JPH02232483A - Air film structure roof - Google Patents

Air film structure roof

Info

Publication number
JPH02232483A
JPH02232483A JP29032989A JP29032989A JPH02232483A JP H02232483 A JPH02232483 A JP H02232483A JP 29032989 A JP29032989 A JP 29032989A JP 29032989 A JP29032989 A JP 29032989A JP H02232483 A JPH02232483 A JP H02232483A
Authority
JP
Japan
Prior art keywords
cables
cable
radial
membrane
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29032989A
Other languages
Japanese (ja)
Other versions
JPH0327708B2 (en
Inventor
Hiroyuki Kuroiwa
博之 黒岩
Ryozo Kawai
良蔵 河合
Nobuo Yamaguchi
山口 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP29032989A priority Critical patent/JPH02232483A/en
Publication of JPH02232483A publication Critical patent/JPH02232483A/en
Publication of JPH0327708B2 publication Critical patent/JPH0327708B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tents Or Canopies (AREA)

Abstract

PURPOSE:To unify shapes and dimensions of panels as many as possible to rationalize production by expanding and dividing a thinned-out radial cable into two in a nonfixation state with respect to film materials to expand, and fixing next adjacent radial cables to parts intersecting with concentric circle cables. CONSTITUTION:When air film structure cables composed of concentric circle cable b' and radial cables a' are arranged, the radial cables a' are thinned out at the central part of them, and cable divisions of the central part are proper divisions. The thinned-out radial cables a' are divided into two expansion cables d to d to expand, and they are fixed to parts where next adjacent radial cables a or a' are intersected with the concentric circle cables b. Stress treatment in terminals of the cables a' is smoothly made, and excessive concentrated stress does not also impose on film stress.

Description

【発明の詳細な説明】 この発明は空気膜構造屋根に関する. 空気膜構造とは屋根面にケーブルを交叉させて、もち網
状に張り渡し、その升目部分に膜材を四周に固定させな
がら張りめぐらし、屋根面に膜材を張り終わった段階で
、室内に空気を送入し、室内空気圧を大気圧より0.0
025気圧(25kg/ffl)ほど高めて屋根面を膨
らませるエアサポート構造であるが、そのケーブル配置
の従来技術としては、2方向配置が多い。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air membrane structure roof. The air membrane structure is made by crossing cables on the roof surface and stretching them in the shape of a net, and then fixing the membrane material around the squares of the grid on all four sides. is introduced, and the indoor air pressure becomes 0.0 below atmospheric pressure.
This is an air support structure that inflates the roof surface by about 0.025 atm (25 kg/ffl), and the conventional technology for cable arrangement is often two-way arrangement.

この2方向配置は、米国において、当該建物の平面形状
が矩形または超楕円形式になる場合、境界構造としての
コンブレッションリングに曲げ応力の発生を極力少なく
する方法として、最も都合の良いケーブル配置として採
用されたものである。
In the United States, this two-way arrangement is the most convenient cable arrangement when the building has a rectangular or super-elliptical plan shape, as it minimizes bending stress on the compression ring as a boundary structure. It was adopted.

この2方向ケーブルは、米国で10数例を数え、建物の
都度、次第に改善されてきているが、これにはいくつか
の問題点も残されている。
There are over a dozen examples of this two-way cable in the United States, and it has been gradually improved with each building, but some problems remain.

第一は、内圧によって釣合曲面を得るエアサポート構造
では、第1図に示す如く、形状決定した後で風や雪で形
状が変化しやすいため、膜lやケーブル2が変化した状
態で再び釣合いを保持する条件で幾何学的非線形解析を
行なわなければならないが、この2方向ケーブルで作ら
れた区画に取付けられた膜パネルがほとんど製作形状を
異にし、同一製品を量産化する様に製造することが出来
ず、製作費が割高となることである。この理由は、2方
向ケーブル配置で作られた膜材区画は、投影平面では同
一寸法となるが、屋根は曲面を構成しているため、実際
に製作される膜パネルはそれぞれにわずかながら寸法が
異なるのである。
Firstly, with an air support structure that obtains a balanced curved surface by internal pressure, the shape is easily changed by wind or snow after the shape is determined, as shown in Figure 1. Geometric nonlinear analysis must be performed under conditions that maintain balance, but the membrane panels attached to the compartments made of these two-way cables are mostly manufactured in different shapes, and it is difficult to manufacture the same product in mass production. It is not possible to do so, and the production costs are relatively high. The reason for this is that the membrane sections created with two-way cable arrangement have the same dimensions on the projected plane, but since the roof has a curved surface, each membrane panel actually manufactured has slightly different dimensions. They are different.

