JPH02232922A - Impurity doping - Google Patents

Impurity doping

Info

Publication number
JPH02232922A
JPH02232922A JP5341789A JP5341789A JPH02232922A JP H02232922 A JPH02232922 A JP H02232922A JP 5341789 A JP5341789 A JP 5341789A JP 5341789 A JP5341789 A JP 5341789A JP H02232922 A JPH02232922 A JP H02232922A
Authority
JP
Japan
Prior art keywords
layer
type
alsb
temperature
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5341789A
Other languages
Japanese (ja)
Inventor
Naotaka Iwata
直高 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5341789A priority Critical patent/JPH02232922A/en
Publication of JPH02232922A publication Critical patent/JPH02232922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable either p type or n type conductivity of a deposited layer to be controlled easily by a method wherein, in the depositing process of AlSb, Si doping is performed at variable depositing temperature. CONSTITUTION:The first AlSb layer 22 in specified thickness is formed on a GaSb substrate 21 at specified temperature. Next, the substrate temperature is raised and successively, the second AlSb layer 23 is formed in specified thickness at the raised temperature. Later, a specimen is taken out of a molecular beam depositing device; an AuZn layer 24 and an Au layer 25 in specified diameter are formed by evaporation process; than mesa etching process is performed by acetic acid base etchant using the said layers 24, 25 as masks. Furthermore, an AuSn layer 26 is evaporated on the rear surface of the substrate 21 so as to form an ohmic contact. In such a specimen, the conductivity type of the AlSb layer 22 is n type while that of the AlSb layer 23 is p type so as to form a pn junction. Through these procedures, the p type AlSb layer 23 can be formed without newly using an acceptor impurity such as Be etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、AffiSb成長時のSiドーピング方法、
特にSLをドーピングした/M!Sbの伝導形の制御に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for doping Si during AffiSb growth,
Especially doped SL/M! This invention relates to controlling the conduction type of Sb.

〔従来の技術〕[Conventional technology]

m−V族化合物半導体材料であるAISbは、GaSb
,InAs及びそれらの混晶半導体に対して格子定数が
似ていることと、それらより禁制帯幅が大きいこと等に
より、それらの半導体に対するバリア層材料として注目
されている。例えば、二次元電子ガス電界効果トランジ
スタ作製用のウエハとしては、n−A/!Sb/GaS
b構造が用いられるであろう。この場合、n形のA/!
Sb層が必要であるが、この場合ドナー不純物としては
、Garbのドナー不純物としてよく用いられるTe.
がAlSbのドナー不純物として用いられていた。
AISb, which is an m-V group compound semiconductor material, is GaSb
, InAs, and their mixed crystal semiconductors, and because of their similar lattice constant and larger forbidden band width, they are attracting attention as barrier layer materials for these semiconductors. For example, as a wafer for manufacturing two-dimensional electron gas field effect transistors, n-A/! Sb/GaS
b structure will be used. In this case, the n-type A/!
An Sb layer is required, but in this case, the donor impurity is Te.
was used as a donor impurity for AlSb.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Teは蒸気圧の低い元素であり、液相成長法,気相成長
法.分子線成長法等のいかなる成長法においても制御性
が低く、例えば急峻なドーピングプロファイルを得るこ
とは困難であった。例えば分子線成長法によるAfSb
の成長においてTeをドーピングする場合、Teの分子
線源セル温度は、通常良く用いられる10”cm−”程
度のドーピング濃度に対しては、200℃程度と低く、
従って、分子線源セル温度の少しの変動によりドーピン
グ濃度が大きく揺らぎ、制御性が極めて悪い。同様に急
峻にドーピング濃度を変えたい場合にも、分子線源セル
温度の制御性が悪いことより、急峻なドーピングプロフ
ァイルの形成は困難であった。
Te is an element with a low vapor pressure and can be used for liquid phase growth, vapor phase growth, etc. Any growth method such as molecular beam growth has poor controllability, and it has been difficult to obtain, for example, a steep doping profile. For example, AfSb by molecular beam growth method
When doping Te in the growth of Te, the Te molecular beam source cell temperature is as low as about 200°C for the commonly used doping concentration of about 10"cm-".
Therefore, the doping concentration fluctuates greatly due to slight fluctuations in the molecular beam source cell temperature, resulting in extremely poor controllability. Similarly, even when it is desired to change the doping concentration sharply, it is difficult to form a steep doping profile due to the poor controllability of the molecular beam source cell temperature.

