JPH02233125A - Filter apparatus - Google Patents

Filter apparatus

Info

Publication number
JPH02233125A
JPH02233125A JP5318489A JP5318489A JPH02233125A JP H02233125 A JPH02233125 A JP H02233125A JP 5318489 A JP5318489 A JP 5318489A JP 5318489 A JP5318489 A JP 5318489A JP H02233125 A JPH02233125 A JP H02233125A
Authority
JP
Japan
Prior art keywords
ultrafiltration membrane
opening
stock solution
raw solution
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5318489A
Other languages
Japanese (ja)
Other versions
JPH0817924B2 (en
Inventor
Kazuo Takeishi
竹石 和夫
Minoru Suzuki
穣 鈴木
Kyozo Kawachi
河内 恭三
Masahiko Tsutsumi
正彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Toshiba Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Toshiba Corp
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Toshiba Corp, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP1053184A priority Critical patent/JPH0817924B2/en
Publication of JPH02233125A publication Critical patent/JPH02233125A/en
Publication of JPH0817924B2 publication Critical patent/JPH0817924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To remove a cake layer by the flow of a raw solution introduced at the opening time of a flow passage by swelling the cake layer composed of the solid in the raw solution accumulated in an ultrafiltration membrane module by utilizing the difference between the osmotic pressure of a filtrate and that of the raw solution when a raw solution introducing flow passage is closed by an opening and closing mechanism. CONSTITUTION:An inflow raw solution 32 is distributed to and introduced into a plurality of ultrafiltration membrane modules 35a-35d using a distribution mechanism 34 to be filtered by said modules. An opening and closing mechanism 41 closing the raw solution introducing flow passage to the respective modules 35a-35d is provided between the distribution mechanism 34 and the modules 35a-35d. When the raw solution introducing flow passage is closed by the opening and closing mechanism 41, the cake layer composed of the solid in the raw solution accumulated in the modules 35a-35d is swollen by utilizing the difference between the osmotic pressure of a filtrate and that of the raw solution to remove the swollen cake layer by the flow of the raw solution introduced when the raw solution introducing flow passage is opened by the opening and closing mechanism 41. As a result, this apparatus can be adapted without being affected by the cross-sectional shapes of the ultrafiltration membrane modules and the cake layer composed of the unnecessary solid accumulated in the ultrafiltration membrane modules can be removed certainly.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、下廃水,活性汚泥懸濁液,活性汚泥2次処理
水醗酵液等をろ過するろ過装置に係わり、特に前記被処
理水をろ過する限外ろ過膜モジュール内に堆積する不要
固形物のケーキ層を除去する技術を改良したろ過装置に
関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a filtration device for filtering sewage water, activated sludge suspension, activated sludge secondary treated water fermentation liquid, etc. The present invention relates to a filtration device with an improved technology for removing a cake layer of unnecessary solids deposited in an ultrafiltration membrane module that filters the water to be treated.

(従来の技術) 従来のこの種のろ過装置は大略第6図に示すような構成
を有している。すなわち、流入原液1をボンプ2で昇圧
して分配機構3に導き、ここでボンブ2から送られてく
る原液1を並列接続され物複数のろ過機構10a,10
b,・・・へ分配導入し、これらろ過機構10a,10
b,・・・を用いてろ液4と濃縮液5に分離して排出す
る構成である。
(Prior Art) A conventional filtration device of this type has a configuration roughly shown in FIG. That is, the inflow stock solution 1 is pressurized by the bomb 2 and guided to the distribution mechanism 3, where the stock solution 1 sent from the bomb 2 is passed through a plurality of filtration mechanisms 10a, 10 connected in parallel.
b, ..., and these filtration mechanisms 10a, 10
b, . . . are used to separate the filtrate 4 and the concentrate 5 and discharge them.

前記各ろ過機構10a,10b,・・・は、分配機構3
側から濃縮液5排出側へ常時は開状態の開閉弁11a,
llb,・・・、内部にウルトラフィルタ膜(以下,U
F膜と指称する’)12a,12b,・・が添設されて
おり前記開閉弁11a,llb,・・・を通ってきた原
液1をろ液4と濃縮液5に分離する限外ろ過膜モジュー
ル13a,13b,・・・スポンジボール14a,14
b,・・・を収納する捕集器15a,15b,・・・、
常時は開状態の開閉弁16a,16b,−、調整弁17
a,17b,...および流量計18a,18b,・・
・の順序で配設されている。
Each of the filtration mechanisms 10a, 10b, . . . is a distribution mechanism 3.
An on-off valve 11a which is normally open from the side to the discharge side of the concentrated liquid 5,
llb,..., an ultra filter membrane (hereinafter referred to as U) inside
12a, 12b, . . . , referred to as F membrane, are attached thereto, and the ultrafiltration membrane separates the stock solution 1 that has passed through the on-off valves 11a, llb, . . . into a filtrate 4 and a concentrated solution 5. Modules 13a, 13b,... sponge balls 14a, 14
collectors 15a, 15b, . . .
On-off valves 16a, 16b, -, which are normally open, and regulating valve 17
a, 17b, . .. .. and flow meters 18a, 18b,...
・They are arranged in the following order.