これを解決するため、米国であえて膜製作寸法を統一し
た事例があるが、これは屋根が期待した曲面とならず平
坦になってしまったため、隣雪時に雪が中央部にたまり
屋根が降下してしまったという事故があり、再びそれ以
降に造られたのちは再び従来の方法をとり、屋根パネル
の寸法を統一することをやめ、一つづつ所定の寸法形状
に基づいて製作している。
In order to solve this problem, there is a case in the United States where the dimensions of membrane production were intentionally standardized, but in this case, the roof did not have the expected curved surface but became flat, and when it snowed next door, snow accumulated in the center and the roof fell down. There was an accident in which the roof panels were damaged, and after that, the conventional method was used again, and instead of standardizing the dimensions of the roof panels, each roof panel was manufactured one by one based on the predetermined dimensions and shape.

第二は、2方向ケーブル配置を屋根面全面に配置した事
例もあったが、周辺部はケーブル長も短かくなり、ケー
ブル張力も大きくならないため、周辺ケーブルを省略し
てケーブル本数を少なくする事例が多くなっている。こ
れは屋根の建設費を低減させ、屋根重量を軽減させるメ
リットはあるが、一方膜材の材料強度から判断すると中
央部分の菱形部分は2方向で膜応力を負担することが出
来るのに対し、周辺部の長方形部分は短辺方向で膜応力
を負担することになる。
Second, there were cases in which two-way cables were placed on the entire roof surface, but the cable length was shorter in the peripheral area, and the cable tension was not large, so the peripheral cable was omitted to reduce the number of cables. are increasing. This has the advantage of reducing roof construction costs and roof weight, but on the other hand, judging from the material strength of the membrane material, the diamond-shaped part in the center can bear membrane stress in two directions. The rectangular portion at the periphery bears membrane stress in the short side direction.

従って当該長方形部分においては、膜材の1軸許容応力
により、膜材設計がなされ、同一膜材を使用する場合、
菱形部分の膜パネルは過剰設計になる. 第三に、この2方向ケーブル配置はほぼ同間隔に配置さ
れるが、極めて大規模な屋根面積においては、屋根面に
かかる最大風荷重も屋根部位によって異なり、膜パネル
も同一応力ではありえない。
Therefore, in the rectangular part, the membrane material is designed based on the uniaxial allowable stress of the membrane material, and when using the same membrane material,
The membrane panel in the diamond-shaped part is over-designed. Third, although this two-way cable arrangement is approximately equally spaced, in very large roof areas, the maximum wind load on the roof surface will also vary depending on the roof area, and the membrane panels cannot be under the same stress.

これは2方向等間隔ケーブル配置から起因するものであ
る。
This results from the two-way equally spaced cable arrangement.

本発明は叙上の問題点に鑑みなされたもので、その要旨
とするところは、ケーブルを放射状並びに同心円状に配
置し、周辺部において配置した放射状ケーブルを中央部
になるにつれて、その本数を間引きする様に取付け、そ
れらのケーブルによって構成された升目区画に膜材を取
付けるとしてなるケーブル配置に於いて、間引きされた
放射状ケーブルを膜材と非固定にて伸長2分して伸長さ
せ、相隣の次の放射状ケーブルが同心円ケーブルと交差
する部分で固定させるとして膜パネルの形状・寸法を出
来る限り統一し、屋根面積に対して、膜パネル数を少な
くし、生産の合理化・経済化を図ると共に、膜及びケー
ブルの許容応力度を最大限に活用できる様に、膜につい
ては相当の2軸応力負担としケーブルについては等寸法
のものを用いて、張力分担の均等化を図れる様にしたこ
とを特徴とするもので、以下、これを図にもとづいて詳
細に説明する。
The present invention has been made in view of the above-mentioned problems, and its gist is to arrange cables radially and concentrically, and to thin out the number of radial cables arranged at the periphery toward the center. In the cable arrangement in which the membrane material is attached to the square sections formed by these cables, the thinned out radial cables are stretched in half without being fixed to the membrane material, and the adjacent By fixing the next radial cable at the point where it intersects with the concentric cable, the shape and dimensions of the membrane panels are unified as much as possible, and the number of membrane panels is reduced relative to the roof area, in order to rationalize and make production more economical. In order to make the most of the allowable stress of the membrane and cable, the membrane bears a considerable amount of biaxial stress, and the cables are of equal size, so that the tension can be shared evenly. This feature is described below in detail based on the drawings.

