JPH02232484A - Air film structure roof - Google Patents

Air film structure roof

Info

Publication number
JPH02232484A
JPH02232484A JP29033089A JP29033089A JPH02232484A JP H02232484 A JPH02232484 A JP H02232484A JP 29033089 A JP29033089 A JP 29033089A JP 29033089 A JP29033089 A JP 29033089A JP H02232484 A JPH02232484 A JP H02232484A
Authority
JP
Japan
Prior art keywords
cables
cable
panels
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29033089A
Other languages
Japanese (ja)
Other versions
JPH0327709B2 (en
Inventor
Hiroyuki Kuroiwa
博之 黒岩
良蔵 河合
山口 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP29033089A priority Critical patent/JPH02232484A/en
Publication of JPH02232484A publication Critical patent/JPH02232484A/en
Publication of JPH0327709B2 publication Critical patent/JPH0327709B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To unify shapes and dimensions of film panels rationalize production by extending the film panels further to concentric circle cables of the central part without discounting immediately at the intersections with the concentric circle cables in case of thinning-out. CONSTITUTION:When air film construction cables composed of concentric circle cables b' and radial cables a' are arranged, the radial cables a' are thinned out at the central part of them, and cable divisions of the central part are proper divisions. Accordingly, by adopting the method of forming multistage ring shaped equal ruled-off square division zones, allowable stress intensity of film materials c can be demonstrated to the maximum, the number of different kinds of panels are lessened to reduce the manufacturing number of film panels, manufacturing dimensions of the film panels are unified, and economical production can be achieved.

Description

【発明の詳細な説明】 この発明は空気膜構造屋根に関する。[Detailed description of the invention] This invention relates to an air membrane structure roof.

空気膜構造とは屋根面にケーブルを交叉させて、もち網
状に張り渡し、その升目部分に膜材を四周に固定させな
がら張りめぐらし、屋根面に膜材を張り終わった段階で
、室内に空気を送太し、室内空気圧を大気圧より0.0
025気圧(25kg/口f)ほど高めて屋根面を膨ら
ませるエアサポート構造であるが、そのケーブル配置の
従来技術としては、2方向配置が多い。
An air membrane structure is a structure in which cables are crossed over the roof surface and stretched in a net shape, and the membrane material is fixed to the squares around the four sides of the roof.When the membrane material has been applied to the roof surface, air is released into the room. and increase the indoor air pressure to 0.0 below atmospheric pressure.
This is an air support structure that inflates the roof surface at a pressure of about 0.025 atm (25 kg/ft), and the conventional technology for arranging its cables is often in two directions.

この2方向配置は、米国において、当該建物の平面形状
が短形または超楕円形式になる場合、境界構造としての
コンブレッションリングに曲げ応力の発生を極力少なく
する方法として、最も都合の良いケーブル配置として採
用されたものである。
This two-way arrangement is the most convenient cable arrangement in the United States as a method to minimize bending stress on the combination ring as a boundary structure when the plan shape of the building is rectangular or super elliptical. It was adopted as

この2方向ケーブルは、米国で10数例を数え、建物の
都度、次第に改善されてきているが、これにはいくつか
の問題点も残されている。
There are over a dozen examples of this two-way cable in the United States, and it has been gradually improved with each building, but some problems remain.

第一は、内圧によって釣合曲面を得るエアサポート構造
では、第1図に示す如く、形状決定した後で風や雪で形
状が変化しやすいため、膜1やケーブル2が変化した状
態で再び釣合いを保持する条件で幾何学的非線形解析を
行なわなければならないが、この2方向ケーブルで作ら
れた区画に取付けられた膜パネルがほとんど製作形状を
異にし、同一製品を量産化する様に製造することが出来
ず、製作費が割高となるごとである。この理由は、2方
向ケーブル配置で作られた膜材区画は、投影平面では同
一寸法となるが、屋根は曲面を構成しているため、実際
に製作される膜パネルはそれぞれにわずかながら勺法が
異なるのである。
Firstly, with an air support structure that obtains a balanced curved surface by internal pressure, the shape is easily changed by wind or snow after the shape is determined, as shown in Figure 1. Geometric nonlinear analysis must be performed under conditions that maintain balance, but the membrane panels attached to the compartments made of these two-way cables are mostly manufactured in different shapes, and it is difficult to manufacture the same product in mass production. It is not possible to do so, and the production costs are relatively high. The reason for this is that although the membrane sections created with two-way cable arrangement have the same dimensions on the projected plane, the roof has a curved surface, so each membrane panel actually manufactured has a slightly different dimension. are different.