ところで、以上のようなろ過装置においては、原液1が
限外ろ過膜モジュール13a,13b,・・・のUF膜
12a,12b,・・・で分離ろ過する過程でそのUF
膜12a,12b,・・・の表面に原液1中に懸濁して
いる固形分,例えば微生物,微生物の死がい等が堆積し
、これがケーキ層を形成することによりろ過効率を著し
く低下させる。
By the way, in the above-described filtration device, in the process of separating and filtering the stock solution 1 through the UF membranes 12a, 12b, . . . of the ultrafiltration membrane modules 13a, 13b, .
Solids suspended in the stock solution 1, such as microorganisms and dead microorganisms, accumulate on the surfaces of the membranes 12a, 12b, .

そこで、かかるケーキ層を除去する手段として、前記捕
集器15a.15b,・・・内に前述したようにスポン
ジボール14ar  1 4 b + ・・・を収納す
ると共に常時は開状態にある開閉弁11a,llb.・
・・および16a,16b,・・・を閉成し、その代わ
りに常時は閉状態にある開閉弁21a,2lb,・・・
および22a.22b,・・・を開放し、ポンブ2から
送られてくる原液1を分配機構3から開閉弁21a,2
1b,−・・、捕集器15a,15b,−・・および限
外ろ過膜モジュール13a,13b,・・・を通す。こ
のとき、捕集器15a,15b,・・・内のスポンジボ
ール14a,14b,・・・は原液1による押圧力を受
けながら限外ろ過膜モジュール13a,13b,−・・
を通り、そのUF膜12a,12b,・・・に堆積する
ケーキ層をかき落としながら移動し、限外ろ過膜モジュ
ール13a,13b,・・・を挟んで反対側に設置され
た別の捕集器23a,23b1・・・に捕集される。な
お、限外ろ過膜モジュール13a,13b,・・・内で
かき落とされた懸濁化された液体は捕集器23a,23
b,・・・、開閉弁22a,22b,−・・、調整弁1
7a,17b,・・・を通り、あるいは開閉弁1 1 
a,  1 l b,・・・および16a,16b,・
・・の開時には濃縮液と共に濃縮液排出ラインへ排出さ
れる。
Therefore, as a means for removing such a cake layer, the collector 15a. As described above, the sponge balls 14ar 1 4 b + .・
... and 16a, 16b, ..., and instead, the on-off valves 21a, 2lb, ... which are normally closed.
and 22a. 22b, .
1b, --, collectors 15a, 15b, --, and ultrafiltration membrane modules 13a, 13b, --. At this time, the sponge balls 14a, 14b, . . . in the collectors 15a, 15b, .
The UF membranes 12a, 12b, . . . pass through the ultrafiltration membrane modules 13a, 13b, . 23a, 23b1... Note that the suspended liquid scraped off in the ultrafiltration membrane modules 13a, 13b, . . . is collected in collectors 23a, 23.
b,..., on-off valves 22a, 22b, -..., regulating valve 1
7a, 17b, ... or on-off valve 1 1
a, 1 l b,... and 16a, 16b,...
When ... is opened, it is discharged together with the concentrate into the concentrate discharge line.

(発明が解決しようとする課題) しかし、以上のようにスポンジボール14a,14b,
・・・を用いて限外ろ過膜モジュール13a,13b,
・・・内を機械的に洗浄する場合には次のような種々の
問題がある。
(Problem to be solved by the invention) However, as described above, the sponge balls 14a, 14b,
Ultrafiltration membrane modules 13a, 13b,
...When cleaning the inside mechanically, there are various problems as follows.

■、その1つは、限外ろ過膜モジュール13a,13b
,・・・が円筒状の場合には適用できるが、それ以外の
断面形状例えば角型状のものには適用できない。
■, one of them is ultrafiltration membrane modules 13a, 13b
, ... are cylindrical, but cannot be applied to other cross-sectional shapes, such as square shapes.

■、また、スポンジボール14a,14b,・・・は限
外ろ過膜モジュール1 3 a.1 3 b++ ・・
・内を充分な接触圧で接触しながらケーキ層をかき落と
すものであるため、スポンジボール14a,14b,・
・・の損傷が激しく、時々損傷度合を調べて交換する必
要がある。
(2) Also, the sponge balls 14a, 14b, . . . are the ultrafiltration membrane module 1 3 a. 1 3 b++...
・Since the cake layer is scraped off while contacting the inside with sufficient contact pressure, the sponge balls 14a, 14b, ・
... is severely damaged, and it is necessary to check the degree of damage from time to time and replace it.

