JPH02233107A - Degassing method at starting time of steam power plant - Google Patents

Degassing method at starting time of steam power plant

Info

Publication number
JPH02233107A
JPH02233107A JP5281489A JP5281489A JPH02233107A JP H02233107 A JPH02233107 A JP H02233107A JP 5281489 A JP5281489 A JP 5281489A JP 5281489 A JP5281489 A JP 5281489A JP H02233107 A JPH02233107 A JP H02233107A
Authority
JP
Japan
Prior art keywords
water
steam
deaerator
cleanup
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5281489A
Other languages
Japanese (ja)
Inventor
Shinji Tsunoda
角田 伸爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5281489A priority Critical patent/JPH02233107A/en
Publication of JPH02233107A publication Critical patent/JPH02233107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To shorten the starting time of cleanup, in cleaning up the recirculation system of a steam power plant with recirculation water, by introducing the steam generated from a steam separator into the water storage tank of a deaerator and heating the recirculation water by said steam to deaerate the same under vacuum. CONSTITUTION:When the recirculation system of a steam power plant is cleaned up with recirculation water, the steam generated from a steam separator 19 is introduced into the water storage tank 11 of a deaerator 11 and the recirculation water is heated by said steam to be deaerated under vacuum. That is, the steam controlled in its pressure by a pressure control valve 34 is guided to the water storage tank 11 of the deaerator from the upper part of the steam separator 19 by a pipeline 33 to heat the recirculation water in the water storage tank 11. As mentioned above, a system sufficiently obtaining the amount of steam necessary for heating the recirculation water from a boiler system is constituted and the cleanup of both of a system of a high pressure water supply heater 14 and a system of a boiler 16 is effectively performed by increasing the flow rate of the recirculation water. As a result, the starting time of cleanup can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電プラント起動時のクリーンアップ運
転Kおいて、循環水の溶存酸素を低減する脱気方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a degassing method for reducing dissolved oxygen in circulating water during a clean-up operation K at startup of a thermal power plant.

〔従来の技術〕[Conventional technology]

従来の火力発電プラントのクリーンアップ系統の一例を
第2図K示す。
An example of the cleanup system of a conventional thermal power plant is shown in Figure 2K.

第2図kおいて,1は復水器であって,その上方Kはタ
ービン2が,下方Kはホットウエル3が,それぞれ設置
されている。また4はタービン2から排気される蒸気を
冷却する冷却水が通る管群である。ホットウエル3の底
部Kは管路5の一端が接続され,この管路5にはホット
ウエル3の側からl[に、復水ポンプ6、脱塩装置7、
復水昇圧ポンプ8、低圧給水加熱器9が配置され、管路
他端は脱気器10の入口に接続されている。脱気器10
の下方Kは,脱気器貯水槽11が連結されている。そし
てこの脱気器貯水槽11の底部には、給水管12の一端
が接続され、その給水管12Kは給水ポンプ13,高圧
給水加熱器14、高圧給水加熱器出口弁l5が配置され
ており,管路他端はボイラl6に接続されている。ポイ
ラl6の出口側の管路18k汽水分離器19が設置され
,同汽水分離器19の蒸気出口は過熱器17K連結され
ている. IJ,上記の機器や配管をプラント起動時にクリーンア
ップする目的で、次のような配管系路が設けられている
。すなわち、弁加を有し、一端が鋭気器貯水槽11k,
他側が復水器1k,それぞれ接続されている低圧クリー
ンアップ管21,一端が高圧給水加熱器14とその出口
側の弁15の間から分岐され他端が弁nを介して復水器
に接続されているプレボイラクリーンアップ管n,およ
び一端を汽水分離器19k.他端が復水器lに,それぞ
れ接続されて、弁冴な有するボイラクリーンアップ管5
、03本の系統が設けられる。また,循環水の溶存酸素
な脱気する目的で、復水器IKは真空ポンプ加が、鋭気
器貯水槽l1には弁nを介し【補助ボイラ28K接続さ
れる補助蒸気管四が、脱気器10Kは弁(資)を介して
復水器1に接続される空気抜き管31が、それぞれ設置
されている。
In Fig. 2k, 1 is a condenser, above which a turbine 2 is installed, and below K a hot well 3 is installed. Further, 4 is a group of tubes through which cooling water for cooling the steam exhausted from the turbine 2 passes. One end of a conduit 5 is connected to the bottom K of the hot well 3, and a condensate pump 6, a desalination device 7,
A condensate boost pump 8 and a low-pressure feed water heater 9 are arranged, and the other end of the pipe is connected to the inlet of a deaerator 10. Deaerator 10
A deaerator water tank 11 is connected to the lower part K of the deaerator. One end of a water supply pipe 12 is connected to the bottom of the deaerator water tank 11, and the water supply pipe 12K is equipped with a water pump 13, a high pressure water heater 14, and a high pressure water heater outlet valve l5. The other end of the pipe is connected to boiler l6. A brackish water separator 19 is installed on the outlet side of the boiler l6 in a pipe line 18k, and the steam outlet of the brackish water separator 19 is connected to a superheater 17k. IJ, The following piping system is provided for the purpose of cleaning up the above-mentioned equipment and piping at the time of plant start-up. That is, it has a valve, and one end is a sharp air tank 11k,
The other side is the condenser 1k, each connected to a low pressure cleanup pipe 21, one end is branched from between the high pressure feed water heater 14 and the valve 15 on its outlet side, and the other end is connected to the condenser via the valve n. preboiler clean-up pipe n, and one end connected to the brackish water separator 19k. The other end is connected to the condenser l, respectively, and has a boiler clean-up pipe 5
, 03 lines are provided. In addition, for the purpose of deaeration of dissolved oxygen in the circulating water, a vacuum pump is applied to the condenser IK, and an auxiliary steam pipe 4 connected to the auxiliary boiler 28K is degassed via valve n to the sharp air storage tank l1. Air vent pipes 31 connected to the condenser 1 via valves are installed in each of the containers 10K.

