JPH02232931A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH02232931A
JPH02232931A JP5341689A JP5341689A JPH02232931A JP H02232931 A JPH02232931 A JP H02232931A JP 5341689 A JP5341689 A JP 5341689A JP 5341689 A JP5341689 A JP 5341689A JP H02232931 A JPH02232931 A JP H02232931A
Authority
JP
Japan
Prior art keywords
layer
alsb
gasb
type
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5341689A
Other languages
Japanese (ja)
Inventor
Naotaka Iwata
直高 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5341689A priority Critical patent/JPH02232931A/en
Publication of JPH02232931A publication Critical patent/JPH02232931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a heterojunction structure of an n-AlSb/p-GaSb/n-AlSb in excellent controllability at one time by a method wherein a heterojunction structure of AlSb/GaSb/AlSb is deposited while doping all the deposited layers with Si. CONSTITUTION:An AlSb layer 22, a GaSb layer 23 and an AlSb layer 24 are deposited on an n type GaSb substrate 21 in the face orientation (100) by molecular beam deposition process. At this time, n-AlSb emitter layer/p<+>-GaSb base layer/n<->-AlSb collector layer in this order from the surface are formed to manufacture a structure for an npn hetero transistor. Next, the surfaces of respective layers are exposed in mesa type by the lithography using photoresist as well as an acetic acid base etchant; a master is provided by the lithography using the photoresist again; and then AuSn layers 2b are formed on an n type emitter layer and a collector layer while an AuZn layer 26 is formed on a p type base layer by evaporation process. In such a constitution, SiNx layers 27 are provided by sputtering to protect the AlSb crystal from the water content contained in the air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Siをドーピング不純物として用いたA I
 S b / G a S b / A I S b構
造のnpn形ヘテロ接合トランジスタの製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an A I method using Si as a doping impurity.
The present invention relates to a method of manufacturing an npn type heterojunction transistor having an Sb/GaSb/AISb structure.

〔従来の技術〕[Conventional technology]

A I S b / G a S b / A I S
 b構造のnpn形ヘテロ接合トランジスタは、I n
Aj!GaAs系のI n A I G a A s 
/ 1 n G a A s / 1 n A I. 
GaAs構造のnpn形ヘテロ接合トランジスタと同様
に、ベース材料に用いるGarbの電子移動度が高いこ
とや禁制帯幅が狭いことより、高速かつ低消費電力の素
子として朋待されている。また加えて、ベース層はエミ
ッタ層とコレクタ層の障壁にはさまれており、従って正
孔はベース層にとじ込められる為、大電流動作時に問題
となるいわゆるカーク効果{アイ アール イー トラ
ンス(IRE Trans.on Electron 
Devices ED−9(1962)164) )の
則題も回避ざれる。しかしながらこのAffisb/G
aSb/Aj!Sb構造のnpn形ヘテロ接合トランジ
スタを作製する場合、n形のAlsb層が必要であるが
、この場合ドナー不純物としては、G a S’bのド
ナー不純物としてよく用いられるTeがAffiSbの
ドナー不純物として用いられていた。
A I S b / G a S b / A I S
The npn type heterojunction transistor with the b structure is I n
Aj! GaAs-based I n A I G a As
/ 1 n Ga As / 1 n A I.
Similar to npn-type heterojunction transistors having a GaAs structure, GaRB used as a base material has a high electron mobility and a narrow forbidden band width, so it is expected to be a high-speed and low-power consumption device. In addition, the base layer is sandwiched between the emitter layer and the collector layer, and holes are therefore trapped in the base layer, resulting in the so-called Kirk effect, which poses a problem during large current operation. Trans.on Electron
Devices ED-9 (1962) 164)) can also be avoided. However, this Affisb/G
aSb/Aj! When fabricating an npn-type heterojunction transistor with an Sb structure, an n-type Alsb layer is required. It was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Teは蒸気圧の低い元素であり、液相成長法,気相成長
法.分子線成長法等のいかなる成長法においても制御性
が低く、例えば急峻なドーピングプロファイルを得るこ
とは困難であった。例えば分子線成長法による/lsb
の成長においてTeをドーピングする場合、Teの分子
線源セル温度は、通常良く用いられる10”cm−’程
度のドーピング濃度に対しては、200゜C程度と低く
、従って、分子線源セル温度の少しの変動によりドーピ
ング濃度が大きく揺らぎ、制御性が極めて悪い。同様に
急、峻にドーピング濃度を変えたい場合にも、分子線源
セル温度の制御性が悪いことより、急峻なドーピングプ
ロファイルの形成は困難であった。
Te is an element with a low vapor pressure and can be used for liquid phase growth, vapor phase growth, etc. Any growth method such as molecular beam growth has poor controllability, and it has been difficult to obtain, for example, a steep doping profile. For example, /lsb by molecular beam growth method
When doping Te in the growth of Te, the molecular beam source cell temperature for Te is as low as about 200°C for the commonly used doping concentration of about 10"cm-'; therefore, the molecular beam source cell temperature The doping concentration fluctuates greatly due to small fluctuations in the temperature, resulting in extremely poor controllability.Similarly, when it is desired to change the doping concentration suddenly and sharply, the controllability of the molecular beam source cell temperature is poor, resulting in a steep doping profile. Formation was difficult.

