JPH02232631A - Waveguide type optical switch - Google Patents

Waveguide type optical switch

Info

Publication number
JPH02232631A
JPH02232631A JP1052866A JP5286689A JPH02232631A JP H02232631 A JPH02232631 A JP H02232631A JP 1052866 A JP1052866 A JP 1052866A JP 5286689 A JP5286689 A JP 5286689A JP H02232631 A JPH02232631 A JP H02232631A
Authority
JP
Japan
Prior art keywords
optical
waveguide
wavelength
coupling
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1052866A
Other languages
Japanese (ja)
Other versions
JPH0743484B2 (en
Inventor
Masao Kawachi
河内 正夫
Kaname Jinguji
神宮寺 要
Akihiro Takagi
章宏 高木
Norio Takato
高戸 範夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5286689A priority Critical patent/JPH0743484B2/en
Priority to US07/475,435 priority patent/US5044715A/en
Priority to CA002009352A priority patent/CA2009352C/en
Priority to EP90301204A priority patent/EP0382461B1/en
Priority to DE69018660T priority patent/DE69018660T2/en
Priority to KR1019900001397A priority patent/KR930005900B1/en
Publication of JPH02232631A publication Critical patent/JPH02232631A/en
Priority to KR1019920023067A priority patent/KR930002627B1/en
Publication of JPH0743484B2 publication Critical patent/JPH0743484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the waveguide type optical switch scarcely having wavelength dependency by using a Mach-Zehnder optical interferometer circuit type 3dB optical coupler, which is constituted by coupling two directional couplers by optical waveguides with slightly different length, as an element, and constituting a circuit type optical switch with phase shifters. CONSTITUTION:Two 3dB optical couplers as elements of the Mach-Zehnder type optical switch are constituted in the configuration of a Mach-Zehnder optical interferometer circuit and the optical path difference of the circuit is set a little bit shorter (nearly 1mum) than the short-wavelength end of an in-use wavelength range. Namely, the 3dB optical couplers 22 and 23 themselves are constituted by coupling the two directional couplers 22a and 22b, and 23a and 23b each by two optical waveguides 22c and 22d, and 23c and 23d each, and such a coupled waveguide is supplied with an optical path length difference of nearly 1mum; and those two 3dB optical couplers 22 and 23 are coupled by two optical waveguides 24 and 25 equipped with phase shifters to obtain desired optical switch constitution on the whole. Consequently, the waveguide type optical switch which operates while scarcely having wavelength dependency in a desired wavelength of, for example, 1.3 - 1.44mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 木発明は、光通信分野等で用いて好通な導波路型光スイ
ッチに関するものであり、さらに詳細には、波長依存性
が少なく、広い波長域の信号光を同時切り替え可能な導
波路型光スイッチに関するものである. (従来の技術) 光ファイバ通信の一層の普及のためには、光ファイバと
受・発光素子の高性能化、低価格化に加えて、光分岐結
合器、光合分波器、光スイッ′チ等の各種光回路部品の
開発が不可欠な段階にきている。なかでも、光スイッチ
は、光ファイバ回線を需要に応じて自在に切り替えたり
、回線故障の際の迂回路の確保のために、近い将来、重
要な役割を占めると考えられる. 光スイッチの構成形態としては、従来から、l)バルク
型、2)導波路型が提案されているが、それぞれに問題
点を残している.バルク型は、可動プリズムやレンズ等
を構成要素として組み立てられたものであり、波長依存
性が少なく、比較的低損失という利点があるものの、組
立調整工程が煩雑で量産に適さず、高価格という欠点が
あり、大粗く普及するに至っていない.導波路型は、平
面基板上の光導波路を基本として、フォトリソグラフィ
や微細加工技術を利用して、いわゆる集積型の光スイッ
チを一括して大量に生産するものであり、将来型の光ス
イッチ形態として期待されている。, 第7図は、従来の導波路型光スイッチの構成例を示す平
面図である.ここで、基板1上に形成された3dB光結
合器2および3は、近接した2木の光導波路4および5
と共に方向性結合器を構成し、そρ結合率は信号光波長
において50%(完全結合長の%)になるように設定さ
れている, 3dB光結合器2と3との間を連結する2
木の光導波路4および5の光路長は、これら2木の光導
波路の途上に配置された位相シフタ4aおよび5aを動
作させない状態で同一(対称)になるように設定されて
いる. 入力ポート1aから入射された信号光は,上記の状態で
は出力ポート2bから出射され、出力ボートlbからは
出射されない。ところが、光導波路4と5との間にl8
0゜ (πラディアン)光位相に相当する%波長近傍の
光路長差が生じるように位相シフタ4aおよび5aの少
なくとも一方を作動させると、信号光は出力ボート1b
から出射・されるように切り替わり、光スイッチとして
の動作が達成される.この種の導波路型光スイッチは、
マツハツェンダ光干渉計回路型とも呼ばれ、比較的簡単
な位相シフタによりスイッチング作用を実現できること
から、ガラス光導波路をはじめとする種々の光導波路材
料系において構成が試みられているが、これまでに次の
ような問題点があった。
[Detailed Description of the Invention] [Industrial Field of Application] The invention relates to a waveguide type optical switch that is commonly used in the field of optical communication, etc., and more specifically, it has less wavelength dependence and a wide range of applications. This paper concerns a waveguide optical switch that can simultaneously switch signal light in a wavelength range. (Prior technology) In order to further spread optical fiber communication, in addition to improving the performance and lowering the cost of optical fibers and receiving/emitting elements, optical branching couplers, optical multiplexers/demultiplexers, and optical switches are required. We have reached a stage where the development of various optical circuit components such as these is essential. Among these, optical switches are expected to play an important role in the near future, as they can freely switch optical fiber lines according to demand and provide detours in the event of a line failure. Conventionally, 1) bulk type and 2) waveguide type have been proposed as configurations of optical switches, but each has its own problems. The bulk type is assembled from components such as movable prisms and lenses, and although it has the advantage of less wavelength dependence and relatively low loss, the assembly and adjustment process is complicated, making it unsuitable for mass production and being expensive. It has shortcomings and has not become widely popular. The waveguide type is based on an optical waveguide on a flat substrate, and utilizes photolithography and microfabrication technology to mass produce so-called integrated optical switches, and is a future type of optical switch format. It is expected that , FIG. 7 is a plan view showing an example of the configuration of a conventional waveguide type optical switch. Here, the 3 dB optical couplers 2 and 3 formed on the substrate 1 are connected to two adjacent optical waveguides 4 and 5.
3 dB optical couplers 2 and 3 are connected to form a directional coupler, and the ρ coupling rate is set to be 50% (% of the complete coupling length) at the signal light wavelength.
The optical path lengths of the wooden optical waveguides 4 and 5 are set to be the same (symmetrical) when the phase shifters 4a and 5a disposed in the middle of these two optical waveguides are not operated. The signal light input from the input port 1a is emitted from the output port 2b in the above state, and is not emitted from the output port lb. However, l8 between the optical waveguides 4 and 5
When at least one of the phase shifters 4a and 5a is operated so that an optical path length difference in the vicinity of % wavelength corresponding to 0° (π radian) optical phase is generated, the signal light is shifted to the output port 1b.
The light is then switched to emit and emit light, achieving operation as an optical switch. This type of waveguide optical switch is
Also called the Matsuha-Zehnder optical interferometer circuit type, the switching effect can be achieved using a relatively simple phase shifter, so configurations have been attempted in various optical waveguide material systems including glass optical waveguides. There were problems like.