また更にp−An S b層が必要な場合は、例えば、
Be等のアクセプタドーピング用の分子線源セルが新た
に必要となった。
Furthermore, if a p-An S b layer is required, for example,
A new molecular beam source cell for acceptor doping such as Be was required.

本発明の目的は、上述のような問題点を解決した不純物
のドーピング方法を提供することにある。
An object of the present invention is to provide an impurity doping method that solves the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、/lsb成長時にSiをドーピングするに際
し、成長温度を変えてSiをドーピングすることにより
、その成長層の伝導形をp形またはn形と制御すること
を特徴とする。
The present invention is characterized in that when doping Si during /lsb growth, the conductivity type of the grown layer is controlled to be p-type or n-type by doping Si while changing the growth temperature.

〔作用〕[Effect]

GaAs結晶に対するドナー不純物として通常良く用い
られる■族元素のSiは、蒸気圧が低く、制御性の高い
不純物であるが、GaSbに代表される■族にsbを用
いた■一■族化合物半導体に対しては■族原子位置を占
めてアクセプタとして働くことが一般に良く知られてい
る。一方、A尼sbに対するSi不純物ドーピング特性
の成長条件との関係は知られていない。第1図は、分子
線成長法により半絶縁性GaAs基板上に作製したA1
Sbに対するSiドーピングのホール測定によるキャリ
ア濃度とキャリア移動度の測定結果であり、SSをドー
ピングした/lsb層の成長温度T9と伝導形、正孔ま
たは電子濃度及び移動度μの関係を示した図であ。
Si, a group III element commonly used as a donor impurity for GaAs crystals, has a low vapor pressure and is an impurity that can be easily controlled. It is generally well known that it occupies the group (■) atom position and acts as an acceptor. On the other hand, the relationship between the Si impurity doping characteristics and the growth conditions for Asb is unknown. Figure 1 shows A1 fabricated on a semi-insulating GaAs substrate using the molecular beam growth method.
This is the measurement result of carrier concentration and carrier mobility by hole measurement of Si doping for Sb, and is a diagram showing the relationship between the growth temperature T9 of the SS-doped/lsb layer, conductivity type, hole or electron concentration, and mobility μ. So.

成長は、Alフラックス量を1.8X10−フTorr
、sbフラックス量を2.7X10−”Torr,成長
速度を1.2μm/hSS iのドーピング濃度を9.
3X10I7cm−3とし、基板温度を様々に変えて行
った。
For growth, the Al flux amount was set to 1.8X10-F Torr.
, sb flux amount was 2.7×10-”Torr, growth rate was 1.2 μm/hSSi doping concentration was 9.
3×10I7 cm −3 and the substrate temperature was varied.

この測定結果より明らかなように、Aρsbに対してS
iは、成長温度490゜C付近を境に、成長温度が低い
領域ではm族原子位置を占めドナー不純物として、また
成長温度が高い領域ではV族原子位置を占めアクセプタ
不純物として働くことが分かった。従ってこのAfSb
に対するSiドーピングの結果より、/lsbについて
は成長温度を選ぶことにより、S1をドナー不純物また
はアクセプタ不純物として選択的に利用できることが分
かった。
As is clear from this measurement result, S
It was found that i occupies the group M atom position in the region where the growth temperature is low and acts as a donor impurity, and it occupies the V group atom position in the region where the growth temperature is high and acts as an acceptor impurity, with the growth temperature being around 490°C. . Therefore, this AfSb
From the results of Si doping for /lsb, it was found that by selecting the growth temperature, S1 can be selectively used as a donor impurity or an acceptor impurity.