また更に、ベース層であるp−GaSb層の作製には、
例えば、Be等のアクセプタ不純物ドーピング用の分子
線源セルが新たに必要となった。
Furthermore, in the preparation of the p-GaSb layer which is the base layer,
For example, a new molecular beam source cell for doping with acceptor impurities such as Be has become necessary.

本発明の目的は、このような問題点を解決した半導体素
子の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体素子の製造方法は、AlSbの成長にお
いてSiがドナー不純物としてドーピングされる成長温
度を用いて、全ての成長層にSiをドーピングしながら
A I S b / G a S b / A 12s
bのヘテロ接合構造を成長する工程を含むことを特徴と
する。
The method for manufacturing a semiconductor device of the present invention uses a growth temperature at which Si is doped as a donor impurity in the growth of AlSb, and while doping all growth layers with Si, A I S b / G a S b / A 12s
The method is characterized in that it includes the step of growing the heterojunction structure of b.

〔作用〕[Effect]

GaAs結晶に対するドナー不純物として一般に用いら
る■族元素のSiは蒸気圧が低く、制御性の高い不純物
であるが、GaSbに代表されるV族にsbを用いた■
−V族化合物半導体に対しては■族原子位置を占めてア
クセプタとして働くことが良く知られている。第1図は
、分子線成長\ 法により半絶縁性GaAs基板上に作成したGasb及
びAIlSbに対するSiドーピングのホール測定によ
るキャリア濃度とキャリア移動度の測定結果であり、半
絶縁性GaAs基板上にSiをドーピングしながら形成
した/lsb層及びGasb層の成長温度T,と伝導形
、正孔または電子濃度及び移動度μの関係を示した図で
ある。
Si, a Group Ⅰ element that is generally used as a donor impurity for GaAs crystals, has a low vapor pressure and is an impurity that can be easily controlled.
It is well known that -V group compound semiconductors occupy the group (2) atom position and function as acceptors. Figure 1 shows the measurement results of the carrier concentration and carrier mobility by hole measurement of Si doping for Gasb and AIlSb fabricated on a semi-insulating GaAs substrate by the molecular beam growth method. FIG. 3 is a diagram showing the relationship between the growth temperature T, conductivity type, hole or electron concentration, and mobility μ of the /lsb layer and Gasb layer formed while doping.