(発明が解決しようとする課題) 第8図は、1.3μ1波長用に設計製作された前記光ス
イッチの入力ボートlaから出力ボート2bへの結合率
を示す波長特性図である。曲線(a)は、位相シフタ4
aおよび5aがオフの際の結合特性であり、曲線(b)
はいずれか一方の位相シフタがオンの時の結合特性であ
る。曲線(C)は、参考のために、構成要素である3d
B先結合器の結合率波長特性を示したものである。
(Problems to be Solved by the Invention) FIG. 8 is a wavelength characteristic diagram showing the coupling rate from the input port la to the output port 2b of the optical switch designed and manufactured for a 1.3μ1 wavelength. Curve (a) shows phase shifter 4
This is the coupling characteristic when a and 5a are off, and curve (b)
is the coupling characteristic when either one of the phase shifters is on. Curve (C) is for reference the component 3d
It shows the coupling rate wavelength characteristics of the B-end coupler.

一方の位相シフタがオンの状態(曲線(b))では、1
.3μIを中心として±0.2μl程度の比較的広い波
長域で、(la→2b)結合率は、ほぼ零(5%以下》
でζ信号光は波長依存性少なく(1a− lb)の経路
を通過することが可能である.これに対し、オフ状態(
曲線(a))では、gO%以上の(la→2b)結合率
は、1.3μ■±0.1μ鴎程度の狭い領域に限定され
、例えば波長1.55μ厘では、結合率は50%程度に
しか達せず、スイッチング状態が中途半端になってしま
う大きな問題点があった. このように、第7図の従来の導波路型光スイッチが大き
な波長依存性をもつ最大の原因は、構成要素である3d
B光結合器(方向性結合器)が、第8図曲線(c)に示
したように大きな波長依存性を有し、この曲線(C)の
ように波長1.3μmにて50%結合率となるように設
定した場合、波長1.55μlでは,50%から大きく
はずれ3dB光結合器として作用しなくなってしまう点
にあった.光スイッチを光ファイバ回線切り替え等の分
野に使用する場合、回線中には、1.3μm波長光と1
。55μ1波長光が同時に通過している状況が多々ある
ので、このように光スイッチが大きい波長依存性をもつ
ことは、実用上の大きな問題点であった。
When one phase shifter is on (curve (b)), 1
.. In a relatively wide wavelength range of about ±0.2 μl centered on 3 μI, the (la → 2b) coupling rate is almost zero (5% or less).
Therefore, the ζ signal light can pass through a path of (1a-lb) with little wavelength dependence. In contrast, the off state (
In curve (a)), the binding rate (la → 2b) of gO% or more is limited to a narrow region of about 1.3μ ± 0.1μ; for example, at a wavelength of 1.55μ, the binding rate is 50%. There was a major problem in that the switching state was only halfway reached. In this way, the main reason for the large wavelength dependence of the conventional waveguide optical switch shown in FIG. 7 is the 3D
The B optical coupler (directional coupler) has a large wavelength dependence as shown in the curve (c) in Figure 8, and as shown in this curve (C), the coupling rate is 50% at a wavelength of 1.3 μm. When set so that, at a wavelength of 1.55 μl, it deviates significantly from 50% and no longer functions as a 3 dB optical coupler. When optical switches are used in fields such as optical fiber line switching, the line contains 1.3 μm wavelength light and 1.3 μm wavelength light.
. Since there are many situations in which 55μ1 wavelength light is passing through at the same time, the fact that the optical switch has such a large wavelength dependence has been a major practical problem.

そこで、本発明の目的は、上記の欠点を解決し、所望の
波長域、例えば1.3μ慣〜l.55μ重域において、
波長依存性の少ない動作をする導波路型マツハツエンダ
光干渉計回路型光スイッチを提供することにある. (課題を解決するための手段) 本発明では、マツハツエンダ型光スイッチの構成要素で
ある2個の3dB光結合器自体を、マツハツェンダ光干
渉針回路の形態に構成し、このマツハツェンダ光干渉計
回路の光路長差を使用波長域の短波長端よりやや短め(
1μ膳近傍)に設定する。すなわち、3dB光結合器自
体を、2個の方向性結合器を2本の光導波路にて連結し
て構成し、これら連結導波路に1μ藝近傍の光路長差を
与え、これら2個の3dB光結合器を位相シフタを備え
た2木の光導波路で連結し、全体として、所望の光スイ
ッチ構成とする. すなわち、本発明は、基板と、基板上に配設された2本
の光導波路と、2本の光導波路をそれぞれこれら光導波
路の異なる位置で結合する2つの3dB光結合部と、2
つの3dB光結合部の間において光導波路に設けられ、
光導波路の光路長を微調する光位相シフタ部とを有する
導波路型光スイッチにおいて、2つの3dB光結合部の
各々は、2本の光導波路をそれぞれ光導波路の異なる位
置において結合するよう基板上に配置された2つの方向
性結合器を具え、2つの方向性結合器の間を連結する2
木の光導波路の光路長差を動作波長域の短波長端の波長
よりもやや小さ目に設定し、および、2つの3dB光結
合部の各々における2本の光導波路のうち光路長の長い
側の光導波路を、2つの3dB光結合部の間で互いに反
対側に配置したことを特徴とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the above-mentioned drawbacks and to provide a desired wavelength range, for example from 1.3μ to l. In the 55μ heavy range,
The object of this invention is to provide a waveguide-type Matsuhatsu Enda optical interferometer circuit-type optical switch that operates with little wavelength dependence. (Means for Solving the Problems) In the present invention, the two 3dB optical couplers themselves, which are the constituent elements of the Matsuha-Zehnder type optical switch, are configured in the form of a Matsuha-Zehnder optical interference needle circuit. The optical path length difference is slightly shorter than the short wavelength end of the wavelength range used (
Set to around 1μzen. In other words, the 3 dB optical coupler itself is constructed by connecting two directional couplers with two optical waveguides, giving these connected waveguides an optical path length difference of about 1 μm, and connecting these two 3 dB optical couplers. The optical coupler is connected with two optical waveguides equipped with a phase shifter to form the desired optical switch configuration as a whole. That is, the present invention provides a substrate, two optical waveguides disposed on the substrate, two 3dB optical coupling sections that couple the two optical waveguides at different positions of the optical waveguides, and two optical waveguides.
provided in the optical waveguide between two 3dB optical coupling parts,
In a waveguide type optical switch having an optical phase shifter section that finely adjusts the optical path length of the optical waveguide, each of the two 3 dB optical coupling sections is arranged on the substrate so as to couple the two optical waveguides at different positions of the optical waveguide. 2 directional couplers arranged in the
The optical path length difference of the wooden optical waveguides is set to be slightly smaller than the wavelength at the short wavelength end of the operating wavelength range, and It is characterized in that the optical waveguides are arranged on opposite sides between two 3 dB optical coupling parts.