両性不純物であるSiが■族原子位置またはV族原子位
置を占めるかは、成長時の表面でのAf原子とsb原子
の化学量論比が大きく影響しているであろう。分子線成
長法の場合は、■族フラックス量と■族フラックス量の
関係によっても成長時の表面での,/l原子とsb原子
の化学量論比を変化させることもできる。しかしながら
、桁違いに大きなフラックス量の差のある条件での成長
は、制御性,経済性ばかりではなく結晶性から判断して
も実際的ではないことは明らかである。通常用いられる
成長条件において、成長温度だけを制御する手法があら
ゆる観点から判断して最も有利である。
Whether Si, which is an amphoteric impurity, occupies the group II atom position or the group V atom position is likely to be largely influenced by the stoichiometric ratio of Af atoms and sb atoms on the surface during growth. In the case of the molecular beam growth method, the stoichiometric ratio of /l atoms and sb atoms at the surface during growth can also be changed depending on the relationship between the amount of the group II flux and the amount of the group II flux. However, it is clear that growth under conditions where there is an order of magnitude difference in flux amount is not practical, judging from not only controllability and economic efficiency but also crystallinity. Under commonly used growth conditions, a method of controlling only the growth temperature is the most advantageous from all viewpoints.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を用いて詳細に説明
する. 第2図は、Teをドープした電子濃度約4×101?C
I1−クのGaSb (100)基板21上に本発明に
より分子線成長法により作製したAll!Sbのpn接
合試料の断面図である. この試料の共通の成長条件は、A1フラックス量を1.
8X10−’TorrSS bフラックス量を2.7×
10−”Torr, S tのドーピング濃度は約I 
XIOl′lcm−3であり、以下の手順で作製した。
Hereinafter, embodiments of the present invention will be described in detail using the drawings. Figure 2 shows a Te-doped electron concentration of approximately 4 x 101? C
All! produced by the molecular beam growth method according to the present invention on the GaSb (100) substrate 21 of I1-K! FIG. 3 is a cross-sectional view of a Sb pn junction sample. The common growth conditions for this sample are the A1 flux amount of 1.
8X10-'TorrSS b flux amount 2.7x
10-” Torr, the doping concentration of St is approximately I
XIOl'lcm-3, which was produced by the following procedure.

まず、GaSb基板21上に成長温度390゜Cで約2
μmの第1の/lsb層22を作製した。次に、基仮温
度を610″Cに上昇させ、引き続いて610’Cにお
いて0.5μmの第2のAfSb層23を作製した。そ
の後、分子線成長装置から取り出し、蒸着により、直径
500μmのAuZn層24とAu層25を形成し、そ
れらをマスクとして酢酸系のエッチャントにより約1μ
mのメサエッチングを行った。
First, on a GaSb substrate 21, about 2
A first /lsb layer 22 of .mu.m was fabricated. Next, the base temperature was raised to 610"C, and a second AfSb layer 23 with a thickness of 0.5 μm was subsequently formed at 610"C. Thereafter, it was removed from the molecular beam growth apparatus, and an AuZn layer 23 with a diameter of 500 μm was deposited by vapor deposition. Form a layer 24 and an Au layer 25, and use them as a mask to remove approximately 1 μm using an acetic acid-based etchant.
Mesa etching of m was performed.