成長は、Alフラックス量を1.8XlO−’Torr
,Gaフラックス量を4.8X10−’Torr, S
 bフラックス量を2.7X10−”Torr,成長速
度を1.2μm/h,Siのドーピング濃度を9.3X
10”cm−3とし、成長温度を様々に変えて行った。
For growth, the Al flux amount was set to 1.8XlO-'Torr.
, Ga flux amount is 4.8X10-'Torr, S
b flux amount is 2.7X10-'' Torr, growth rate is 1.2 μm/h, and Si doping concentration is 9.3X.
The growth temperature was set at 10"cm-3, and the growth temperature was varied.

この測定結果より明らかなように、Siを9.3X10
l?cm−’ドーピングしたGarbは、広い成長温度
範囲で約1×10”cm−’のp形を示した。従っ士、
Garb中のSiは、広い成長温度範囲でV族原子位置
を占め、アクセプタ不純物として働《ことが分かった。
As is clear from this measurement result, Si is 9.3X10
l? cm-' doped Garb exhibited p-type of about 1x10''cm-' over a wide growth temperature range.
It was found that Si in Garb occupies the V group atom position over a wide growth temperature range and acts as an acceptor impurity.

しかしながら一方、AISbに対してSiは、成長温度
490゜C付近を境に、成長温度が低い領域では■族原
子位置を占めドナー不純物として、また成長温度が高い
領域ではV族原子位置を占めアクセプタ不純物として働
くことが分かった。従ってこの/lsbに対するSiド
ーピングの結果より、AffiSbについては成長温度
を選ぶことにより、Siをドナー不純物またはアクセプ
タ不純物として選択的に利用でることが分かった。
On the other hand, however, for AISb, Si occupies the group II atom position as a donor impurity in the region where the growth temperature is low, and as an acceptor, occupies the V group atom position in the region where the growth temperature is high, starting from around 490°C. It was found that it acts as an impurity. Therefore, from the results of Si doping for /lsb, it was found that for AffiSb, Si can be selectively used as a donor impurity or an acceptor impurity by selecting the growth temperature.

両性不純物であるSiが■族原子位置またはV族原子位
置を占めるかは、成長時の表面での/1原子とsb原子
の化学量論比が大きく影響しているであろう。分子線成
長法の場合は、■族フラックス量と■族フランクス量の
関係によっても成長時の表面での八!原子とsb原子の
化学量論比を変化させることもできる。しかしながら、
桁違いに大きなフラックス量の差のある条件での成長は
、制御性,経済性ばかりではな《結晶性から判断しても
実際的ではないことは明らかである。通常用いられる成
長条件において、成長温度だけを制御する手法があらゆ
る観点から判断して最も有利である。
Whether Si, which is an amphoteric impurity, occupies the group II atom position or the group V atom position will be largely influenced by the stoichiometric ratio of /1 atoms and sb atoms on the surface during growth. In the case of the molecular beam growth method, the relationship between the ■ group flux amount and the ■ group flux amount also determines the amount of 8! on the surface during growth. It is also possible to vary the stoichiometric ratio of atoms to sb atoms. however,
It is clear that growth under conditions where there is an order of magnitude difference in flux amount is not only practical in terms of controllability and economy, but also in terms of crystallinity. Under commonly used growth conditions, a method of controlling only the growth temperature is the most advantageous from all viewpoints.

本発明は、以上示したようなGaSbとAfSbに対す
るSi不純物の振る舞いがそれぞれ大きく違うことを利
用したものである。即ち、A2Sbの成長においてSi
がドナー不純物としてドーピングされる低温の成長温度
を用いて、全ての成長層にSiをドーピングしながらA
ffiSb,GaSb,/lsbと連続して成長すれば
、n−AISb/p−GaSb/n−AISbヘテロ接
合構造が一度に制御良く形成できる。
The present invention utilizes the fact that the behavior of Si impurities with respect to GaSb and AfSb is greatly different as shown above. That is, in the growth of A2Sb, Si
A is doped as a donor impurity while doping all grown layers with Si.
If ffiSb, GaSb, and /lsb are grown sequentially, an n-AISb/p-GaSb/n-AISb heterojunction structure can be formed at once with good control.