ここで、動作波長域は、1.3μ1〜1.55μ麿域を
含み、3dB光結合器内での光路長差をほぼ1μ閤に設
定し、3dB光結合器の結合率の波長依存性が1.3 
μ鵬〜1.55μI域において緩和されるようにするの
が好適である. 光導波路をガラス光導波路で構成し、光位相シフタをガ
ラス光導波路上に配設された薄膜ヒータかうなる熱光学
効果位相シフタで構成すること1かでぎる. (作 用) ここで、3dB光結合器用マツハツェンダ光干渉計回路
を構成する方向性結合器の結合部長さをLl, L2と
するとし、連結導波路の光路長差をλ0とする.仮に、
λ。千0.0μ一の場合には、3dB光結合器の結合率
特性は、結合部長( Ll + +L2)の単一方向性
結合器と同等であり、波長λの増加につれて、第8図の
曲線(C)と同様に、0%から100%に向かって単調
増加するのみであり、これでは、何等の改善効果はない
. 次に、光路長差λ0を1μ着近傍に設定する本発明での
作用を説明する。この場合、波長λがλ。付近の場合に
は、光路長差入。が信号光の波長と同一であるので.、
方向性結合器間に光路長差があるにもかかわらず、マツ
ハツェンダ光干渉計構成の3dB光結合器全体の結合率
は、結合部長( L1+ L2)の方向性結合器と同等
となる。これは、マツハツェンダ光干渉計回路の光路長
差が、波長の整数倍の場合には、光路長差が零の場合と
区別がつかないという光波の干渉原理による.信号光波
長がλ0を越えて1.3μlさらには1.55μ園に至
ると、光路長差は波長の整数倍(ここでは1倍)の関係
から次第にずれて、端数倍になる.すなわち、この状態
では、マツハツェンダ光干渉計の形態の3dB光結合器
を構成する2個の方向性結合器間に有意な位相差、すな
わち,2πの整数倍からずれた位相差が現れる.この位
相差により、3dB光結合器全体の等価的結合長は、L
1と12の単純和からずれて、次第に減少する。ここで
、波長増加による単純方向性結合器(結合長#t1+1
2)の結合率増加が、上記位相差による等価的結合長の
減少により抑制されるように、光路長差入。や個々の方
向性結合器の結合長Ll, L2が適正設定されていれ
ば、3dB光結合器は、所望波長域、例えば、1.3〜
1。55μm域において、50%付近の結合率を維持す
ることが可能であり、このマツハツェンダ光干渉計型3
dB光結合器を組み合わせて全体として、所望波長域全
体で同時動作可能な光スイッチを提供することができる
のである。
Here, the operating wavelength range includes a 1.3μ1 to 1.55μ range, and the optical path length difference in the 3dB optical coupler is set to approximately 1μ, so that the wavelength dependence of the coupling rate of the 3dB optical coupler is 1.3
It is preferable that it be relaxed in the range of μI to 1.55μI. It is possible to configure the optical waveguide with a glass optical waveguide and configure the optical phase shifter with a thermo-optic effect phase shifter such as a thin film heater placed on the glass optical waveguide. (Function) Here, let Ll and L2 be the coupling lengths of the directional couplers constituting the Matsuha-Zehnder optical interferometer circuit for a 3 dB optical coupler, and let λ0 be the optical path length difference between the coupling waveguides. what if,
λ. In the case of 0.0 μl, the coupling rate characteristic of the 3 dB optical coupler is equivalent to that of a unidirectional coupler with the coupling length (Ll + + L2), and as the wavelength λ increases, the coupling rate characteristic of the 3 dB optical coupler becomes Similar to (C), it only increases monotonically from 0% to 100%, and this does not have any improvement effect. Next, the operation of the present invention in which the optical path length difference λ0 is set to around 1 μm will be explained. In this case, the wavelength λ is λ. If it is nearby, insert the optical path length. is the same as the wavelength of the signal light. ,
Despite the difference in optical path length between the directional couplers, the overall coupling rate of the 3 dB optical coupler of the Matsuha-Zehnder optical interferometer configuration is equivalent to that of the directional coupler of the coupling length (L1+L2). This is due to the principle of light wave interference, which states that when the optical path length difference in the Matsuha-Zehnder optical interferometer circuit is an integral multiple of the wavelength, it is indistinguishable from when the optical path length difference is zero. When the signal light wavelength exceeds λ0 and reaches 1.3 μl or even 1.55 μl, the optical path length difference gradually deviates from the relationship of an integral multiple of the wavelength (here, 1 times) and becomes a fractional multiple. That is, in this state, a significant phase difference appears between the two directional couplers constituting the 3 dB optical coupler in the form of a Matsuh-Zehnder optical interferometer, that is, a phase difference that deviates from an integral multiple of 2π. Due to this phase difference, the equivalent coupling length of the entire 3dB optical coupler is L
It deviates from the simple sum of 1 and 12 and gradually decreases. Here, a simple directional coupler (coupling length #t1+1
The optical path length is inserted so that the increase in the coupling rate in 2) is suppressed by the decrease in the equivalent coupling length due to the phase difference. If the coupling lengths Ll and L2 of each directional coupler are properly set, the 3dB optical coupler can be used in the desired wavelength range, for example, 1.3~
1. It is possible to maintain a coupling rate of around 50% in the 55 μm region, and this Matsuha-Zehnder optical interferometer type 3
By combining the dB optical couplers, it is possible to provide an optical switch that can operate simultaneously over the entire desired wavelength range.

(実施例) 以下、実施例によって本発明を詳紬に説明する.以下の
実施例では、光導波路としてシリコン基板上に形成した
石英系単一モード光導波路を使用し、位相シフタとして
この石英系光導波路上に装着した熱光学効果移相器を用
いているが、これは、この組合せが、単一モード光ファ
イバとの接続性に優れ、しかも偏波依存性の無い光スイ
ッチを提供できるためであり、本発明は、これらの組合
わせに限定ざれるものではない。
(Example) Hereinafter, the present invention will be explained in detail with reference to Examples. In the following examples, a silica-based single mode optical waveguide formed on a silicon substrate is used as an optical waveguide, and a thermo-optic effect phase shifter mounted on the silica-based optical waveguide is used as a phase shifter. This is because this combination can provide an optical switch that has excellent connectivity with single-mode optical fibers and is polarization-independent; however, the present invention is not limited to these combinations. .