■、サラニ、スポンジボール14a,14b,・・・を
走行させるために、新たに開閉弁21a,21b,・・
・および22a,22b,・・・等を付加する必要があ
り、その結果,開閉弁の使用個数が多くなり、かつ、弁
の開閉制御が複雑化し、それだけ接続部分が多くなって
スポンジボール14a,14b,・・・の走行トラブル
を頻発させる問題がある。
■ In order to run the sponge balls 14a, 14b,..., newly open/close valves 21a, 21b,...
・And 22a, 22b, etc. need to be added, and as a result, the number of on-off valves used increases, valve opening/closing control becomes complicated, and the number of connecting parts increases accordingly. 14b, . . . have a problem that frequently causes running troubles.

本発明は上記実情に鑑みてなされたもので、限外ろ過膜
モジュールの断面形状に影響されずに適用でき、かつ、
簡単な構成で確実に限外ろ過膜モジュールに堆積する不
要固形物のケーキ層を除去しつるろ過装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and can be applied without being affected by the cross-sectional shape of the ultrafiltration membrane module, and
It is an object of the present invention to provide a vine filtration device that can reliably remove a cake layer of unnecessary solid matter deposited on an ultrafiltration membrane module with a simple configuration.

[発明の構成] (課題を解決するための手段) 本発明は上記課題を解決するために、分配機構と限外ろ
過膜モジュールとの間に、限外ろ過膜モジュール内に堆
積する不要固形分のケーキ層を除去するとき、各限外ろ
過膜モジュールへの原液導入流路を任意または所定の順
序で閉じる開閉機構を設け、前記限外ろ過膜モジュール
によるろ過液と前記原液との浸透圧の差を利用して限外
ろ過膜モジュール内に堆積するケーキ層を膨化させて除
去するろ過装置である。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a method for eliminating unnecessary solid content that accumulates in the ultrafiltration membrane module between the distribution mechanism and the ultrafiltration membrane module. When removing the cake layer, an opening/closing mechanism is provided to close the flow path for introducing the stock solution to each ultrafiltration membrane module in an arbitrary or predetermined order, and the osmotic pressure between the filtrate by the ultrafiltration membrane module and the stock solution is reduced. This is a filtration device that utilizes the difference to expand and remove the cake layer deposited within the ultrafiltration membrane module.

また、本発明は、前記分配機構および開閉機構として、
2つのブランケットを着脱自在に接合してなる中空容器
内に前記原液流入口および前記複数の限外ろ過膜モジュ
ールヘ連通する接続口を設け、これら複数の接続口を回
転駆動源により回転する開閉板を回転させて順次閉じる
ことにより、前記分配機構と開閉機構とを一体化構造と
して実現するものである。
Further, the present invention provides, as the distribution mechanism and the opening/closing mechanism,
A connection port communicating with the raw solution inlet and the plurality of ultrafiltration membrane modules is provided in a hollow container formed by removably joining two blankets, and an opening/closing plate that rotates the plurality of connection ports by a rotational drive source. By rotating and sequentially closing the distribution mechanism and the opening/closing mechanism, the distribution mechanism and the opening/closing mechanism are realized as an integrated structure.

(作用) 従って、本発明は以上のような手段を講じたことにより
、請求項第1項および第2項においては、分配機構と各
限外ろ過膜モジュールとの間に設けた開閉機構により、
ある特定の限外ろ過膜モジュールあるいは所定の順序で
選択的に複数の限外ろ過膜モジュールへの原液導入流路
を閉成すると、限外ろ過膜モジュール内の圧力がほぼ大
気圧となり、UF膜内外のる液と原液との間で浸透圧の
差による流れ、すなわちろ液の原液側へ向く流れが生じ
てUF膜に堆積する不要固形物のケーキ層が膨化する。
(Function) Therefore, the present invention takes the above measures, and in claims 1 and 2, the opening/closing mechanism provided between the distribution mechanism and each ultrafiltration membrane module,
When the flow path for introducing the raw solution into a certain ultrafiltration membrane module or multiple ultrafiltration membrane modules selectively in a predetermined order is closed, the pressure inside the ultrafiltration membrane module becomes almost atmospheric pressure, and the UF membrane A flow occurs due to the difference in osmotic pressure between the inner and outer liquids and the stock solution, that is, a flow toward the stock solution side of the filtrate, and the cake layer of unnecessary solids deposited on the UF membrane swells.