更に基板裏面にはAuSn層26の蒸着により、オーミ
ックコンタクトを形成した。この試料においては、第1
のAfSbji22の伝導形はn形、第2のAn!Sb
層23の伝導形はp形であり、pn接合が形成されてい
ること及び第1のAll!Sb層22はn形で電子濃度
は約I XIO”cm−3であることを容量一電圧測定
より確認した。
Furthermore, an ohmic contact was formed by vapor-depositing an AuSn layer 26 on the back surface of the substrate. In this sample, the first
The conductivity type of AfSbji22 is n type, and the second An! Sb
The conductivity type of the layer 23 is p-type, a pn junction is formed, and the first All! It was confirmed by capacitance-voltage measurement that the Sb layer 22 was n-type and had an electron concentration of about IXIO''cm-3.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、蒸気圧が低く制御性の高
いSi不純物だけを用いることにより、制御性の悪いT
e不純物を用いることなくn形ApsbNを形成できる
だけではなく、Be等のアクセプタ不純物を新たに用い
ることなくp形A!sb層を形成することが可能である
。なお本発明は、A1組成の高いAfGaSb結晶にお
いても同様に効果があることは明らかである。
As described above, according to the present invention, by using only Si impurities with low vapor pressure and high controllability, T
Not only can n-type ApsbN be formed without using an e impurity, but also p-type A! It is possible to form an sb layer. It is clear that the present invention is equally effective for AfGaSb crystals with a high A1 composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分子線成長法により半絶縁性CraAs基板上
に形成した、SiをドーピングしたAISb層の成長温
度と伝導形,正孔または電子濃度及び移動度の関係を示
した図、 第2図は本発明により作製した14!Sbのpn接合試
料の断面図である。 21・・・・・Garb基板 22・・・・・第1の,6/!Sbl 23・・・・・第2のAffiSbJi24・・・・・
AuZnN 25・・・・・Au層 26・
Figure 1 shows the relationship between growth temperature, conductivity type, hole or electron concentration, and mobility of a Si-doped AISb layer formed on a semi-insulating CraAs substrate by molecular beam growth. is 14! produced according to the present invention! FIG. 3 is a cross-sectional view of a Sb pn junction sample. 21... Garb board 22... First, 6/! Sbl 23...Second AffiSbJi24...
AuZnN 25... Au layer 26...

Claims (1)

【特許請求の範囲】[Claims] (1)AlSb成長時にSiをドーピングするに際し、
成長温度を変えてSiをドーピングすることにより、そ
の成長層の伝導形をp形またはn形と制御することを特
徴とする不純物のドーピング方法。
(1) When doping Si during AlSb growth,
An impurity doping method characterized in that the conductivity type of the grown layer is controlled to be p-type or n-type by doping Si while changing the growth temperature.
JP5341789A 1989-03-06 1989-03-06 Impurity doping Pending JPH02232922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341789A JPH02232922A (en) 1989-03-06 1989-03-06 Impurity doping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341789A JPH02232922A (en) 1989-03-06 1989-03-06 Impurity doping

Publications (1)

Publication Number Publication Date
JPH02232922A true JPH02232922A (en) 1990-09-14

Family

ID=12942263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341789A Pending JPH02232922A (en) 1989-03-06 1989-03-06 Impurity doping

Country Status (1)

Country Link
JP (1) JPH02232922A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925630U (en) * 1972-06-09 1974-03-05
JPS4925629A (en) * 1972-06-30 1974-03-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925630U (en) * 1972-06-09 1974-03-05
JPS4925629A (en) * 1972-06-30 1974-03-07

Similar Documents

Publication Publication Date Title
US5229625A (en) Schottky barrier gate type field effect transistor
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
US5047365A (en) Method for manufacturing a heterostructure transistor having a germanium layer on gallium arsenide using molecular beam epitaxial growth
US4035205A (en) Amphoteric heterojunction
US4226649A (en) Method for epitaxial growth of GaAs films and devices configuration independent of GaAs substrate utilizing molecular beam epitaxy and substrate removal techniques
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US4939102A (en) Method of growing III-V semiconductor layers with high effective hole concentration
US6451711B1 (en) Epitaxial wafer apparatus
JPH02232922A (en) Impurity doping
Ploog et al. Improved p/n junctions in Ge-doped GaAs grown by molecular beam epitaxy
JP2000068497A (en) GaN-BASED COMPOUND SEMICONDUCTOR DEVICE
JPH02232931A (en) Manufacture of semiconductor element
US5061656A (en) Method for making a self-aligned impurity induced disordered structure
KR960004591B1 (en) Doped crystal growing method
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
JPH0457319A (en) Forming method of single crystal thin film
JP2870989B2 (en) Compound semiconductor crystal growth method
JP3416051B2 (en) Method for manufacturing group III-V compound semiconductor device
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JPH02232930A (en) Manufacture of semiconductor element
JPS63502472A (en) Liquid phase epitaxial method for producing three-dimensional semiconductor structures
Povolni et al. Electrical Characterization of Fabricated pin Diodes made from Si x Ge 1-xy Sn y with an Embedded Ge 1-x Sn x Quantum Well
JPS61241972A (en) Compound semiconductor device
JP2694260B2 (en) Semiconductor element
JP2545785B2 (en) Compound semiconductor