実施例1 第1図(A)は、本発明の光スイッチの第1実施例とし
て、1.3μl波長域と1.55μ1波長域とで同時に
動作可能となるよう設計した光スイッチの構成を示す平
面図であり、第1図(B) , (C)および([1)
は、それぞれ、第1図(^)の線分^A’,8B”およ
びCC′に沿クた断面を拡大して示す断面図である. ここで、21はシリコン基板、22および23は3dB
光結合器、24および25はシリコン基板2l上に形成
された2木の石英系単一モード光導波路、24gおよび
25aは、それぞれ、光導波路24および25上に設け
た熱光学効果位相シフタ(移相器)である.Iaおよび
lbは入射ポート、lbおよび2bは出射ボートである
。この実施例では、第7図に示した従来例とは異なり、
3dB光結合器22および23が、それぞれ、2個の方
向性結合器22aと22bおよび23aと23bからな
るマツハツェンダ光干渉計回路の形態に構成されている
, 3dB光結合器z2および23を構成している各マ
ツハツエンダ光干渉計回路において、光導波路22cと
22dおよび23cと23dの間には光路長差入。が設
定されている。ここで、光路長の長い方の光導波路22
cおよび23dを、両光結合器22と23との間で互い
に反対側に配置する. 第1図(B) , (C)および(11)に示したよう
に、晃導波路24および25はコア部寸法が8μ一x8
μ一程度であり、基板l上に配置した厚さ50μ雪程度
のクラッド層2Ib中に埋設されている.方向性結合器
22a,22b,23a,23bは、Nl図(B)に例
示したように、2本の光導波路22C(25)と22d
(24)を、数μIの間隔で数100μ囚長にわたって
平行に並置することによって構成されている.第1図(
C)に示す線分BB”部においては、方向性結合器22
aと22b との間にλGの光路長差を設定するために
、光導波路24c(251 を光導波路22(1(24
)より長くなるように光導波路!2Cがゆるやかな円弧
を描くようになし、方向性結合器23aと23bとの間
においては、これとは反対に光導波路23d(24)を
光導波路23c (25)より長くなるように光導波路
23dが円弧を描くようにする。
Embodiment 1 FIG. 1(A) shows the configuration of an optical switch designed to be able to operate simultaneously in the 1.3μl wavelength range and the 1.55μl wavelength range, as a first embodiment of the optical switch of the present invention. It is a plan view, and FIGS. 1 (B), (C) and ([1)
are enlarged cross-sectional views along lines ^A', 8B'' and CC' in FIG.
Optical couplers 24 and 25 are two quartz-based single mode optical waveguides formed on a silicon substrate 2l, and 24g and 25a are thermo-optic phase shifters provided on the optical waveguides 24 and 25, respectively. It is a phase vessel). Ia and lb are input ports, lb and 2b are output boats. In this embodiment, unlike the conventional example shown in FIG.
The 3 dB optical couplers 22 and 23 constitute 3 dB optical couplers z2 and 23, each configured in the form of a Matsuha-Zehnder optical interferometer circuit consisting of two directional couplers 22a and 22b and 23a and 23b. In each Matsuhatsu Enda optical interferometer circuit, an optical path length is inserted between the optical waveguides 22c and 22d and between 23c and 23d. is set. Here, the optical waveguide 22 with the longer optical path length is
c and 23d are placed on opposite sides between both optical couplers 22 and 23. As shown in FIGS. 1(B), (C), and (11), the optical waveguides 24 and 25 have core dimensions of 8 μm x 8 μm.
It is buried in a cladding layer 2Ib with a thickness of about 50μ disposed on the substrate l. The directional couplers 22a, 22b, 23a, 23b have two optical waveguides 22C (25) and 22d, as illustrated in the Nl diagram (B).
(24) are arranged in parallel over a length of several 100 microns with an interval of several microns. Figure 1 (
In the line segment BB” shown in C), the directional coupler 22
In order to set an optical path length difference of λG between a and 22b, the optical waveguide 24c (251) is connected to the optical waveguide 22 (1 (24
) the optical waveguide to be longer! 2C draws a gentle arc, and on the contrary, between the directional couplers 23a and 23b, the optical waveguide 23d (24) is made longer than the optical waveguide 23c (25). so that it draws an arc.

3dB光結合器22と23とを連結する部分の2木の光
導波路24および25の光路長は、0.1 μm以下の
精度で等しく設定されており、クラッドJl2ib上に
は、第1図(0)に示すように、熱光学効果位相シフタ
24aおよび25aとして薄膜ヒータ(クロム金属膜)
が、50μ一幅で5Ill長程度にわたって形成されて
いる。
The optical path lengths of the two optical waveguides 24 and 25 connecting the 3 dB optical couplers 22 and 23 are set to be equal with an accuracy of 0.1 μm or less, and on the cladding Jl2ib, as shown in FIG. 0), thin film heaters (chromium metal film) are used as the thermo-optic effect phase shifters 24a and 25a.
is formed over a width of 50μ and a length of about 5Ill.

本実施例における光導波路円弧部の曲率半径は50mm
に設計した.光スイッチのチップサイズは40m+mX
 2.5ma+であった。作製は、火炎加水分解反応に
よるガラス膜堆積技術と反応性イオンエッチングによる
微細加工技術との公知の組合せにより行った。
The radius of curvature of the optical waveguide arc portion in this example is 50 mm.
It was designed. Optical switch chip size is 40m+mX
It was 2.5ma+. The fabrication was performed by a known combination of glass film deposition technology using flame hydrolysis reaction and microfabrication technology using reactive ion etching.

本発明では、3dB先結合器22および23をそれぞれ
構成する2つの方向性結合器間の光路長差入。
In the present invention, the optical path length is inserted between the two directional couplers constituting the 3 dB forward couplers 22 and 23, respectively.

を正確に設定することが重要である。作製実験およびシ
ュミレーションの結果、λ0の設定誤差を±0.1 μ
m以内に抑えることが望ましいことがわかったが、これ
はフォトリソグラフィ技術を利用することによって容易
に達成できる範囲である. 実際に作製した本実施例光スイッチの特性について説明
するのに先立って、3(1B光結合器22および23の
より詳細な構成と結合特性について説明しておく. 第2図(^)は、木発明の構成要素であるマツハツエン
ダ光干渉計回路型3dB光結合器22.23の結合率対
波長特性図である。この結合率特性は、第2図(8)に
示すように、シリコン基板上に光導波路22cおよび2
2dにより方向性結合器22aおよび22bを別途形成
して構成したテスト用3dB光結合器22について実測
した結果である. 第2図に示す曲線(a)は、方向性結合器22a,22
b自身の結合率波長依存性であり、結合郎の光導波路間
隔を4μl、結合部の実効長をL1=L2=0.31と
することにより、実現したものである。
It is important to set it accurately. As a result of fabrication experiments and simulations, the setting error of λ0 was ±0.1 μ
It has been found that it is desirable to keep it within m, which is a range that can be easily achieved by using photolithography technology. Before explaining the characteristics of the optical switch of this example that was actually manufactured, the more detailed configuration and coupling characteristics of the 3 (1B optical couplers 22 and 23) will be explained. This is a coupling rate vs. wavelength characteristic diagram of the Matsuhatsu Enda optical interferometer circuit type 3 dB optical coupler 22, 23, which is a component of the wood invention.This coupling rate characteristic is as shown in FIG. 2 (8). optical waveguides 22c and 2
These are the results of actual measurements on a test 3dB optical coupler 22 configured by separately forming directional couplers 22a and 22b using 2d. The curve (a) shown in FIG.
This is the wavelength dependence of the coupling rate of b itself, which was realized by setting the coupling optical waveguide spacing to 4 μl and the effective length of the coupling part to L1=L2=0.31.