そこで、このケーキ層の膨化状態を作った後、原液導入
流路を開くと膨化したケーキ層はクロスフローにより剪
断力で容易に剥離し濃縮液排出ラインに排出されるので
、UF膜のろ過量を元の状態に回復させることができる
Therefore, after creating a swollen state for this cake layer, when the stock solution introduction channel is opened, the swollen cake layer is easily peeled off by shear force due to cross flow and discharged to the concentrate discharge line, so the filtration rate of the UF membrane is can be restored to its original state.

次に、請求項第3項においては、中空容器内に開閉板を
収納すると共にこの開閉板を回転駆動源により回転する
と、この開閉板は原液流入口から流入される原液に対し
、各限外ろ過膜モジュールに連通ずる接続口を所定の順
序で閉じるので、非常にコンパクトの構成でろ液と原液
との浸透圧の差を利用してUF膜に堆積するケーキ層を
膨化させて除去することができる。
Next, in claim 3, when the opening/closing plate is housed in the hollow container and the opening/closing plate is rotated by a rotational drive source, the opening/closing plate is configured to move the undiluted solution flowing from the undiluted solution inlet to each limit. Since the connection ports communicating with the filtration membrane module are closed in a predetermined order, the cake layer deposited on the UF membrane can be expanded and removed using the difference in osmotic pressure between the filtrate and the stock solution with a very compact structure. can.

(実施例) 以下、本発明の一実施例について第1図および第2図を
参照して説明する。第1図は本装置の全体構成を示す図
であって、31は原液32を一時貯留する貯留槽であっ
て、この貯留槽31内の原液32はポンブ33で吸引昇
圧されて分配機構34に送られる。この分配機構34は
ボンブ33から送られてくる原液32を複数の限外ろ過
膜モジュール35a,35b,・・・へ分配導入する機
能をもっている。なお、この限外ろ過膜モジュール35
a,35b,・・・は例えば第2図に示すように表面部
に複数の孔36,・・・を有する任意断面形状の筒状モ
ジュール本体37の内側に織布材38およびUF膜39
の順序で添着され、かつ、これらUF膜39等を含む筒
状モジュール本体37がハウジング40に収納されてい
る。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing the overall configuration of this device, and numeral 31 is a storage tank for temporarily storing the stock solution 32. The stock solution 32 in the storage tank 31 is suctioned and pressurized by a pump 33 and sent to a distribution mechanism 34. Sent. This distribution mechanism 34 has a function of distributing and introducing the stock solution 32 sent from the bomb 33 to a plurality of ultrafiltration membrane modules 35a, 35b, . In addition, this ultrafiltration membrane module 35
For example, as shown in FIG. 2, a, 35b, .
A cylindrical module main body 37 including these UF membranes 39 and the like is housed in the housing 40 .

さらに、本装置においては、前記分配機構34と複数の
限外ろ過膜モジュール35a,35b,・・・との間に
各限外ろ過膜モジュール35a,35b,・・・への原
液導入流路を開閉する開閉機構41が設けられている。
Furthermore, in this device, a flow path for introducing the stock solution into each ultrafiltration membrane module 35a, 35b, . An opening/closing mechanism 41 that opens and closes is provided.

この開閉機構41は第3図に示す如く限外ろ過膜モジュ
ール35a,35b.・・・に対応して開閉弁4 1 
a, 4 l b,・・・が設けられている。
As shown in FIG. 3, this opening/closing mechanism 41 includes ultrafiltration membrane modules 35a, 35b. Open/close valve 4 1 corresponding to...
a, 4 l b, . . . are provided.

42は各限外ろ過膜モジュール3 5 a,  3 5
 b,・・・で得られたろ液を導くろ液流通管路、43
は貯留槽である。一方、各限外ろ過膜モジュール35a
,35b,・・・で分離された濃縮液はそれぞれ調整弁
44a,44b,・・・および流量計45a,45b,
・・・を介して他端開放端の濃縮液流通管路46を通っ
て所定の処理場へ送られる。
42 is each ultrafiltration membrane module 3 5 a, 3 5
b, filtrate distribution pipe for guiding the filtrate obtained in..., 43
is a storage tank. On the other hand, each ultrafiltration membrane module 35a
, 35b, . . . are respectively controlled by regulating valves 44a, 44b, . . . and flow meters 45a, 45b, .
... and is sent to a predetermined processing site through a concentrate distribution pipe 46 with an open end at the other end.