これを解決するため、米国であえてIIW製作寸法を統
一した事例があるが、これは屋根が期待した曲面となら
ず平坦になってしまったため、降雪時に雪が中央部にた
まり屋根が降下してしまったという事故があり、再びそ
れ以降に造られたのちは再び従来の方法をとり、R根バ
ネルの寸法を統一することをやめ、一つづつ所定の寸法
形状に基づいて製作している。
In order to solve this problem, there is a case in the United States where the dimensions of IIW production were purposely standardized, but in this case the roof did not have the expected curved surface, but instead became flat, and when it snowed, snow accumulated in the center and the roof fell down. There was an accident in which the panels were built after that, and after that, the conventional method was used again, and instead of standardizing the dimensions of the R-root panels, they were manufactured one by one based on predetermined dimensions and shapes.

第−は、2方向ケーブル配置を屋根面全面に配置した事
例もあったが、周辺部はケーブル長も短かくなり、ケー
ブル張力も大きくならないため、周辺ケーブルを省略し
てケーブル本数を少なくする事例が多くなっている。こ
れは屋根の建設費を低減させ、屋根重量を軽減させるメ
リットはあるが、一方膜材の材料強度から判断ずると中
央部分の菱形部分は2方向で膜応力をa世することが出
来るのに対し、周辺部の長方形部分は短辺方向で膜応力
を負担することになる。
The second example is a case in which two-way cables were placed on the entire roof surface, but the cable length is shorter in the peripheral area and the cable tension does not increase, so the peripheral cable is omitted and the number of cables is reduced. are increasing. This has the advantage of reducing roof construction costs and roof weight, but judging from the material strength of the membrane material, the diamond-shaped part in the center can reduce membrane stress in two directions. On the other hand, the rectangular portion at the periphery bears membrane stress in the short side direction.

従って当該長方形部分においては、膜材の1軸許容応力
により、膜材設計がなされ、同一膜材を使用する場合、
菱形部分の膜パネルは過剰設計になる。
Therefore, in the rectangular part, the membrane material is designed based on the uniaxial allowable stress of the membrane material, and when using the same membrane material,
The membrane panel in the diamond-shaped section is over-designed.

第三に、この2方向ケーブル配置はほぼ同間隔に配置さ
れるが、極めて大規模な屋根面積においては、屋根面に
かかる最大風荷重も屋根部位によって異なり、膜パネル
も同一応力ではありえない。
Third, although this two-way cable arrangement is approximately equally spaced, in very large roof areas, the maximum wind load on the roof surface will also vary depending on the roof area, and the membrane panels cannot be under the same stress.

これは2方向等間隔ケーブル配置から起因するものであ
る。
This results from the two-way equally spaced cable arrangement.