本実施例では、方向性結合器22a,22bは、同等に
設計されている, 曲線(b)は、方向性結合器22aと22bとの間の光
路長差を、λ。=1.15μmに設定した場合の光結合
器22全体としての結合率の波長依存特性を示している
。ここで注意すべき点は、λ0=1.15μmの光路長
差は、石英系光導波路24.25の屈折率が1、45程
度であることを勘案すると、実際の光路長差は(1.1
5μm /1.45) =0.79μmであることであ
る. 曲線(C)は、故意にえ。=θ.θμ信に設定した場合
の2連の方向性結合器22a,22b全体の結合率波長
依存性を示し、この場合の結合特性は、「作用」の項で
議論したように、結合長(Ll+÷し2)の方向性結合
器に匹敵している。曲線(b)は、光路長差を適切に設
定すること(λ。= 1.15μffl)により、光結
合器22全体として、波長域1.22〜1.60μ四に
わたって、結合率がほぼ50%士10%の誤差範囲に収
まっていることを示している。この事実は、第8図の曲
線(c)に示した従来光スイッチにおける光結合器特性
では、結合率50%±10%の領域が狭い波長域1.2
4〜1.37μml1:限定されていた点と対照的であ
る. 第3図は、3dB光結合器22. 23として、・第2
図(A)の曲線(b)に示した特性の光結合器を用い、
第1図に示した本発明第1実施例の光スイッチを作製し
たときの、その光スイッチの結合率(la→2b)対波
長特性の実測結果を示すものである.この光スイッチを
構成する上で留意した点はご光結合器22の内部におい
ては、光導波路22cの方が光導波路22dに比べてλ
。=1.15μ層だけ光路長が長いのに対し、逆に光結
合器23内部においては、光導波路23dの方が、光導
波路23cよりもλo”1.15μ―だけ光路長を長く
設定した点である(この点に関しては、後にざらにMu
する). 第3図における曲線(a)は、光スイッチがオフの状態
,すなわち、位相シフタ24a,25aがオフの状態で
の光結合率(la→2b)の波長依存特性を示している
.従来例、すなわち、第8図(a)において結合率が9
0%以上となる波長域が、1.20〜l,40μ一に限
定されているのに対し、第3図(a)では、結合率が9
0%以上となる波長域が、1.20〜1.51μ槌と広
く、1.3μ■帯のみならず1.55μG帯をも包含し
ている. $3図の曲線゜(b)は、いずれか一方の位相シフタ(
薄膜ヒータ)に通電して、熱光学効果による屈折率変化
を利用して、0.71μ鴎の光路長変化を、対応するい
ずれか一方の光導波路に引ぎ起こした状態(オン状態;
薄膜ヒータ消9t電力は0.5ワット程度)での結合率
(la−2b)の波長依存特性を示している。結合率が
5%以下になっている波長域は1.24〜l,70μ一
である.この状態で、信号光は、(ia−1b)の経路
を通過することになる。すなわち、本実施例の光スイッ
チは、1.3μl帯と1.55μ1帯、いずれの波長帯
においても、結合率が90%以上の状態と結合率が5%
以下の状態とを同時に切り替えることが可能であり、従
来の光スイッチの欠点が解決されている。
In this example, the directional couplers 22a and 22b are designed to be equivalent. Curve (b) represents the optical path length difference between the directional couplers 22a and 22b as λ. It shows the wavelength-dependent characteristic of the coupling rate of the optical coupler 22 as a whole when it is set to = 1.15 μm. What should be noted here is that the optical path length difference of λ0 = 1.15 μm is actually (1.15 μm), considering that the refractive index of the silica optical waveguide 24.25 is approximately 1.45. 1
5μm/1.45) = 0.79μm. Curve (C) is intentionally drawn. =θ. The wavelength dependence of the overall coupling rate of the two directional couplers 22a and 22b when set to θμ is shown, and the coupling characteristics in this case are determined by the coupling length (Ll+÷ It is comparable to the directional coupler of 2). Curve (b) shows that by appropriately setting the optical path length difference (λ = 1.15μffl), the coupling rate of the entire optical coupler 22 is approximately 50% over the wavelength range of 1.22 to 1.60μ4. This shows that the error is within a 10% error range. This fact indicates that in the optical coupler characteristics of the conventional optical switch shown in curve (c) of FIG.
4-1.37μml1: This is in contrast to the limited amount. FIG. 3 shows a 3dB optical coupler 22. As 23,・Second
Using an optical coupler with the characteristics shown in curve (b) of figure (A),
This figure shows the actual measurement results of the coupling ratio (la→2b) versus wavelength characteristics of the optical switch of the first embodiment of the present invention shown in FIG. 1, which was manufactured. The point to be kept in mind when configuring this optical switch is that inside the optical coupler 22, the optical waveguide 22c has a higher wavelength than the optical waveguide 22d.
. While the optical path length is longer by =1.15μ layer, conversely, inside the optical coupler 23, the optical waveguide 23d is set longer than the optical waveguide 23c by λo”1.15μ−. (This point will be discussed later in Mu
do). Curve (a) in FIG. 3 shows the wavelength-dependent characteristic of the optical coupling rate (la→2b) when the optical switch is off, that is, when the phase shifters 24a and 25a are off. In the conventional example, that is, in FIG. 8(a), the coupling rate is 9.
While the wavelength range in which the coupling rate is 0% or more is limited to 1.20 to 1,40μ, in Fig. 3(a), the coupling rate is 9.
The wavelength range where 0% or more occurs is as wide as 1.20 to 1.51μ, and includes not only the 1.3μ■ band but also the 1.55μG band. The curve ゜(b) in Figure $3 is the result of either one of the phase shifters (
A state (on state) in which a thin film heater) is energized and a 0.71 μm optical path length change is caused in one of the corresponding optical waveguides by utilizing the refractive index change due to the thermo-optic effect.
The graph shows the wavelength-dependent characteristics of the coupling rate (la-2b) at a thin film heater consumption of 9t power (approximately 0.5 watts). The wavelength range in which the coupling rate is less than 5% is from 1.24 to 70μ. In this state, the signal light passes through the path (ia-1b). In other words, the optical switch of this example has a state in which the coupling rate is 90% or more and a state in which the coupling rate is 5% in both the 1.3μl band and the 1.55μ1 band.
It is possible to switch between the following states at the same time, solving the drawbacks of conventional optical switches.

第3図の曲線(b)の状態では、1.3μm波長におい
て(la−2b)結合率が2%程度であるが、この結合
率をさらに低下させて、ほぼ100%の光を(la−1
b)経路で伝搬させるためには、位相シフタによる光路
長変化が、波長1.3μlにおいて最通になるように、
(1.3μm/2) = 0.65μ一に調節すれば良
い.この状態が第3図の曲線(C)に相当する。ただし
、この場合は、1.55μ覆波長における結合率が6%
程度に増加するという犠牲を伴う。
In the state of curve (b) in Figure 3, the (la-2b) coupling rate is about 2% at a wavelength of 1.3 μm, but by further reducing this coupling rate, almost 100% of the light is (la-2b) 1
b) In order to propagate along the path, the optical path length change due to the phase shifter is made to be transparent at a wavelength of 1.3 μl.
(1.3μm/2) = 0.65μ. This state corresponds to curve (C) in FIG. However, in this case, the coupling rate at the 1.55 μ overlapping wavelength is 6%.
At the cost of an increase in degree.