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

ボンブ33を駆動すると貯留槽31内の原液は分配機構
34および開閉機構41の各開閉弁41a,41b,・
・・を通って各限外ろ過膜モジュール35a,35b,
・・・へ導入される。これら限外ろ過膜モジュール35
a,35b,・・・内では開閉機構41からの原液がU
F膜39,・・・と平行に流れ、いわゆるクロスフロー
によりろ過処理が行われる。そして、これら限外ろ過膜
モジュール35a,35b..・・・でろ過されたろ液
はろ液流通管路42を通って貯留槽43に送られ、一方
、未ろ過液1つまり濃縮液は調整弁44a,44b,・
・・および流量計45a,45b,・・・を通って濃縮
液流通管路46から排出される。
When the bomb 33 is driven, the stock solution in the storage tank 31 flows through the distribution mechanism 34 and the opening/closing valves 41a, 41b, .
... through each ultrafiltration membrane module 35a, 35b,
... will be introduced. These ultrafiltration membrane modules 35
a, 35b, . . ., the undiluted solution from the opening/closing mechanism 41 is
It flows parallel to the F membranes 39, . . . , and filtration processing is performed by so-called cross flow. These ultrafiltration membrane modules 35a, 35b. .. The filtered filtrate is sent to the storage tank 43 through the filtrate distribution pipe 42, while the unfiltered liquid 1, that is, the concentrated liquid is sent to the storage tank 43 through the regulating valves 44a, 44b, .
. . and flow meters 45a, 45b, . . . and is discharged from the concentrate distribution pipe 46.

ところで、限外ろ過膜モジュール35a,35b,・・
・によるろ過作用により、UF膜39の原液側には原液
中の固形分が堆積し,いわゆるケーキ層が形成される。
By the way, the ultrafiltration membrane modules 35a, 35b,...
Due to the filtration action of *, the solid content in the stock solution is deposited on the stock solution side of the UF membrane 39, forming a so-called cake layer.

このケーキ層はろ過抵抗を高め、ろ過効率を著しく低下
させる。
This cake layer increases filtration resistance and significantly reduces filtration efficiency.

そこで、本装置においては、前記ケーキ層を除去するた
めに、例えばある1つを特定しあるいは所定時間ごとに
開閉機構41の各開閉弁41a,4lb,・・・を順次
所定時間閉じる制御を行う。ここで、例えば開閉弁41
aを閉じると限外ろ過膜モジュール35aの原液側が濃
縮液流通管路46に連絡しているのでほぼ大気圧となり
、そのためUF膜39のケーキ層ではる液と原液との浸
透圧の差によってろ液側から原液側への流れが生じ、U
F膜39のケーキ層が膨化する。
Therefore, in this device, in order to remove the cake layer, for example, one particular one is identified or each of the on-off valves 41a, 4lb, . . . . Here, for example, the on-off valve 41
When a is closed, the undiluted solution side of the ultrafiltration membrane module 35a is connected to the concentrated solution distribution line 46, so the pressure is almost atmospheric. Therefore, the filtration occurs due to the difference in osmotic pressure between the undiluted solution and the undiluted solution in the cake layer of the UF membrane 39. A flow occurs from the liquid side to the undiluted liquid side, and U
The cake layer of the F membrane 39 swells.

かかる状態において次の限外ろ過膜モジュール35bの
洗浄するため、既に閉成中の開閉弁41aを開くと、分
配機構34から原液が限外ろ過膜モジュール35a内に
流れ込み膨化したケーキ層がクロスフローの剪断力によ
って剥離し濃縮液と共に濃縮液流通管路46側へ流れ出
る。従って、UF膜39はケーキ層の除去により元のろ
過量に回復する。なお、開閉弁41aの閉時間は1時間
程度で充分である。因みに、第4図は横軸に時間、左側
縦軸にモジュール35aを3時問おきに1時間開閉弁4
1aを閉じたときのろ過ffilを示し、また右側縦軸
には各モジュール358〜35dに対応する開閉弁41
a〜41dを1時間ごとに順次閉じたときの全体のろ過
量■を示す。
In this state, in order to clean the next ultrafiltration membrane module 35b, when the on-off valve 41a, which is already closed, is opened, the stock solution flows into the ultrafiltration membrane module 35a from the distribution mechanism 34, and the expanded cake layer cross-flows. It is peeled off by the shearing force of and flows out to the concentrated liquid distribution pipe 46 side together with the concentrated liquid. Therefore, the UF membrane 39 recovers its original filtration rate by removing the cake layer. Note that approximately one hour is sufficient for the closing time of the on-off valve 41a. Incidentally, in Fig. 4, the horizontal axis shows time, and the left vertical axis shows the module 35a, which opens and closes the valve 4 every 3 hours.
The filtration ffil when 1a is closed is shown, and the right vertical axis shows the on-off valves 41 corresponding to each module 358 to 35d.
The total filtration amount ■ is shown when a to 41d are sequentially closed every hour.

この図のIから明かなようにろ過量は徐々に低下するが
、開閉弁41aを1時間閉じた後にはろ過量が完全に回
復しており、一方、全モジュール358〜35dにおい
ても■から明かなように安定なろ過量が得られることが
分る。
As is clear from I in this figure, the amount of filtration gradually decreases, but after closing the on-off valve 41a for one hour, the amount of filtration has completely recovered. It can be seen that a fairly stable filtration amount can be obtained.