上記の構成Kおいて,火力発電プラントの低圧プレボイ
ラ系統、高圧ブレボイラ系統,およびボイラ系統Kおけ
る、従来のクリーンアップ方法を説明する。
In the above configuration K, a conventional cleanup method for the low pressure preboiler system, high pressure boiler system, and boiler system K of the thermal power plant will be explained.

まず低圧プレボイラ系統では,復水器lに連結された真
空ポンプかで真空を上昇させるとともに、復水器1から
管路5を通じ、復水ボンプ6,脱塩装置7,復水昇圧ポ
ンプ8、低圧給水加熱器9、脱気器10,脱気貯水槽1
1を経て低圧クリーンアップ管21で復水器1に戻す系
統K,純水を循環させ、系統内を清浄化する。
First, in the low-pressure preboiler system, the vacuum is raised by a vacuum pump connected to the condenser 1, and the condensate pump 6, desalination device 7, condensate boost pump 8, Low-pressure feed water heater 9, deaerator 10, deaeration water tank 1
1 and returns to the condenser 1 via a low-pressure clean-up pipe 21, a system K circulates pure water to clean the inside of the system.

次に高圧プレボイラ系統では、脱気器貯水槽11K貯え
た純水を使用して、給水管12、給水ポンプ13、高圧
給水加熱器14、プレボイラクリーンアップ管るを経て
復水器1に戻す系統に純水を循環させて、系統内のクリ
ーンアップを行なう。
Next, in the high-pressure preboiler system, using the purified water stored in the deaerator water tank 11K, it is returned to the condenser 1 through the water supply pipe 12, the water supply pump 13, the high-pressure feed water heater 14, and the preboiler cleanup pipe. Clean up the system by circulating pure water through the system.

その後ボイラ系統の清浄化を行なう。すなわちボイラ1
6Vc通水し、汽水分離器19を経てボイラクリーンア
ップ管5で復水器IVc戻す系統に純水を循環させて,
ボイラのクリーンアップが行なわれる。このボイラクリ
ーンアップは,脱気器貯水槽11に貯えられた純水なボ
イラ16K通水してボイラl6を清浄化するボイラコー
ルドクリーンアップと、ポイラl6のパーナ諺に点火し
循環水のボイラ出口温度を120〜170℃程1fKL
,て行なうボイラホットクリーンアップの二工程からな
る。
After that, clean the boiler system. That is boiler 1
6Vc water is passed through, and the pure water is circulated through the steam water separator 19 and back to the condenser IVc through the boiler cleanup pipe 5.
Boiler cleanup will be carried out. This boiler clean-up consists of a boiler cold clean-up in which pure water 16K stored in the deaerator water tank 11 is passed through the boiler l6 to purify the boiler l6, and a boiler cold clean-up in which boiler l6 is ignited and circulated water is ignited at the boiler outlet. Temperature 120~170℃ 1fKL
This process consists of two steps: boiler hot cleanup.