〔実施例〕〔Example〕

以下、本発明の実施例を第2図を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

第2図は、本発明によりA I S b / G a 
S b /Aj2Sb構造のnPn形ヘテロ接合トラン
ジスタを作成する手順を示した図である。各々の図は、
各々の段階での試料の断面図である。
FIG. 2 shows that A I S b / G a according to the present invention
FIG. 3 is a diagram showing a procedure for creating an nPn type heterojunction transistor having an S b /Aj2Sb structure. Each figure is
FIG. 3 is a cross-sectional view of a sample at each stage.

第2図(a)に示すように、面方位(100)のGaS
bi板21上に、本発明に基づき分子線成長法により、
第1のAj!Sbji22,Garb層23,第2のA
ISb層24を成長し、ウエハを作成する。
As shown in Figure 2(a), GaS with plane orientation (100)
On the bi plate 21, by the molecular beam growth method based on the present invention,
First Aj! Sbji22, Garb layer 23, second A
An ISb layer 24 is grown to create a wafer.

これらの成長層の共通の成長条件は、成長温度390゜
c,sbフラックス量2.7X10−bTorrである
The common growth conditions for these growth layers are a growth temperature of 390° C. and an sb flux of 2.7×10 −b Torr.

先ず、コレクタ層となる2μmの第1のAlSb層22
の形成は、A2フラックス量1.8 X 10− ’T
orr,Siのドーピング濃度I XIO”cm−’で
行った。
First, a first AlSb layer 22 with a thickness of 2 μm is formed as a collector layer.
The formation of A2 flux amount 1.8 x 10-'T
orr, Si doping concentration IXIO"cm-'.

更に、ベース層となる0.1μmのGaSb層23の形
成は、Gaフラックス量4.8X10−’Torr, 
 Siのドーピング濃度は一桁上げてI XIO19c
m−”で行った。
Furthermore, the formation of the 0.1 μm GaSb layer 23 serving as the base layer requires a Ga flux amount of 4.8×10-'Torr,
The Si doping concentration was increased by one order of magnitude to IXIO19c.
I went with m-”.

更に、エミッタ層となる0.4μmの第2のAisb層
24の形成は、A2フラックス量1.8X10−’To
rr. S iのドーピング濃度I XIO”cm−’
で行った。
Furthermore, the formation of the second Aisb layer 24 with a thickness of 0.4 μm, which will become an emitter layer, is performed using an A2 flux amount of 1.8X10-'To
rr. Doping concentration of Si
I went there.

これらの成長条件で作製した場合、各々の層の電気的性
質は、第lのAfSb層22はn形で電子濃度I XI
O”cm−”、GaSb層23はp形で正孔濃度I X
 10” cm−”、第2のAffiSb層24はn形
で電子濃度I XIO17cm−’と成ることが期待で
きる。従って、表面よりn−AfSbエミッタ層/p・
GaSbベース層/Jl− −AlSbコレクタ層とな
り、npn形ヘテロ接合トランジスタ用ウエハの構造が
得られた。
When manufactured under these growth conditions, the electrical properties of each layer are such that the first AfSb layer 22 is n-type and has an electron concentration of I
O"cm-", the GaSb layer 23 is p-type and the hole concentration I
It can be expected that the second AffiSb layer 24 is n-type and has an electron concentration IXIO of 17 cm-'. Therefore, the n-AfSb emitter layer/p・
A GaSb base layer/Jl--AlSb collector layer was formed, and a structure of a wafer for an npn type heterojunction transistor was obtained.