第3図の曲線(d)は、光路長変化を(1.55μ一/
2) = 0.775 p taに調節して、1.55
μm波長帯を優先し、1.3μ厘波長帯を犠牲にした例
である.曲線(b)は、曲線(c)と曲線(d)の中間
状態、すなわち、波長1.42μ1で最通になるように
光路長差変化を(1.42μm/2) − 0.71μ
暖に調節し、1.3μm帯と1,55μm帯とがほど良
く両立するようにした場合に相当すると言える。もちろ
ん、曲線(b) , (c) . (d)は、目的に応
じて使い分けることができる。
Curve (d) in Figure 3 shows the change in optical path length by (1.55μ//
2) = 0.775 p ta adjusted to 1.55
This is an example of prioritizing the μm wavelength band and sacrificing the 1.3 μm wavelength band. Curve (b) is an intermediate state between curve (c) and curve (d), that is, the optical path length difference is changed to (1.42 μm/2) − 0.71 μ so that the wavelength is 1.42 μ1.
It can be said that this corresponds to the case where the temperature is adjusted to be warm and the 1.3 μm band and the 1.55 μm band are moderately compatible. Of course, curves (b), (c) . (d) can be used depending on the purpose.

東直璽ユ 第4図(^)は、本発明の第2実施例の光スイッチを構
成するのに使用した3dB光結合器22の結合率対波長
特性の説明図である。第1実施例における光結合器との
相違点は、第2実施例では、方向性結合器22aと22
bが同等ではなく、第4図(8)に示すように、方向性
結合器22aの結合長がし1=0.61と、方向性結合
器22bの結合長L2=0.3mmの2倍に設定されて
いる点である。また、方向性結合器22aと22bとの
間の重要な光路長差はλ。= 0.95μ■に設定して
いる。第4図(^)において、曲線(a)は方向性結合
器22aの結合特性、曲}!i! (b)は方向性結合
器22bの結合特性、曲線(C)は3dB光結合器22
全体としての結合特性を示す.この3dB光結合器22
の結合率の波長依存性は、実施例1に対する第2図(A
)の曲線(b)に比べてより緩和されており、結合率5
0%±5%の波長領域は、l.+7μI〜1.66μl
にも及んでいる. 第5図は、第4図(^)で説明した3dB光結合器を2
個、第1図と同様に配置して作製した第2実施例の光ス
イッチにおける波長特性の説明図である.ここで指摘し
てお籾たい点は、3dB光結合器23の内部構成である
, 3dB光結合器23を構成する方向性結合器23a
の結合長は方向性結合器22bと同一に選び、方向性結
合器23bの結合長は方向性結合器22aと同一に選ん
である.また、方向性結合器23aと23bとの間の光
路長差は、光導波路24が長くなるよう設定した点にも
言及しておく必要がある. 第5図において、曲線(8)は、光スイッチの位相シフ
タがオフの状態での結合率(la→2b)特性である.
第1実施例の場合に比較して、結合率90%以上の波長
領域は1.11μ11〜1.75μIとさらに拡大され
ている。曲線(b) , (c)および(d)は、一方
の位相シフタに、それぞれ、(b) 0.71pva、
(C) 0.65μm、(d) 0.775 p mの
光路長差変化を与え光スイッチをオン状態とした場合の
結合率特性であり、第1実施例とほぼ同一の状態が達成
されており、広波長域光スイッチとしての動作が確認さ
れた。
FIG. 4 (^) is an explanatory diagram of the coupling ratio versus wavelength characteristic of the 3 dB optical coupler 22 used to construct the optical switch of the second embodiment of the present invention. The difference from the optical coupler in the first embodiment is that in the second embodiment, the directional couplers 22a and 22
b are not equal, and as shown in FIG. 4 (8), the coupling length 1 of the directional coupler 22a is 0.61, which is twice the coupling length L2 of the directional coupler 22b, which is 0.3 mm. This point is set to . Also, the important optical path length difference between the directional couplers 22a and 22b is λ. = 0.95μ■. In FIG. 4(^), curve (a) is the coupling characteristic of the directional coupler 22a, curve}! i! (b) is the coupling characteristic of the directional coupler 22b, and curve (C) is the 3dB optical coupler 22b.
This shows the overall bonding properties. This 3dB optical coupler 22
The wavelength dependence of the coupling rate of is shown in FIG. 2 (A
) is more relaxed than curve (b), and the binding rate is 5.
The wavelength range of 0%±5% is l. +7 μl ~ 1.66 μl
It also extends to Figure 5 shows the 3dB optical coupler explained in Figure 4 (^).
FIG. 2 is an explanatory diagram of the wavelength characteristics of the optical switch of the second embodiment, which is arranged and manufactured in the same manner as in FIG. 1. What I would like to point out here is the internal configuration of the 3dB optical coupler 23, and the directional coupler 23a that constitutes the 3dB optical coupler 23.
The coupling length of the directional coupler 23b is selected to be the same as that of the directional coupler 22b, and the coupling length of the directional coupler 23b is selected to be the same as that of the directional coupler 22a. It should also be mentioned that the optical path length difference between the directional couplers 23a and 23b is set so that the optical waveguide 24 is longer. In FIG. 5, curve (8) is the coupling rate (la→2b) characteristic when the phase shifter of the optical switch is off.
Compared to the case of the first embodiment, the wavelength range where the coupling rate is 90% or more is further expanded to 1.11μ11 to 1.75μI. Curves (b), (c) and (d) are for one phase shifter, (b) 0.71 pva,
(C) 0.65 μm, (d) 0.775 pm This is the coupling rate characteristic when the optical switch is turned on with a change in optical path length difference of 0.75 μm, and almost the same state as in the first example is achieved. The operation as a wide wavelength range optical switch was confirmed.

以上、2例について、本発明の構成と作用を説明したが
、本発明はこれらの構成に限定されるものではない。
Although the configuration and operation of the present invention have been described above with respect to two examples, the present invention is not limited to these configurations.