この循環水は、復水器1で真空脱気Kよって溶存駿素を
0. 1 ppm程度まで低減し、さらに脱気器貯水槽
11において,補助ボイラあから補助蒸気管四を経て供
給される蒸気忙よって加温するとともκ、復水器1と脱
気器10とを連結した空気抜き管31で脱気器10およ
び脱気器貯水槽11内の真空を保持し,器内で加熱真空
脱気を行なって,循環水の溶存酸素を0.01ppm以
下に低減する。また循環水の清浄化は脱塩装置7によっ
て行なう。
This circulating water is vacuum degassed in the condenser 1 to remove dissolved hydrogen to 0. The condenser 1 and the deaerator 10 are connected to each other. The vacuum in the deaerator 10 and the deaerator water tank 11 is maintained by the air vent pipe 31, and heating vacuum deaeration is performed within the container to reduce dissolved oxygen in the circulating water to 0.01 ppm or less. Further, the circulating water is purified by a desalination device 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来のクリーンアップ方法罠は次のような欠点が
あった。
The above conventional cleanup method traps have the following drawbacks.

すなわち,火力発電プラントの起動時κ実施するクリー
ンアップ運転は,系統内の鉄錆やマツドである。したが
って系統内の鉄錆な迅速に除去するとともに、鉄鋼材で
構成された機器,配管から鉄分が溶出するのを防止する
ため、充分に脱気した高温水でクリーンアップを行なう
のが効果的である。
In other words, the clean-up operation that is carried out at startup of a thermal power plant removes iron rust and mud within the system. Therefore, in order to quickly remove iron rust in the system and prevent iron from leaching from equipment and piping made of steel, it is effective to clean up with sufficiently degassed high-temperature water. be.

ところが従来の方法では,循環水の溶存酸素を目標とす
る0.0 1 ppm以下まで脱気器貯水槽11で脱気
するには,真空脱気を行なうとともK循環水の温度を印
℃以上に加温する必要があった。そして大量の循環水を
脱気器貯水槽11で加温するには,加熱蒸気源として大
容量の補助ボイラあを設置する必要が生じ,設備面で大
幅なコストアップとなる.ここで循環水の循環流量を減
少させたり、系統循環を一時的忙中止して税気器貯水槽
11で熱水を得る措置を講ずることが考えられる。しか
しクリーンアップを効果的K実施するには、大流量の脱
気水を使用する必要がある。小流量でクリーンアップす
ればクリーンアップ運転K長時間を要し、プラント起動
時間が長くなるという欠点がある。
However, in the conventional method, in order to degas the dissolved oxygen in the circulating water to the target level of 0.01 ppm or less in the deaerator water tank 11, vacuum deaeration is performed and the temperature of the K circulating water is It was necessary to heat it up even more. In order to heat a large amount of circulating water in the deaerator water tank 11, it becomes necessary to install a large-capacity auxiliary boiler as a heating steam source, which significantly increases equipment costs. Here, it is conceivable to reduce the circulation flow rate of the circulating water or to temporarily stop the system circulation and take measures to obtain hot water in the water tank 11. However, effective cleanup requires the use of large flows of degassed water. If the cleanup is performed at a small flow rate, the cleanup operation will take a long time and the plant start-up time will be long.

さらκ近年の火力発電プラントは,往年のようk連続運
転することは少なく、給電事情により週末停止・起動あ
るいは毎日発停なとの運転を実施する傾向κある。この
ような運転状態Kおいては、停止したプラントを再起動
する際K,循環水の溶存酸素を脱気器および脱気器貯水
槽でできるだけ短時間K低減させて、プラントのクリー
ンアップを完了する必要がある.しかし上記の従来方法
では、起動時間の短縮は困難であった。
Furthermore, thermal power plants in recent years are less likely to operate continuously as in the past, and tend to be shut down and started on weekends or started and stopped every day depending on the power supply situation. Under such operating conditions, when restarting a stopped plant, the dissolved oxygen in the circulating water is reduced as quickly as possible in the deaerator and deaerator water tank to complete plant cleanup. There is a need to. However, with the above conventional method, it is difficult to shorten the startup time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記従来の課題を解決するために,火力発電
プラントの循環系内を循環水でクリーンアップする際,
汽水分離器の発生蒸気を脱気器貯水槽K導入し、同蒸気
により循環水を加熱して真空脱気することを特徴とする
火力発電プラント起動時の脱気方法を提案するものであ
る。
In order to solve the above-mentioned conventional problems, the present invention provides a method for cleaning up the circulation system of a thermal power plant using circulating water.
This paper proposes a degassing method at the time of startup of a thermal power plant, which is characterized in that steam generated from a brackish water separator is introduced into a deaerator storage tank K, and circulating water is heated by the steam and vacuum degassed.