次に、第2図(b)に示すように、フォトレジストを用
いたりソグラフィ技術と酢酸系のエッチャントにより、
各層の表面をメサ状に露出させ、その後もう一度フォト
レジストを用いたりソグラフィ技術によりそれぞれマス
クを設け、蒸着によりn形のエミッタ層とコレクタ層に
はAuSn層25を、p形のベース層にはAuZn層2
6を形成する。ここでnpn形のヘテロ接合トランジス
タ構造が完成しているが、エミッタ層とコレクタ層に用
いた/lsb結晶は、水と反応する性質があるので、空
気中の水分から保護する目的で、第2図(C)に示すよ
うに、配線に必要な部分を除いてスパッタ堆積法により
SiN.層27を設け表面を保護した。
Next, as shown in Figure 2(b), using photoresist, lithography technology, and acetic acid-based etchant,
The surface of each layer is exposed in a mesa shape, and then a mask is provided again using photoresist or lithography, and AuSn layer 25 is deposited on the n-type emitter layer and collector layer, and AuZn layer 25 is deposited on the p-type base layer by vapor deposition. layer 2
form 6. Here, an npn type heterojunction transistor structure has been completed, but since the /lsb crystal used for the emitter and collector layers has the property of reacting with water, a second crystal is used to protect it from moisture in the air. As shown in Figure (C), SiN was deposited by sputter deposition except for the areas necessary for wiring. A layer 27 was provided to protect the surface.

以上のようにして作成したn−Aj!Sb/p”−Ga
Sb/n− −Aj!Sbヘテロ接合トランジスタの特
性としては、室温にて電流利得150が得られた 〔発明の効果〕 以上のように本発明によれば、蒸気圧が低く制御性の高
いSi不純物だけを用いることにより、制御性の悪いT
e不純物を用いることなくn形AlSb[を形成できる
だけではなく、p形GaSb層形成の為にBe等のアク
セプタ不純物を新たに用いることなく、Siをドーピン
グしながらAfSb,GaSb,AffiSbと連続し
て成長することによりn−AISb/p−GaSb/n
−Alsbのヘテロ接合構造が一度に制御良く形成でき
る。
n-Aj! created as above! Sb/p''-Ga
Sb/n--Aj! As for the characteristics of the Sb heterojunction transistor, a current gain of 150 was obtained at room temperature. [Effects of the Invention] As described above, according to the present invention, by using only Si impurities with low vapor pressure and high controllability, T with poor controllability
Not only can n-type AlSb[ be formed without using e-impurities, but also AfSb, GaSb, and AffiSb can be formed continuously while doping Si without newly using acceptor impurities such as Be to form p-type GaSb layers. By growing n-AISb/p-GaSb/n
-Alsb heterojunction structure can be formed at once with good control.

なお本発明では、A2組成の高いA.j!GaSb結晶
をA/!Sb[の代りに用いても同様の効果が期待でき
ることは明らかである。
In addition, in the present invention, A. j! GaSb crystal A/! It is clear that similar effects can be expected when used in place of Sb[.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分子線成長法により半絶縁性GaAs基板上に
31をドーピングしながら形成したAffisb層及び
GaSb層の成長温度と伝導形、正孔または電子濃度及
び移動度の関係を示した図、第2図は本発明によりAf
Sb/GaSb/AISb構造のnpn形ヘテロ接合ト
ランジスタを作製する手順を示した図である。 21・・・・・Garb基板 22・・・・・第lのAn!Sb層 23・・・・・Garb層 24・・・・・第2のAffiSb層 25・・・・・AuSnN 26・・・・・AuZnN 27・・・・・SiN.層 代理人 弁理士  岩 佐  義 幸 洸最温度 (’C ) (a) (b) ○00/T9 (1/K) 第 図 (C) 第2図 手続補正書 5. 補正の対象 平成 1.6.9 年  月 日 明細書の発明の詳細な説明の欄
FIG. 1 is a diagram showing the relationship between the growth temperature, conductivity type, hole or electron concentration, and mobility of an Affisb layer and a GaSb layer formed by doping 31 on a semi-insulating GaAs substrate by the molecular beam growth method, FIG. 2 shows that Af according to the present invention is
FIG. 2 is a diagram showing a procedure for manufacturing an npn type heterojunction transistor having a Sb/GaSb/AISb structure. 21...Garb board 22...1st An! Sb layer 23...Garb layer 24...Second AffiSb layer 25...AuSnN 26...AuZnN 27...SiN. Layered agent Patent attorney Yoshihiro Iwasa Yoshihiro Iwasa's temperature ('C) (a) (b) ○00/T9 (1/K) Figure (C) Figure 2 Procedure amendment 5. Subject of amendment: 1999 1.6.9 Detailed description of the invention in the description