従って、以上のような実施例の構成によれば、限外ろ過
膜モジュール35a〜35dに対応する開閉弁41a〜
41dを任意また幌所定時間ごとに順次閉成することに
より、ろ液と原液との浸透圧差を利用してUF膜39,
・・・に堆積するケーキ層を膨化させて剥離する構成で
あるので、従来のようにスポンジボールを用いずに簡単
にケーキ層を除去でき、また各限外ろ過膜モジュール3
5a一35dに対応する開閉弁41a〜41dを備える
だけ.でよいので、従来のものに比べて弁の使用個数を
大幅に減らすことができ、それに伴って弁の開閉制御が
容易となる。さらに、浸透圧の差を利用してケーキ層を
膨化させた後は通常の運転状態で不要物を排出でき、不
良限外ろ過膜モジュールの保守の一貫として実施するこ
とができ、運転管理上からも非常に有効なものである。
Therefore, according to the configuration of the embodiment as described above, the on-off valves 41a to 41a corresponding to the ultrafiltration membrane modules 35a to 35d
By sequentially closing the hood 41d arbitrarily or at predetermined intervals, the UF membrane 39,
Since the structure is such that the cake layer deposited on the ultrafiltration membrane module 3 is expanded and peeled off, the cake layer can be easily removed without using a sponge ball as in the conventional method.
All that is required is on-off valves 41a to 41d corresponding to valves 5a to 35d. Therefore, the number of valves used can be significantly reduced compared to conventional ones, and accordingly, the opening and closing control of the valves becomes easier. Furthermore, after the cake layer is expanded using the difference in osmotic pressure, unnecessary substances can be discharged under normal operating conditions. is also very effective.

なお、上記実施例では分配機構34と開閉機構41とを
それぞれ独立的に設けたが、例えば第5図に示すように
一体的な構造としてもよい。具体的に述べると、例えば
円形の下側ブランケット50と円形の上側ブランケット
51とを着脱自在に接合してなる円筒状中空容器52を
形成する。
In the above embodiment, the distribution mechanism 34 and the opening/closing mechanism 41 are provided independently, but they may have an integrated structure as shown in FIG. 5, for example. Specifically, a cylindrical hollow container 52 is formed by removably joining a circular lower blanket 50 and a circular upper blanket 51, for example.

この下側ブランケット50には偏心位置に原液を導入す
る原液導入口53を,また上側プランケット51には同
一円周上で限外ろ過膜モジュール358〜35dに連通
ずるように等間隔を有して接続口54a〜54dが設け
られている。この下側ブランケット50の中心部は貫通
され、この下側ブランケット50の内側であって中心部
貫通孔を中心とする位置および中空容器内壁部にそれぞ
れ所定高さの筒状押え部材55.56が設けられている
。さらに、下側ブランケット50の下側には回転駆動源
57が取付けられ、この回転駆動源57からの回転がギ
ャ58を介して前記貫通孔および筒状押え部材55内を
貫通する回転軸60に伝達する構成となっている。そし
て、中空容器52内においてこの回転軸60には例えば
270゜の切欠きを持った開閉板61が回転可能に取付
けられ、この開閉板61の回転時に前記接続口54a〜
54dの内側突起状部622〜62dにシール状態で接
触し、いわゆる弁閉状態を作り出す構成となっている。
The lower blanket 50 has a stock solution inlet 53 at an eccentric position for introducing the stock solution, and the upper plunket 51 has equal intervals on the same circumference so as to communicate with the ultrafiltration membrane modules 358 to 35d. Connection ports 54a to 54d are provided. The center of the lower blanket 50 is penetrated, and cylindrical press members 55 and 56 of a predetermined height are provided inside the lower blanket 50 at a position centered on the center through hole and on the inner wall of the hollow container. It is provided. Further, a rotational drive source 57 is attached to the lower side of the lower blanket 50, and rotation from this rotational drive source 57 is applied to a rotation shaft 60 passing through the through hole and the inside of the cylindrical holding member 55 via a gear 58. It is configured to communicate. In the hollow container 52, an opening/closing plate 61 having a notch of 270 degrees, for example, is rotatably attached to the rotating shaft 60, and when the opening/closing plate 61 is rotated, the connecting ports 54a to
It is configured to contact the inner protruding portions 622 to 62d of 54d in a sealed state to create a so-called valve closed state.