〔作 用〕[For production]

本発明は、脱気器貯水槽で実施する加熱・真空脱気の加
熱蒸気源としてボイラ発生蒸気を利用し,火力発電プラ
ントの起動時のクリーンアップを効果的K行なうととも
に,設備費を低減するものでおる。すなわち本発明にお
いては、ボイラ出口側K設置されている汽水分離器の蒸
気系統から発生蒸気な悦気器貯水槽K導入し、クリーン
アップ用循環水をω℃以上に加温して加熱・真空説気を
行ない,効果的なクリーンアップが実施される。
The present invention utilizes boiler-generated steam as a heating steam source for heating and vacuum degassing carried out in a deaerator storage tank, thereby effectively performing cleanup at the time of startup of a thermal power plant and reducing equipment costs. It's something. That is, in the present invention, generated steam is introduced into the steam storage tank K from the steam system of the steam separator installed on the boiler outlet side, and the circulating water for cleanup is heated to ω°C or higher and then heated and vacuumed. Evangelism will be carried out and effective clean-up will be carried out.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すクリーンアップ系統図
でるる。なお,第1図Kおいて、前記第2図と同様の部
分には同一の符号を付し,その詳しい説明は省略する。
FIG. 1 is a cleanup system diagram showing one embodiment of the present invention. In FIG. 1K, the same parts as in FIG. 2 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

本実施例においては,従来の系統に管路議が付加されて
いる.この管路あの一端は汽水分離器19の蒸気側K接
続され,他端は圧力調節弁あを介して、脱気器貯水槽1
1に接続されている補助蒸気管四に、連結されている。
In this example, a conduit plan is added to the conventional system. One end of this pipe is connected to the steam side K of the brackish water separator 19, and the other end is connected to the deaerator water tank 1 via a pressure control valve A.
It is connected to auxiliary steam pipe 4 which is connected to 1.

圧力調節弁あは、脱気器貯水槽11K設けられた図示し
ない温度検出器によって制御される。
The pressure regulating valve A is controlled by a temperature sensor (not shown) provided in the deaerator water tank 11K.

上記の構成において、復水器1,復水ポンプ6、脱塩装
R7、昇圧ポ/プ8,低圧給水加熱器9、脱気器10、
脱気器貯水槽11を経て低圧クリーンアップ管21で復
水器1に還流させる低圧クリーンアップが完了した後、
補助ボイラあの発生蒸気を弁!を調節しつつ補助蒸気管
四を経て脱気器貯水槽11に導入し,循環水の加熱真空
脱気を行なう。こへで循環水温度をω℃以上に保持でき
ない場合は,循環水流量を低減して温度保持に努める。
In the above configuration, the condenser 1, the condensate pump 6, the desalination device R7, the boost pump 8, the low pressure feed water heater 9, the deaerator 10,
After completion of the low pressure cleanup, which is returned to the condenser 1 through the deaerator water tank 11 and the low pressure cleanup pipe 21,
Valve the generated steam in the auxiliary boiler! The circulating water is introduced into the deaerator water tank 11 through the auxiliary steam pipe 4 while adjusting the temperature, and the circulating water is heated and vacuum degassed. If it is not possible to maintain the circulating water temperature above ω℃, try to maintain the temperature by reducing the circulating water flow rate.