すなわち、米国ではフットボール競技等のために建設さ
れた屋根付きスタジアムが多く、平面形状は長方形ある
いは超楕円形状となることが多いが、日本では野球を主
要対象競技とするため、円形に近い平面を持つことが多
い。
In other words, in the United States, there are many stadiums with roofs built for football games, etc., and the planar shape is often rectangular or super elliptical, but in Japan, where baseball is the main sport, stadiums with a roof are often built with a planar shape that is close to circular. often have.

よって、この平面形状を前提とした場合、第2図に示す
如く放射状ケーブルa配置と同心円状ケーブルb配置の
併用が可能である。
Therefore, assuming this planar shape, it is possible to use both the radial cable a arrangement and the concentric cable b arrangement as shown in FIG.

しかしながら、この様な同心円状と放射状ケーブルb,
  a配置は、円周部にあっては使用膜材の許容応力度
が最大限に′活用できる様、膜パネル寸法を設定できる
が、中央部にくるにつれて放射状ケーブルaの間隔は狭
くなり、膜面積が小さく膜の存在応力は小さくなり、膜
材の強度を経済的に活用できないことになるうえ、膜パ
ネル数が増大し、ケーブルと膜材の取付金物等も不必要
に多くなり、不経済となる。
However, such concentric and radial cables b,
With the arrangement a, the membrane panel dimensions can be set to maximize the allowable stress of the membrane material used at the circumference, but as it approaches the center, the spacing between the radial cables a narrows and the membrane Because the area is small, the existing stress of the membrane is small, and the strength of the membrane material cannot be utilized economically.In addition, the number of membrane panels increases, and the number of cables and mounting hardware for the membrane material increases unnecessarily, making it uneconomical. becomes.

このため、同心円状ケーブルbと放射状ゲーブルaによ
って構成される空気膜構造ケーブル配置に関して、中央
部においては放射状ケーブルaを間引き、中央部のケー
ブル区画を適切な区画とする。
For this reason, regarding the air membrane structure cable arrangement constituted by the concentric cable b and the radial gable a, the radial cable a is thinned out in the center, and the cable section in the center is made into an appropriate section.

尚、図中Oは境界構造としてのコンブレッションリング
を示す. この多段リング状の均等升目区画帯を構成する方式を採
用することにより、膜材Cの許容応力度を最大限に発揮
でき、かつ異種パネルを少なくして膜パネルの製作枚数
を滅し、膜パネル製作寸法の統一を図り、経済的に住産
することが出来るようになる。
Note that O in the figure indicates a compression ring as a boundary structure. By adopting this method of configuring the multi-stage ring-shaped uniform square partition zone, it is possible to maximize the allowable stress of the membrane material C, reduce the number of different types of panels, reduce the number of membrane panels produced, and reduce the number of membrane panels produced. By standardizing the manufacturing dimensions, it became possible to manufacture products economically.

第2図に示されたものの実施にあたっては実用に供する
ための各設d1条件に見合った補強方法を具備する必要
がある場合が考えられる。
When implementing what is shown in FIG. 2, it may be necessary to provide a reinforcing method that meets the requirements of each facility d1 for practical use.

ぞの第一の理由は、放射状並びに同心円状に配置された
ケーブルのうち、放射状ケーブルにおいては周辺部にお
いて配置されたゲーブルが中心部に移るに・つれて、与
一ゾル間隔が密になるため応力状態を勘室しつつ、その
本数を間引くのが合理的であるが、実隙Cご放射状ゲー
ブルを間引く場合には、ぞの間引きケーブル端部の張力
を同心円ケーブルに伝達させるのには、相当大きな拘束
力をf’+ずる拘束金物によっ゜ζ同心円ケーブルと固
定させない限り、ケーブル端部を拘束できないし、この
様な大きな拘束金物を用いた接合方弐が非現実的なもの
となることである。
The first reason for this is that among cables arranged radially and concentrically, in a radial cable, as the gables arranged at the periphery move toward the center, the distance between the adjacent sol becomes denser. It is reasonable to thin out the number of cables while taking into account the stress state, but when thinning radial cables with actual gap C, in order to transmit the tension at the end of each thinned cable to the concentric cable, Unless a considerably large restraining force is applied to the ゜ζ concentric cable by fixing it to the ゜ζ concentric cable using f'+slip restraining hardware, the end of the cable cannot be restrained, and joining method 2 using such large restraining hardware becomes unrealistic. That's true.