従って、以上のような構成によれば、回転駆動源57を
所定時間ごとに回転させて開閉板61を80°ずつ回転
させると、各接続口54a〜54dが順次閉成され、第
1図および第2図と同様に原因液の限外ろ過膜モジュー
ル35a〜35dへの原液流通経路が閉じ、限外ろ過膜
モジュール35a〜35dにおいてろ液と原液との浸透
圧力の差を利用してケーキ層を膨化させることができる
。しかも、この装置では個別に開閉弁41a〜41dを
設ける必要がなく、分配機構34と一体化を図ることに
より、装置全体の小形化を図ることができる。
Therefore, according to the above configuration, when the rotary drive source 57 is rotated at predetermined time intervals and the opening/closing plate 61 is rotated by 80 degrees, each of the connection ports 54a to 54d is sequentially closed, and as shown in FIGS. Similarly to FIG. 2, the raw solution distribution path of the causative liquid to the ultrafiltration membrane modules 35a to 35d is closed, and the ultrafiltration membrane modules 35a to 35d use the difference in osmotic pressure between the filtrate and the raw solution to form a cake layer. can be expanded. Moreover, in this device, there is no need to provide separate on-off valves 41a to 41d, and by integrating them with the distribution mechanism 34, the entire device can be made smaller.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果コ 以上説明したように本発明によれば次に述べるような種
々の効果を奏する。
[Effects of the Invention] As explained above, the present invention provides various effects as described below.

先ず、請求項第1項においては、従来のようにスポンジ
ボールを用いることなく通常の弁制御によって行うので
、限外ろ過膜モジュールの形状に影響させずにケーキ層
を除去でき、しかも点検・保守等を兼ねて限外ろ過膜モ
ジュールの再生化を図ることができ、また従来に比し弁
の使用個数も大幅に減らすことができる。
First of all, in claim 1, the cake layer can be removed without affecting the shape of the ultrafiltration membrane module, and inspection and maintenance are possible because the removal is performed by normal valve control without using a sponge ball as in the past. The ultrafiltration membrane module can be regenerated, and the number of valves used can be significantly reduced compared to the conventional method.

次に、請求項第2項については、分配機構と開閉機構の
一体化構造により装置全体の小形化を図ることができ、
通常使用する開閉弁を用いることなく実現できる。
Next, regarding claim 2, the entire device can be miniaturized by the integrated structure of the distribution mechanism and the opening/closing mechanism,
This can be achieved without using normally used on-off valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明装置の一実施例を説明する
ために示したもので、第1図は装置全体の構成図、第2
図は限外ろ過膜モジュールの構成図、第3図は開閉機構
の一興体例図、第4図は限外ろ過膜モジュールの洗浄時
間とろ過量との関係図、第5図は本発明装置における分
配機構と開閉機構とを一体構造とした他の実施例を示す
構成図、第6図は従来のろ過装置の構成図である。 32・・・原液、34・・・分配装置、35a〜35d
・・・限外ろ過膜モジュール、39・・・UF膜、41
・・・開閉機構、41a〜41d・・・開閉弁、42・
・・ろ液流通管路、46・・・濃縮液流通管路、50・
・・下側ブランケット、51・・・上側プランケット、
52・・・中空容器、53・・・原液導入口、54a〜
54d・・・接続口、57・・・回転駆動源、61・・
・開閉板。 出願人代理人 弁理士 鈴江武彦 第1図 濃縮雇 介 ?時間 第 図
1 to 4 are shown to explain one embodiment of the device of the present invention, and FIG. 1 is a configuration diagram of the entire device, and FIG.
The figure is a configuration diagram of an ultrafiltration membrane module, Figure 3 is an example of an opening/closing mechanism, Figure 4 is a diagram of the relationship between cleaning time and filtration amount of an ultrafiltration membrane module, and Figure 5 is a diagram of the system of the present invention. FIG. 6 is a block diagram showing another embodiment in which the distribution mechanism and the opening/closing mechanism are integrated, and FIG. 6 is a block diagram of a conventional filtration device. 32...Standard solution, 34...Distribution device, 35a to 35d
...Ultrafiltration membrane module, 39...UF membrane, 41
... Opening/closing mechanism, 41a to 41d... Opening/closing valve, 42.
...filtrate distribution pipe, 46...concentrate distribution pipe, 50.
...lower blanket, 51...upper plunket,
52... Hollow container, 53... Stock solution inlet, 54a~
54d...Connection port, 57...Rotary drive source, 61...
・Opening/closing plate. Applicant's agent Patent attorney Takehiko Suzue Figure 1 concentrated employment agency? time chart

Claims (3)