本発明は叙上の問題点に鑑みなされたもので、その要旨
とするところは、ゲーブルを放射状並びに同心円状に配
置し、周辺部において配置した放射状ケーブルを中央部
になるにつれ゜C、その本数を間引きする様に取付け、
それらのケーブルによって構成された升目区画に膜材を
取付けるとしてなるケーブル配置に於いて、間引く場合
、同心円ケーブル七の交点で直ちに打ち切ることなく更
に中央部の同心円ケーブルまで延長させて固定して、膜
パネルの形状・寸法を出来る限り統一し、屋根面積に対
1,て、膜パネル数を少なくし、生産の合理化・経済化
を図ると共に、膜及びケーブルの許容応力度を最大限に
活用できる様に、膜については相当の2軸応力負#!1
としケーブルについては等寸法のものを用いて、張力分
担の均等化を図れる様にしたことを特徴とするもので,
.以F、これを図にもとづいて詳細番.二説明する9 すなわち、米国ではフントボール競技等のために建設さ
れた屋根付きスタジアムが多く、平面形状は長方形ある
いは超楕円形状となることが多いが、日本では野球を主
要対象競技とするため、円形に近い下面を持つことが多
い。
The present invention was made in view of the above-mentioned problems, and its gist is that cables are arranged radially and concentrically, and the radial cables arranged at the periphery are Installed so as to thin out the
In the cable arrangement where membrane material is attached to the square sections formed by these cables, when thinning out the cables, the cables are not cut off immediately at the intersection of the seven concentric cables, but are further extended to the concentric cable in the center and fixed. The shape and dimensions of the panels should be unified as much as possible, and the number of membrane panels should be reduced by 1 per roof area, in order to rationalize and make production more economical, and to make maximum use of the allowable stress of the membrane and cables. However, the membrane has a considerable negative biaxial stress #! 1
It is characterized by using cables of the same size so that the tension can be shared evenly.
.. From here on, this is detailed numbered based on the figure. 9. In other words, in the United States, there are many stadiums with roofs built for sports such as funtoball, and the planar shape is often rectangular or super elliptical, but in Japan, baseball is the main sport, so It often has a nearly circular underside.

よって、この平面形状を前提とした場き、第2図に示す
如く放射状ゲーブルa配置と同心円状ケーブルb配置の
併用が可能である。
Therefore, assuming this planar shape, it is possible to use both the radial gable a arrangement and the concentric cable b arrangement as shown in FIG.

しかしながら、この様な同心円状と放射状ケーブルb,
a配百は、円周部にあっては使用膜材の許容応力度が最
大限に活用できる様、膜パネル寸法を設定できるが、中
央部にくるにつれて放射状ケーブルaの間隔は狭くなり
、膜面積が小さく膜の存在応力は小さくなり、膜材の強
度を経済的に活用できないことになるうえ、膜パネル数
が増大し、ケーブルと膜材の取・付合物等も不必要に多
くなり、不経済となる。
However, such concentric and radial cables b,
In the case of a distribution, the membrane panel dimensions can be set to maximize the allowable stress of the membrane material used at the circumference, but as it approaches the center, the distance between the radial cables a becomes narrower, and the membrane The area of the membrane is small, the existing stress of the membrane is small, and the strength of the membrane material cannot be utilized economically.In addition, the number of membrane panels increases, and the number of attachments and attachments between the cable and the membrane material increases unnecessarily. , it becomes uneconomical.

このため、同心円状ケーブルbと放射状ケーフルaによ
って構成される空気膜構造ケーグル配置に関して、中央
部においては放射状ケーブルaを間引き、中央部のケー
ブル区画を適切な区画とする。
For this reason, regarding the air membrane structure cable arrangement constituted by the concentric cables b and the radial cables a, the radial cables a are thinned out in the center, and the cable sections in the center are made into appropriate sections.

尚、図中Oは境界構造としてのコンブレノションリング
を示す。
Note that O in the figure indicates a combrenotion ring as a boundary structure.

この多段リング状の均等升目区画帯を構成する方式を採
用することにより、膜材Cの許容応力度を最大限に発揮
でき、かつ異種パネルを少なくして膜パネルの製作枚数
を減じ、膜パネル製作寸法の統一を図り、経済的に生産
することが出来るようになる。
By adopting this method of configuring the multi-stage ring-shaped uniform square partition zone, it is possible to maximize the allowable stress of the membrane material C, reduce the number of different types of panels, reduce the number of membrane panels produced, and reduce the number of membrane panels produced. By standardizing the manufacturing dimensions, it becomes possible to produce economically.

第2図に示されたものの実施にあたっては実用に供する
だめの各設計条件に見合った補強方法をJ1備する必要
がある場合が考えられる。
When implementing what is shown in FIG. 2, it may be necessary to provide a reinforcement method J1 that meets each design condition before putting it into practical use.