Claims (1)

【特許請求の範囲】[Claims] (1)AlSbの成長においてSiがドナー不純物とし
てドーピングされる成長温度を用いて、全ての成長層に
SiをドーピングしながらAlSb/GaSb/AlS
bのヘテロ接合構造を成長する工程を含むことを特徴と
する半導体素子の製造方法。
(1) Using a growth temperature at which Si is doped as a donor impurity in the growth of AlSb, all growth layers are doped with Si while forming AlSb/GaSb/AlSb.
A method for manufacturing a semiconductor device, comprising the step of growing a heterojunction structure as described in (b).
JP5341689A 1989-03-06 1989-03-06 Manufacture of semiconductor element Pending JPH02232931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341689A JPH02232931A (en) 1989-03-06 1989-03-06 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341689A JPH02232931A (en) 1989-03-06 1989-03-06 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH02232931A true JPH02232931A (en) 1990-09-14

Family

ID=12942233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341689A Pending JPH02232931A (en) 1989-03-06 1989-03-06 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH02232931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022497A1 (en) * 1999-09-02 2001-03-29 Hrl Laboratories, Llc. Superlattice fabrication for inas/gasb/alsb semiconductor structures
JP2014220464A (en) * 2013-05-10 2014-11-20 日本電信電話株式会社 Lamination structure of antimony-based p-type compound semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022497A1 (en) * 1999-09-02 2001-03-29 Hrl Laboratories, Llc. Superlattice fabrication for inas/gasb/alsb semiconductor structures
JP2014220464A (en) * 2013-05-10 2014-11-20 日本電信電話株式会社 Lamination structure of antimony-based p-type compound semiconductor

Similar Documents

Publication Publication Date Title
US6294018B1 (en) Alignment techniques for epitaxial growth processes
KR930009595B1 (en) Method for manufacturing a semiconductor integrated circuit device
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
EP0334682B1 (en) Method for forming P-type germanium layer on a gallium arsenide body
US7109100B2 (en) Semiconductor device and method for manufacturing semiconductor device
US6784064B2 (en) Heterojunction bipolar transistor and method of making heterojunction bipolar transistor
JPS5946414B2 (en) compound semiconductor device
JPH02232931A (en) Manufacture of semiconductor element
US4939102A (en) Method of growing III-V semiconductor layers with high effective hole concentration
JP3547320B2 (en) GaN-based compound semiconductor device
JP2004519837A (en) Epitaxial wafer equipment
JPH02232930A (en) Manufacture of semiconductor element
JPH0945890A (en) Ohmic electrode structure, semiconductor device, and manufacture thereof
US5865888A (en) Semiconductor device epitaxial layer lateral growth rate control method using CBr4
JPH02232922A (en) Impurity doping
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
JP3416051B2 (en) Method for manufacturing group III-V compound semiconductor device
Li et al. Amphoteric doping of Si in InAlAs/InGaAs/InP (311) A heterostructures grown by molecular‐beam epitaxy
KR100841539B1 (en) Thin-film crystal wafer having pn junction and method for fabricating the wafer
JP2694260B2 (en) Semiconductor element
JP3298436B2 (en) Semiconductor device
JPS61294857A (en) Manufacture of bipolar transistor
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JPH02192731A (en) Bipolar transistor and its manufacture
JPH04315421A (en) Manufacture of semiconductor crystal