鋭気器貯水槽11の溶存酸素が0.0 1 ppm以下
となったら、給水ポンプ13を起動して、脱気器貯水槽
11の脱気水を給水管l2を介して高圧給水加熱器14
、ポイッl6に通水する。この場合の循環水の経路とし
ては,高圧給水加熱器14の出口側から分岐されたプレ
ボイラクリーンアップ管nで復水器1に還流させる循環
系統と、ボイラー6,管路18、汽水分離器19を経て
ボイラクリーンアップ管5で復水器1に還流させる循環
系統がある。両系統の流量は高圧給水加熱器出口弁I5
、弁η、弁別で調節する。ポイッl6の系統にバーナあ
を点火可能な最低流量を確保した後着火し,ボイラー6
の出口流体温度が10程と 度になるまで昇温して保持する。管路18″′!!経て
汽水分離器19に導入された熱水は、汽水分離器19の
下部(液側)から弁腐を介してボイラクリーンアップ管
δで復水器IK還流させてボイラ系統のクリーンアッグ
を行なり。
When the dissolved oxygen in the deaerator water tank 11 becomes 0.01 ppm or less, the water supply pump 13 is started, and the deaerated water in the deaerator water tank 11 is sent to the high-pressure feed water heater 14 via the water supply pipe l2.
, water is passed through the pot 16. In this case, the circulating water route includes a circulation system in which the water is returned to the condenser 1 through a preboiler cleanup pipe n branched from the outlet side of the high-pressure feed water heater 14, and a circulation system that flows through the boiler 6, the pipe line 18, and the brackish water separator. There is a circulation system in which the water is returned to the condenser 1 via the boiler clean-up pipe 5 via the boiler clean-up pipe 5. The flow rate of both systems is determined by the high pressure feed water heater outlet valve I5.
, valve η, is adjusted by discrimination. After securing the minimum flow rate that can ignite the burner in the boiler 6 system, ignite it and
The temperature is raised and maintained until the outlet fluid temperature reaches about 10 degrees. The hot water introduced into the brackish water separator 19 through the pipe 18'''!! is returned to the condenser IK from the lower part (liquid side) of the brackish water separator 19 through the valve rotor through the boiler cleanup pipe δ and then returns to the boiler. Perform a system cleanup.

本実施例では,この汽水分離器19の上部(蒸気側)か
ら管路おにより、圧力調節弁詞で調節された蒸気な脱気
器貯水槽11に導き,鋭気器貯水槽11の循環水を加温
する.このように、ボイラ系統から循環水の加熱に必要
な蒸気量が充分に得られる系統が構成されたら、循環水
流量を増加して高圧給水加熱器14系統およびボイラl
6系統のクリーンアップを効果的に実施する。なお、脱
気器貯水槽11K導入する蒸気量は、圧力調節弁Uで制
御するが,この蒸気貴で循環水の昇温・保持が可能であ
れば、補助ボイラ系統の弁nを閉じて、補助蒸気管四か
らの蒸気の導入を停止する。
In this embodiment, the steam water is guided from the upper part (steam side) of the steam separator 19 to the steam deaerator water tank 11 regulated by the pressure regulating valve through a pipe, and the circulating water in the steam water tank 11 is Warm up. In this way, once a system that can obtain a sufficient amount of steam necessary for heating circulating water from the boiler system is configured, the circulating water flow rate is increased and the 14 high-pressure feedwater heater systems and boiler l
Effectively implement cleanup of 6 systems. The amount of steam introduced into the deaerator water storage tank 11K is controlled by the pressure control valve U, but if it is possible to raise and maintain the temperature of the circulating water with this steam, close the valve n of the auxiliary boiler system. Stop introducing steam from auxiliary steam pipe 4.

〔発明の効果〕〔Effect of the invention〕

本発明Kよって次の効果が得られる。 The present invention K provides the following effects.

(11  ホイラの発生蒸気を利用することによって,
脱気器貯水槽でクリーンアップに必要な大容量の循環水
の脱気が可能となり,クリーンアップが効果的に行なわ
れ起動時間が短縮される。
(11 By using the steam generated by the foiler,
The deaerator water tank makes it possible to degas the large volume of circulating water required for cleanup, making cleanup more effective and reducing start-up time.