その第一の理由は、放射状並びに同心円状に配置された
ケーブルのうち、放射状ケーブルにおいては周辺部にお
いて配置されたケーブルが中心部に移るにつれて、ゲー
ブル間隔が密になるため応力状態を勘案しつつ、その本
数を間引くのが合理的であるが、実際に放射状ケーブル
を間引く場合には、その間引きケーブル端部の張力を同
心円ケーブルに伝達させるのには、相当大きな拘束力を
有する拘束金物によって同心円ケーブルと固定させない
限り、ケーブル端部を拘束できないし、この様な大きな
拘束金物を用いた接合方式が非現実的なものとなること
である。
The first reason is that among cables arranged radially and concentrically, in the case of radial cables, as the cables arranged at the periphery move towards the center, the distance between the gables becomes denser. , it is rational to thin out the number of radial cables, but when actually thinning out radial cables, in order to transmit the tension at the end of the thinned-out cable to the concentric cable, it is necessary to thin out the concentric circle using a restraining metal fitting with a considerably large restraining force. Unless the cable is fixed to the cable, the end of the cable cannot be restrained, and a joining method using such a large restraint hardware is impractical.

又、第二の理由は、放射状ケーブルと同心円ケーブルの
接合部がT字型接合された場合、膜材にかかる応力状態
も通常の空気膜構造で用いられる2方向ケーブルネット
方式の膜応力と異なり、間引き放射状ケーブル端末の反
対側にある膜材には、かなりの集中応力が働き膜材の応
力均等を目的とした初期の意図とは異なる結果を生じさ
せてL2まうことである. この問題点を解決するためには、間引きされる放射状ケ
ーブルの端部に発生ずる引張力を合理的に処理しなけれ
ばならない。
The second reason is that when the radial cable and concentric cable are joined in a T-shape, the stress state applied to the membrane material is different from the membrane stress of the two-way cable net method used in a normal air membrane structure. , considerable concentrated stress acts on the membrane material on the opposite side of the thinned-out radial cable terminal, causing a result different from the initial intention of equalizing stress in the membrane material, resulting in L2. In order to solve this problem, it is necessary to rationally handle the tensile force generated at the end of the radial cable to be thinned out.

この処理としては、第3図に示す如く、間引きされた放
射状ケーブルa′を同心円ケーブルbとの交点で直ちに
打ち切ることなく、更に中央部の同心円ケーブルbまで
伸長ケーブルeとして延長させて固定して引張力の分散
を図る。
As shown in Fig. 3, this process involves not immediately terminating the thinned out radial cable a' at the intersection with the concentric cable b, but extending it further to the concentric cable b in the center as an extension cable e and fixing it. Try to disperse the tensile force.

伸長ケーブルeはケーブル張力の段階的処理が目的であ
り、伸長ケーブルeは股材Cを細分割するのではなく、
膜材Cとは固定させず、ただケーブル単体のみで中心部
に近い次の同心円ケーブルbまで伸長し、拘束されてい
るものである。
The purpose of the extension cable e is to process the cable tension in stages, and the extension cable e does not subdivide the crotch material C.
The cable is not fixed to the membrane material C, but extends and is restrained by itself to the next concentric cable b near the center.

この様にすることにより、間引きされた放射状ケーブル
a′の端末における応力処理はスムーズとなり、かつ膜
応力にも過度の築中応力が働くことはない。
By doing this, the stress treatment at the end of the thinned radial cable a' becomes smooth, and excessive stress during construction does not act on the membrane stress.