第6図(A)〜([11は、本発明光スイッチの変形例
を考察するための説明図である。ここで、方向性結合器
としては第2実施例で用いた結合長Ll,L2の2梯類
を使用し、方向性結合器間の光路長差がλ。= 0.9
5μ自に設定されているものとする. 第6図(^)は、実施例2の構成そのものであり、本発
明光スイッチとして望ましい動作をする. 第6図(B)は、3dB光結合器23内め゜光路長差を
、第6図(A>の場合とは逆に光導波路23cの側を長
くして設定した例であるが、このような配置では波長依
存性の少ないスイッチ動作は得られなかフた. 第6図(C)は、3dB光結合器23内の方向性結合器
23a,23bの結合長Ll,L2を第6図(^)の場
合とは逆に入れ替えた例であり、この構成も不適であっ
た. 第6図(D)は3dB光結合器22および3dB光結合
器23ともに方向性結合g{22a.22bおよび23
g,23bの各結合長Ll.L2を入れ替え、かつ3d
B光結合器22および23内の各光路長差を、第6図(
^)の場合と逆にして、それぞれ、光導波路22dおよ
び23cの方を長く定めた例である.この場合には、第
6図(A)の場合と同一の適正動作が得られた.以上の
実験から、本発明の光スイッチは、中心点に関して光学
的にほぼ点対称となるよう構成要素を配置する必要があ
ると推察される。詳細は波動結合理論に従って個々にシ
ュミレーションして判断することが必要である. 以上の実施例においては、2個の3dB光結合器間の光
路長は、位相シフタがオフの状態で同一であったが、場
合によっては、あらかじめ0.71μI程度の光路艮差
を設定しておき、位相シフタなオンにすることによって
その光路長差を逆に解消し、第3図や第5図におけるオ
ン・オフ状態を逆に定めることも可能であり、そのよう
な光スイッチも本発明範囲に含まれることを指摘してお
〈. 以上、本発明スイッチの光路切り替え機能について説明
したが、本発明光スイッチの動作は必ずしもスイッチ機
能のみに限定されるものではなく、位相シフタにより例
えば0.2μ1程度の光路長変化を与えておき、本発明
光スイッチを可変光結合器として動作させることもでき
る。
6(A) to ([11] are explanatory diagrams for considering modifications of the optical switch of the present invention. Here, as a directional coupler, the coupling lengths Ll and L2 used in the second embodiment are The optical path length difference between the directional couplers is λ = 0.9.
Assume that it is set to 5μ. FIG. 6(^) shows the configuration of the second embodiment itself, which exhibits the desired operation as the optical switch of the present invention. FIG. 6(B) is an example in which the optical path length difference within the 3 dB optical coupler 23 is set by lengthening the optical waveguide 23c side, contrary to the case of FIG. 6(A>). In such an arrangement, switching operation with little wavelength dependence cannot be obtained. This is an example in which the configuration was reversed to the case of (^), and this configuration was also inappropriate. In Fig. 6(D), both the 3dB optical coupler 22 and the 3dB optical coupler 23 are directionally coupled and 23
g, 23b each bond length Ll. Replace L2 and 3d
The optical path length differences in the B optical couplers 22 and 23 are shown in FIG.
This is an example in which the optical waveguides 22d and 23c are set longer than in the case of ^). In this case, the same proper operation as in the case of Fig. 6(A) was obtained. From the above experiments, it is inferred that in the optical switch of the present invention, the components need to be arranged so as to be optically approximately symmetrical with respect to the center point. The details must be determined by individual simulations according to wave coupling theory. In the above embodiment, the optical path length between the two 3 dB optical couplers was the same when the phase shifter was off, but in some cases, an optical path difference of about 0.71 μI was set in advance. It is also possible to reverse the optical path length difference by turning on a phase shifter, thereby reversing the on/off states in FIGS. 3 and 5. Such an optical switch is also applicable to the present invention. Please point out that it is included in the scope. The optical path switching function of the switch of the present invention has been described above, but the operation of the optical switch of the present invention is not necessarily limited to the switch function. The optical switch of the present invention can also be operated as a variable optical coupler.

以上、シリコン基板上に設けた石英系光導波路の場合を
例にとって本発明の構成および作用を説明してきたが、
最初にも述べたように、本発明はこれらの材料系に限定
されるものではなく、方向性結合器と位相シフタさえ構
成できれば他材料系にも適用でき、本発明の範囲に包含
される。たとえば、光導波路としてLiNbO3系光導
波路を用い、位相シフタとして電気光学効果位相シフタ
を用いることかできる. また、上記実施例で述べた個々の方向性結合器の結合長
等は、作製プロセスの“くせ″によっても微妙に変化す
るので、数値例にこだわらず、第2図の曲線(a)や第
4図(^)の曲k!* (al , (b)に類似の波
長依存性方向性結合器が得られるように、製造者が適宜
調整することが肝要である.(発明の効果) 以上説明したように、本発明では、2個の方向性結合器
をわずかに長さの異なる光導波路で連結して構成したマ
ツハツェンダ光干渉計回路型3dB光結合器を構成要素
として、位相シフタとともに、マツハツェンダ光干渉計
回路型光スイッチを構成することにより、波長依存性の
極めて少ない導波路型光スイッチを堤供することができ
る.本発明光スイッチは、複数波長の信号光が多重して
伝搬される光ファイバ通信網の構築などに多犬の貢献を
なすと期待される.
The structure and operation of the present invention have been explained above using the case of a silica-based optical waveguide provided on a silicon substrate as an example.
As stated at the beginning, the present invention is not limited to these materials, but can be applied to other materials as long as the directional coupler and the phase shifter can be constructed, and are included within the scope of the present invention. For example, a LiNbO3-based optical waveguide can be used as the optical waveguide, and an electro-optic effect phase shifter can be used as the phase shifter. In addition, since the coupling length of each directional coupler mentioned in the above example varies slightly depending on the "habits" of the manufacturing process, it should be noted that the curve (a) in FIG. Song k in Figure 4 (^)! *It is important for the manufacturer to make appropriate adjustments so that a wavelength-dependent directional coupler similar to (al, (b)) can be obtained. (Effects of the Invention) As explained above, in the present invention, The Matsuha-Zehnder optical interferometer circuit-type 3dB optical coupler, which is constructed by connecting two directional couplers with optical waveguides of slightly different lengths, is used as a component, and together with the phase shifter, the Matsuha-Zehnder optical interferometer circuit-type optical switch is installed. By configuring this structure, it is possible to provide a waveguide type optical switch with extremely low wavelength dependence.The optical switch of the present invention can be used in many applications such as the construction of optical fiber communication networks in which signal lights of multiple wavelengths are multiplexed and propagated. It is expected that dogs will make a contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明光導波路型光スイッチの第1実施
例の構成を示す平面図、 第1図(B) . (C)および(D)はその各部断面
図、第2図(八)は本発明第1実施例スイッチを構成す
る3dB光結合器の結合特性図、 第2図(B)はその3dB光結合器の説明図、第3図は
本発明第1実施例の光スイッチの結合率特性図、 第4図(^)は本発明第2実施例スイッチを構成する3
dB光結合器の結合特性図、 第4図(B)はその3dB光結合器の説明図、N5図は
本発明第2実施例の光スイッチの結合率特性図、 第6図は本発明光スイッチの変形構成可能性考察するた
めの説明図、 第7図は従来の導波路型光スイッチの構成例を示す平面
図、 第8図は従来の導波路型光スイッチの波長特性図である
。 l・・・基板、 2.3・・・3dB光結合器、 4.5・・・光導波路、 4a,5a・・・位相シフタ、 la,2a,lb,2b −人出力ボート、2l・・・
シリコン基板、 2lb・・・石英系クラッド層、 22.23・・・マツハツェンダ光干渉計回路構成3d
B光結合器、 22a,22b,23a,23b −”方向性結合器、
22c.22d,23c,23d・・・光導波路、24
.25・・・石英系光導波路、 24a,25a・・・熱光学効果位相シフタ(薄膜ヒー
タ). 特許出願人  日本電信電話株式会社
FIG. 1(A) is a plan view showing the configuration of the first embodiment of the optical waveguide type optical switch of the present invention, and FIG. 1(B). (C) and (D) are cross-sectional views of each part, Figure 2 (8) is a coupling characteristic diagram of the 3 dB optical coupler that constitutes the switch according to the first embodiment of the present invention, and Figure 2 (B) is the 3 dB optical coupling. 3 is a coupling rate characteristic diagram of the optical switch according to the first embodiment of the present invention, and FIG.
A coupling characteristic diagram of a dB optical coupler, FIG. 4(B) is an explanatory diagram of the 3 dB optical coupler, N5 diagram is a coupling rate characteristic diagram of the optical switch of the second embodiment of the present invention, and FIG. 6 is a diagram of the optical switch of the present invention. FIG. 7 is a plan view showing a configuration example of a conventional waveguide type optical switch. FIG. 8 is a wavelength characteristic diagram of a conventional waveguide type optical switch. l... Substrate, 2.3... 3dB optical coupler, 4.5... Optical waveguide, 4a, 5a... Phase shifter, la, 2a, lb, 2b - Human output boat, 2l...・
Silicon substrate, 2lb...Quartz-based cladding layer, 22.23...Matsuha-Zehnder optical interferometer circuit configuration 3d
B optical coupler, 22a, 22b, 23a, 23b - directional coupler,
22c. 22d, 23c, 23d... optical waveguide, 24
.. 25...Quartz-based optical waveguide, 24a, 25a...Thermo-optic effect phase shifter (thin film heater). Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1)基板と、 該基板上に配設された2本の光導波路と、 該2本の光導波路をそれぞれこれら光導波路の異なる位
置で結合する2つの3dB光結合部と、該2つの3dB
光結合部の間において前記光導波路に設けられ、前記光
導波路の光路長を微調する光位相シフタ部と を有する導波路型光スイッチにおいて、 前記2つの3dB光結合部の各々は、前記2本の光導波
路をそれぞれ光導波路の異なる位置において結合するよ
う前記基板上に配置された2つの方向性結合器を具え、
該2つの方向性結合器の間を連結する2本の光導波路の
光路長差を動作波長域の短波長端の波長よりもやや小さ
目に設定し、および、前記2つの3dB光結合部の各々
における前記2本の光導波路のうち光路長の長い側の光
導波路を、前記2つの3dB光結合部の間で互いに反対
側に配置したことを特徴とする導波路型光スイッチ。 2)前記動作波長域は、1.3μm〜1.55μm域を
含み、前記3dS光結合器内での前記光路長差をほぼ1
μmに設定し、前記3dB光結合器の結合率の波長依存
性が1.3μm〜1.55μm域において緩和されるよ
うにしたことを特徴とする請求項1記載の導波路型光ス
イッチ。 3)前記光導波路をガラス光導波路で構成し、前記光位
相シフタを前記ガラス光導波路上に配設された薄膜ヒー
タからなる熱光学効果位相シフタで構成したことを特徴
とする請求項1または2記載の導波路型光スイッチ。
[Claims] 1) A substrate, two optical waveguides disposed on the substrate, and two 3dB optical coupling sections that couple the two optical waveguides at different positions of the optical waveguides, respectively. , the two 3dB
In a waveguide type optical switch having an optical phase shifter section that is provided in the optical waveguide between the optical coupling sections and finely adjusts the optical path length of the optical waveguide, each of the two 3 dB optical coupling sections is connected to the two 3 dB optical coupling sections. two directional couplers arranged on the substrate to couple the optical waveguides at different positions of the optical waveguides, respectively;
The optical path length difference between the two optical waveguides connecting the two directional couplers is set to be slightly smaller than the wavelength at the short wavelength end of the operating wavelength range, and each of the two 3 dB optical coupling parts A waveguide type optical switch characterized in that of the two optical waveguides, the optical waveguide having a longer optical path length is disposed on opposite sides between the two 3 dB optical coupling parts. 2) The operating wavelength range includes a 1.3 μm to 1.55 μm region, and the optical path length difference in the 3dS optical coupler is approximately 1.
2. The waveguide type optical switch according to claim 1, wherein the wavelength dependence of the coupling rate of the 3 dB optical coupler is relaxed in a range of 1.3 μm to 1.55 μm. 3) The optical waveguide is constituted by a glass optical waveguide, and the optical phase shifter is constituted by a thermo-optic effect phase shifter comprising a thin film heater disposed on the glass optical waveguide. The described waveguide optical switch.
JP5286689A 1989-02-07 1989-03-07 Waveguide optical switch Expired - Lifetime JPH0743484B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5286689A JPH0743484B2 (en) 1989-03-07 1989-03-07 Waveguide optical switch
US07/475,435 US5044715A (en) 1989-02-07 1990-02-05 Guided-wave optical branching components and optical switches
CA002009352A CA2009352C (en) 1989-02-07 1990-02-05 Guided-wave optical branching components and optical switches
EP90301204A EP0382461B1 (en) 1989-02-07 1990-02-06 Guided-wave optical branching components and optical switches
DE69018660T DE69018660T2 (en) 1989-02-07 1990-02-06 Optical branching components and switches with guided waves.
KR1019900001397A KR930005900B1 (en) 1989-02-07 1990-02-06 Guided-wave optical branching components
KR1019920023067A KR930002627B1 (en) 1989-02-07 1992-12-02 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5286689A JPH0743484B2 (en) 1989-03-07 1989-03-07 Waveguide optical switch