【特許請求の範囲】[Claims] (1)分配機構を用いて流入原液を複数の限外ろ過膜モ
ジュールへ分配導入してろ過するろ過装置において、 前記分配機構と限外ろ過膜モジュールとの間に各限外ろ
過膜モジュールへの原液導入流路を閉じる開閉機構を設
け、この開閉機構による原液導入流路の閉時に前記ろ液
と前記原液との浸透圧の差を利用して限外ろ過膜モジュ
ール内に堆積する原液固形分のケーキ層を膨化すること
により、前記開閉機構による原液導入流路の開時に導入
される原液の流れで膨化したケーキ層を除去することを
特徴とするろ過装置。
(1) In a filtration device that distributes and introduces an inflow stock solution into a plurality of ultrafiltration membrane modules using a distribution mechanism for filtration, there is a connection between the distribution mechanism and the ultrafiltration membrane module to each ultrafiltration membrane module. An opening/closing mechanism for closing the stock solution introduction channel is provided, and when the stock solution introduction channel is closed by this opening/closing mechanism, the solid content of the stock solution is deposited in the ultrafiltration membrane module by utilizing the difference in osmotic pressure between the filtrate and the stock solution. A filtration device characterized in that the expanded cake layer is removed by the flow of the stock solution introduced when the stock solution introduction channel is opened by the opening/closing mechanism.
(2)開閉機構は、前記複数の限外ろ過膜モジュールへ
の原液導入流路を所定の時間ごとに順次所定の順序で閉
じることを特徴とする請求項第1項記載のろ過装置。
(2) The filtration device according to claim 1, wherein the opening/closing mechanism sequentially closes the stock solution introduction channels to the plurality of ultrafiltration membrane modules at predetermined time intervals in a predetermined order.
(3)分配機構および開閉機構は、2つのブランケット
を着脱自在に接合してなる中空容器内に前記原液の流入
口および前記複数の限外ろ過膜モジュールへ連通する接
続口を設け、回転駆動源によって開閉板を回転させて前
記複数の接続口を順次閉じるようにしたことを特徴とす
る請求項第1項記載のろ過装置。
(3) The distribution mechanism and the opening/closing mechanism are provided with an inlet for the stock solution and a connection port communicating with the plurality of ultrafiltration membrane modules in a hollow container formed by removably joining two blankets, and a rotary drive source. 2. The filtration device according to claim 1, wherein the plurality of connection ports are sequentially closed by rotating the opening/closing plate.
JP1053184A 1989-03-06 1989-03-06 Filtration device Expired - Lifetime JPH0817924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053184A JPH0817924B2 (en) 1989-03-06 1989-03-06 Filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053184A JPH0817924B2 (en) 1989-03-06 1989-03-06 Filtration device

Publications (2)

Publication Number Publication Date
JPH02233125A true JPH02233125A (en) 1990-09-14
JPH0817924B2 JPH0817924B2 (en) 1996-02-28

Family

ID=12935789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053184A Expired - Lifetime JPH0817924B2 (en) 1989-03-06 1989-03-06 Filtration device

Country Status (1)

Country Link
JP (1) JPH0817924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153168A (en) * 2017-03-21 2018-10-04 国立大学法人九州大学 Microorganism collection device
CN114053878A (en) * 2021-11-25 2022-02-18 山东省舜天化工集团有限公司 Method and equipment for treating melamine wastewater by using ultrafiltration membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102281A (en) * 1977-01-14 1978-09-06 Ebara Infilco Co Ltd Separating method with membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102281A (en) * 1977-01-14 1978-09-06 Ebara Infilco Co Ltd Separating method with membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153168A (en) * 2017-03-21 2018-10-04 国立大学法人九州大学 Microorganism collection device
CN114053878A (en) * 2021-11-25 2022-02-18 山东省舜天化工集团有限公司 Method and equipment for treating melamine wastewater by using ultrafiltration membrane

Also Published As

Publication number Publication date
JPH0817924B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
EP1633954B1 (en) Apparatus and method for treating injection fluid
US4980066A (en) Multiple membrane separation systems
US8795527B2 (en) Filtration system
CN105934270B (en) High speed cross-current Dynamic membrane filter
JP2003266072A (en) Membrane filtration method
CA2020631A1 (en) Membrane separation system and method of operation
WO2007004262A1 (en) Filtration device
US20090057223A1 (en) Apparatus and method for treating injection fluid
JPH02233125A (en) Filter apparatus
JPS62279807A (en) Concentrator of liquid
Botes et al. Long-term evaluation of a UF pilot plant for potable water production
JP2014188469A (en) Filtration method, and filtration apparatus and water treatment system using the same
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP3333086B2 (en) Water treatment equipment
JPS61200808A (en) Apparatus for filtering solution
JP3358300B2 (en) Filtration method and filtration device
JP3014512U (en) Filtration module equipment
CN208898654U (en) A kind of water process quickly assembles desalination module
CN216106331U (en) RO water treatment automated control system
CN208898528U (en) Water process quickly assembles active carbon filtering module
JP2003225517A (en) Method for washing solid-liquid separator
JPS60166013A (en) Filtration device
JPH04271817A (en) Filtering method
JPS61181503A (en) Apparatus for filtering solution
JPH0233870Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080228

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 14