尚、中心部の応力処理を図かるために最内芯部の同心円
ケーブルに対し最外周から接続された放射状ゲーブルa
は、更に延長され中心点Oにて集結させられるとしても
よい。
In addition, in order to manage the stress at the center, a radial cable a is connected from the outermost circumference to the concentric cable at the innermost core.
may be further extended and converged at the center point O.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は幾何学的非線形解析による屋根曲面図、第2図
は本発明の基本構成を示す平面図、第3図は本発明の空
気膜構造屋根を示す平面図である。 1・・・膜、 2・・・ケーブルネット、 a・・・放
射状ケーブル、 a′・・・放射状ケーブル、  b・
・・同心円ケーブル、  C・・・膜材、  e・・・
伸長ケーブル。 ブゾヲAヅ
FIG. 1 is a roof curved surface diagram obtained by geometric nonlinear analysis, FIG. 2 is a plan view showing the basic configuration of the present invention, and FIG. 3 is a plan view showing the air membrane structure roof of the present invention. DESCRIPTION OF SYMBOLS 1... Membrane, 2... Cable net, a... Radial cable, a'... Radial cable, b.
...Concentric cable, C...Membrane material, e...
extension cable. Buzowo Azu

Claims (1)

【特許請求の範囲】[Claims] (1)ケーブルを放射状並びに同心円状に配置し、周辺
部において配置した放射状ケーブルを中央部になるにつ
れて、その本数を間引きする様に取付け、それらのケー
ブルによって構成された升目区画に膜材を取付けるとし
てなるケーブル配置に於いて、間引く場合、同心円ケー
ブルとの交点で直ちに打ち切ることなく、更に中央部の
同心円ケーブルまで延長させて固定してなることを特徴
とする空気膜構造屋根に於けるケーブル配置。
(1) Cables are arranged radially and concentrically, and the radial cables arranged at the periphery are thinned out in number toward the center, and the membrane material is installed in the square sections formed by these cables. Cable arrangement on an air membrane structure roof, characterized in that when thinning out cables, the cables are not cut off immediately at the intersection with the concentric cable, but are further extended and fixed to the concentric cable in the center. .
JP29033089A 1989-11-08 1989-11-08 Air film structure roof Granted JPH02232484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29033089A JPH02232484A (en) 1989-11-08 1989-11-08 Air film structure roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29033089A JPH02232484A (en) 1989-11-08 1989-11-08 Air film structure roof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4166784A Division JPS60188579A (en) 1984-03-05 1984-03-05 Cable arrangement in air film structure roof

Publications (2)

Publication Number Publication Date
JPH02232484A true JPH02232484A (en) 1990-09-14
JPH0327709B2 JPH0327709B2 (en) 1991-04-16

Family

ID=17754675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29033089A Granted JPH02232484A (en) 1989-11-08 1989-11-08 Air film structure roof

Country Status (1)

Country Link
JP (1) JPH02232484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425261A (en) * 2011-12-22 2012-04-25 中建三局第三建设工程有限责任公司 Large-span multiunit tensile membrane structure and installation construction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425261A (en) * 2011-12-22 2012-04-25 中建三局第三建设工程有限责任公司 Large-span multiunit tensile membrane structure and installation construction method thereof

Also Published As

Publication number Publication date
JPH0327709B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
JP3231071B2 (en) Dome shaped roof structure
US3186522A (en) Structural surfaces
US8166720B2 (en) Roofing membrane retainer
CA1036890A (en) Inflatable shelter
CA2287561A1 (en) Structural panel for bridging between spaced support
US3638368A (en) Inflatable shelter and method of erection
US4665664A (en) Dome building structure
JPH0631080B2 (en) Extension structure
JPH02232484A (en) Air film structure roof
JPS60188579A (en) Cable arrangement in air film structure roof
JPH02232483A (en) Air film structure roof
US4578908A (en) Fabric roof structure
US4285635A (en) Impeller in a centrifugal blower
US4796033A (en) Hub and rim reflector
JPH0734541A (en) Dome roof structure
JP3187488B2 (en) Dome roof structure
US3319386A (en) Prestressed concrete
JP2663961B2 (en) How to build a dome
JPH01250544A (en) Tension introduction in tensed beam structure
JPH0417681Y2 (en)
US5360187A (en) Parachute having improved vent line stacking
JPH0530322B2 (en)
US5148650A (en) Radiating truss roof support array and construction method therefor
JP2969405B2 (en) Air film structure
JPH03228983A (en) Structure of dome for membranous roof