Publications (2)

Publication Number Publication Date
JPH02232631A true JPH02232631A (en) 1990-09-14
JPH0743484B2 JPH0743484B2 (en) 1995-05-15

Family

ID=12926792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5286689A Expired - Lifetime JPH0743484B2 (en) 1989-02-07 1989-03-07 Waveguide optical switch

Country Status (1)

Country Link
JP (1) JPH0743484B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038773A1 (en) * 2011-09-12 2013-03-21 古河電気工業株式会社 Demodulation delay circuit and optical receiver
CN105182568A (en) * 2015-10-12 2015-12-23 浙江大学 Low-loss ultra-wideband thermooptic switch
CN108227084A (en) * 2018-01-16 2018-06-29 上海理工大学 Unrelated integrated optical switch of a kind of polarization based on silicon nitride waveguides and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038773A1 (en) * 2011-09-12 2013-03-21 古河電気工業株式会社 Demodulation delay circuit and optical receiver
CN105182568A (en) * 2015-10-12 2015-12-23 浙江大学 Low-loss ultra-wideband thermooptic switch
CN108227084A (en) * 2018-01-16 2018-06-29 上海理工大学 Unrelated integrated optical switch of a kind of polarization based on silicon nitride waveguides and preparation method thereof

Also Published As

Publication number Publication date
JPH0743484B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
KR930005900B1 (en) Guided-wave optical branching components
JP4105724B2 (en) Interferometer type optical switch and variable optical attenuator
WO2012102039A1 (en) Waveguide-type polarization beam splitter
JPS62183406A (en) Waveguide type optical interferometer
JPH04212108A (en) Waveguide type light branching element
US20050089263A1 (en) Optical circulator
US7006716B2 (en) Method and apparatus for switching and modulating an optical signal with enhanced sensitivity
WO2011122539A1 (en) Delay circuit for plc type demodulation
WO2002063389A1 (en) Optical device
JP5137619B2 (en) PLC type variable dispersion compensator
WO2011152202A1 (en) Plc-type demodulating delay circuit and plc-type optical interferometer
JPH0660982B2 (en) Waveguide-type Matsuha-Tsender optical interferometer
JPH02232631A (en) Waveguide type optical switch
JP2659293B2 (en) Waveguide type optical switch
JP2007163825A (en) Waveguide type thermo-optical circuit
JP2653883B2 (en) Wide wavelength operating waveguide type optical branching device
US6819859B2 (en) Planar lightwave circuit type variable optical attenuator
JPH0749511A (en) Waveguide type optical switch
JP2006243013A (en) Multi-port optical switch
CN108627919B (en) Polarization insensitive silicon-based optical switch
JP2006276323A (en) Optical switch
JP2625289B2 (en) Waveguide type optical branching device
JP3664933B2 (en) Optical waveguide type optical switch
JPH09178967A (en) Waveguide type optical branching element
JPS63182608A (en) Waveguide type polarized light separating element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

EXPY Cancellation because of completion of term