware according to claim 2, which contains as a main component one or more of Y 2 O 3 . 4 The composition of the ceramic sintered body is Al 2 O 3 10 to 80
Weight%, RO0 to 25% by weight (R is Mg, Ca,
25 to 80% by weight of SiO 2 and 0 to 5% by weight of R' 2 O (wherein R' is K,
(represents one or more of Na, Li) and Y0 to 30% by weight (however, Y represents P 2 O 5 and/or B 2 O 3 ), and RO + R' 2 O is 2 to 30% by weight A ceramic mold for blow molding glassware according to claim 2. 5 The composition of the ceramic sintered body is Al 2 O 3 10-70
Weight%, RO0 to 37% by weight (However, R is Mg, Ca,
Ba, Zn), SiO 2 20 to 90% by weight, R′ 2 O 0 to 10% by weight (however, R′ is K, Na, Li
) and Y0 to 30% by weight (however, Y represents P 2 O 5 and/or B 2 O 3 ), RO+R' 2 O is 5 to 47% by weight, and SiO 2
A ceramic mold for blow molding glassware according to claim 2, wherein +Y is 30 to 90% by weight. 6 The composition of the ceramic sintered body is Al 2 O 3 5 to 30
Weight%, RO0-10% by weight (However, R is Mg, Ca,
70 to 95% by weight of SiO 2 and 0 to 2% by weight of R′ 2 O (where R′ represents K, Na,
RO+
A ceramic mold for blow molding glassware according to claim 2, wherein R' 2 O is 2 to 10% by weight.
JP59227965A 1984-10-31 1984-10-31 Ceramic die for blow-molding glass article Granted JPS61106430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59227965A JPS61106430A (en) 1984-10-31 1984-10-31 Ceramic die for blow-molding glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59227965A JPS61106430A (en) 1984-10-31 1984-10-31 Ceramic die for blow-molding glass article

Publications (2)

Publication Number Publication Date
JPS61106430A JPS61106430A (en) 1986-05-24
JPH0223485B2 true JPH0223485B2 (en) 1990-05-24

Family

ID=16869030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59227965A Granted JPS61106430A (en) 1984-10-31 1984-10-31 Ceramic die for blow-molding glass article

Country Status (1)

Country Link
JP (1) JPS61106430A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148365A (en) * 1985-12-20 1987-07-02 富士通株式会社 Low dielectric ceramic board
US4919689A (en) * 1988-01-27 1990-04-24 The Dow Chemical Company Self-reinforced silicon nitride ceramic of high fracture toughness
US5160508A (en) * 1988-01-27 1992-11-03 The Dow Chemical Company Self-reinforced silicon nitride ceramic of high fracture toughness
US4883776A (en) * 1988-01-27 1989-11-28 The Dow Chemical Company Self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same
US5021372A (en) * 1988-01-27 1991-06-04 The Dow Chemical Company Method of preparing a self-reinforced silicon nitride ceramic of high fracture toughness
US5120328A (en) * 1988-01-27 1992-06-09 The Dow Chemical Company Dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering
US5118645A (en) * 1988-01-27 1992-06-02 The Dow Chemical Company Self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same
US5091347A (en) * 1990-08-15 1992-02-25 The Dow Chemical Company Self-reinforced silicon nitride ceramic body and a method of preparing the same
JP2772581B2 (en) * 1990-11-16 1998-07-02 京セラ株式会社 Black aluminum nitride sintered body
DE4206734C2 (en) * 1992-03-04 1994-04-21 Vgt Industriekeramik Gmbh Large-sized firebrick and process for its manufacture
US5312785A (en) * 1993-05-18 1994-05-17 The Dow Chemical Company Sintered self-reinforced silicon nitride
RU2494994C1 (en) * 2012-04-11 2013-10-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Method of producing alumina ceramic

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855367A (en) * 1981-09-22 1983-04-01 株式会社アドバンス Die for glass manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855367A (en) * 1981-09-22 1983-04-01 株式会社アドバンス Die for glass manufacture

Also Published As

Publication number Publication date
JPS61106430A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
US4943544A (en) High strength, abrasion resistant refractory castable
JPH0223485B2 (en)
GB2168338A (en) Moulded fibrous ceramic bodies
RU2213714C2 (en) Insulation refractory material
US4294635A (en) Process for making glazed ceramic ware
JP3303221B2 (en) Refractory brick as tin bath brick
US3993495A (en) Porous ceramic articles and method for making same
JPH01500426A (en) Manufacturing method of porous silicon nitride mold for die casting
US4146670A (en) Manufacture of ceramic articles
JPH11199311A (en) Production of clay ceramic and caly ceramic
JP2000128671A (en) Glazed ceramic and its production
US3773531A (en) Dense chrome refractory material
KR101095027B1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
SU1470423A1 (en) Method of investment-pattern casting
US2332343A (en) Ceramic material
US2425891A (en) Refractories and method of making
JPH0848561A (en) Clay parts for molten glass
SU1108083A1 (en) Castable slip composition (modifications)
SU727314A1 (en) Suspension for electrophoreticaly making of ceramic moulds
RU2215710C2 (en) Method of manufacturing ceramic diaphragms for electrolysis of aqueous solutions
JPH11105025A (en) Base molding mold and production of base using the same
KR20010092981A (en) tile glaze and its manufacturing method
JPS5943434B2 (en) Method for manufacturing carbon blocks for blast furnace bottoms
KR0136172B1 (en) Method for manufacturing castable block of tundish dam
RU2122534C1 (en) Method of manufacturing molded steel-tapping refractory parts