(2)補助ボイラの発生蒸気容量が低減され、設備面の
コストダウンが可能となる。
(2) The generated steam capacity of the auxiliary boiler is reduced, making it possible to reduce equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すクリーンアップ系統図
、第2図は従来の火力発電プラントのクリーンアップ系
統の一例を示す系統図である。 1・・・復水器;     2・・・タービン;3・・
・ホットウエル: 4・・・冷却水管群;6・・・復水
ポンプ;  7・・・脱塩装置;8・・・復水昇圧ポン
プ;9・・・低圧給水加熱器;10・・・脱気器;11
・・・脱気器貯水槽;12・・・給水管;13・・・給
水ボンプ;14・・・高圧給水加熱器; l5・・・高圧給水加熱器出口弁; l6・・・ボイラ;17・・・過熱器;19・・・汽水
分離器;21・・・低圧クリーンアップ管;乙・・・プ
レボイラクリーンアップ管;5・・・ボイラクリーンア
ップ管; が・・・真空ポンプ;  四・・・補助ボイラ;四・・
・補助蒸気管;31・・・空気抜き管;32・・・バー
ナ;    讃・・・圧力調節弁。 代 理入 弁理士  坂 間   暁 外2名
FIG. 1 is a cleanup system diagram showing an embodiment of the present invention, and FIG. 2 is a system diagram showing an example of a conventional cleanup system of a thermal power plant. 1... Condenser; 2... Turbine; 3...
・Hot well: 4... Cooling water pipe group; 6... Condensate pump; 7... Desalination device; 8... Condensate boost pump; 9... Low pressure feed water heater; 10... Deaerator; 11
... Deaerator water tank; 12 ... Water supply pipe; 13 ... Water supply pump; 14 ... High pressure feed water heater; l5 ... High pressure feed water heater outlet valve; l6 ... Boiler; 17 ... Superheater; 19... Brackish water separator; 21... Low pressure cleanup pipe; B... Preboiler cleanup pipe; 5... Boiler cleanup pipe; G... Vacuum pump; ...Auxiliary boiler; 4...
・Auxiliary steam pipe; 31...Air vent pipe; 32...Burner; San...Pressure control valve. Two patent attorneys represented by Akigai Sakama

Claims (1)

【特許請求の範囲】[Claims] 火力発電プラントの循環系内を循環水でクリーンアップ
する際に、汽水分離器の発生蒸気を脱気器貯水槽に導入
し、同蒸気により循環水を加熱して真空脱気することを
特徴とする火力プラント起動時の脱気方法。
When cleaning up the circulation system of a thermal power plant with circulating water, the steam generated by the brackish water separator is introduced into the deaerator storage tank, and the circulating water is heated by the steam and vacuum degassed. Degassing method when starting up a thermal power plant.
JP5281489A 1989-03-07 1989-03-07 Degassing method at starting time of steam power plant Pending JPH02233107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281489A JPH02233107A (en) 1989-03-07 1989-03-07 Degassing method at starting time of steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281489A JPH02233107A (en) 1989-03-07 1989-03-07 Degassing method at starting time of steam power plant

Publications (1)

Publication Number Publication Date
JPH02233107A true JPH02233107A (en) 1990-09-14

Family

ID=12925315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281489A Pending JPH02233107A (en) 1989-03-07 1989-03-07 Degassing method at starting time of steam power plant

Country Status (1)

Country Link
JP (1) JPH02233107A (en)

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
CN206037003U (en) Secondary reheating unit EC BEST steam turbine steam exhaust heating deoxidization boiler feed water's thermodynamic system
JPH11505585A (en) Condensate degassing method and apparatus
JP2012102980A (en) Blow tank and method of using the same
JPS6179905A (en) Drain recovery system
JPH02233107A (en) Degassing method at starting time of steam power plant
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP2012092734A (en) Blow fluid treatment equipment in ejector main steam system
JPH1182916A (en) Exhaust heat recovery boiler
JP3085785B2 (en) Boiler feedwater heating device
CN117606005B (en) ICS (ICS) system of steam generator
JP2001033004A (en) Method of draining for waste heat recovery boiler
JPS6016815Y2 (en) Boiler water supply system in thermal power generation plants, etc.
JP2002156493A (en) Site heat supply equipment of nuclear power station
JPS604439B2 (en) How to operate a nuclear reactor plant
JPS60101204A (en) Cleanup method in thermal power plant
JP7039781B2 (en) Water supply system cleanup equipment and methods
JPH07102349B2 (en) Water supply deaerator
US2328837A (en) Method for removing lime scale in heat exchangers for sulphite pulp digesters
JPS60152891A (en) Cleanup method of thermal power plant
JPH03233205A (en) Clean up method for super critical variable pressure boiler
JPS62233606A (en) Boiler maintenance system
JP5164560B2 (en) Leakage inspection method for low-pressure feed water heater
JPS5910714A (en) Feed water heating equipment
CN114060795A (en) Cold-state starting and heating device and method for deaerator of thermal power plant