又、第二の理由は、放射状ケーブルと同心円ケーブルの
接合部がTi型接合された場合、膜材にかかる応力状態
も迎常の空気膜構造で用いられる2方向ケープルネソト
方式の膜応力と異なり、間引き放射状ケーブル端末の反
対側にある膜材には、かなりの集中応力が働き膜材の応
力均等を目的士した初期の意図とは異なる結果を生じさ
せてし土うことである. この問題点を解決するためには、間引きされる放射状ケ
ーブルの端部に発生する引張力を合理的に処理しなけれ
ばならない。
The second reason is that when the joint between the radial cable and the concentric cable is Ti-type joined, the stress state applied to the membrane material is different from the membrane stress of the two-way cape rene soto method used in the conventional air membrane structure. A considerable amount of concentrated stress acts on the membrane material on the opposite side of the thinned radial cable terminal, resulting in a result different from the initial intention of equalizing the stress in the membrane material. In order to solve this problem, it is necessary to rationally handle the tensile force generated at the end of the radial cable to be thinned out.

この処理として、第3図に示す如く、間引きされた放射
状ケーブルa′を伸長ケーブルd,dに2分して伸長さ
せ、相隣の次の放射状ケーブルa若しくはa′が同心円
ケーブルbと交差する部分で固定させる. 伸長ケーブルdはケーブル張力の段階的処理が目的であ
り、伸長ケーブルdは膜材Cを細分割するのではなく、
膜材Cとは固定させず、ただケーブル単体のみで中心部
に近い次の同心円ケーブルbまで伸長し、拘束されてい
るものである。
As this process, as shown in Fig. 3, the thinned out radial cable a' is divided into extension cables d and d and extended, and the next adjacent radial cable a or a' intersects the concentric cable b. Fix it in place. The purpose of the extension cable d is to process the cable tension in stages, and the extension cable d does not subdivide the membrane material C.
The cable is not fixed to the membrane material C, but extends and is restrained by itself to the next concentric cable b near the center.

この様にすることにより、間引きされた放射状ケーブル
a′の端末における応力処理はスムーズとなり、かつ膜
応力にも過度の集中応力が働くことはない. 尚、図示省略するも、中心部の応力処理を図がるために
最内芯部の同心円ケーブルに対し最外周から接続された
放射状ケーブルaは、更に延長され中心点にて梁結さO
゛られるとしてもよい。
By doing this, stress treatment at the end of the thinned radial cable a' becomes smooth, and excessive concentrated stress does not act on the membrane stress. Although not shown, the radial cable a connected from the outermost circumference to the concentric circular cable at the innermost core is further extended and connected to a beam at the center point in order to handle stress at the center.
It's okay if you get killed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は幾何学的非線形解析による屋根曲面図、第2図
は本発明の基本構成を示す平面図、第3図は本発明の空
気股構iS一屋根を示す平面図である。 1・・・膜、 2・・・ケーブルネット、 a・・・放
射状l−プル、 a′・・・放射状ケーブル、 b・・
・同心円ケーブル、 C・・・膜材、 d・・・伸長ケ
ーブル。
FIG. 1 is a roof curved surface diagram obtained by geometric nonlinear analysis, FIG. 2 is a plan view showing the basic configuration of the present invention, and FIG. 3 is a plan view showing the roof of the air section iS of the present invention. DESCRIPTION OF SYMBOLS 1... Membrane, 2... Cable net, a... Radial l-pull, a'... Radial cable, b...
・Concentric cable, C...Membrane material, d...Extension cable.

Claims (1)

【特許請求の範囲】[Claims] (1)ケーブルを放射状並びに同心円状に配置し、周辺
部において配置した放射状ケーブルを中央部になるにつ
れて、その本数を間引きする様に取付け、それらのケー
ブルによって構成された升目区画に膜材を取付けるとし
てなるケーブル配置に於いて、間引きされた放射状ケー
ブルを膜材と非固定にて伸長2分して伸長させ、相隣の
次の放射状ケーブルが同心円ケーブルと交差する部分で
固定させるとしてなることを特徴とする空気膜構造屋根
(1) Cables are arranged radially and concentrically, and the radial cables arranged at the periphery are thinned out in number toward the center, and the membrane material is installed in the square sections formed by these cables. In the cable arrangement, the thinned out radial cable is stretched in half without being fixed to the membrane material, and the next adjacent radial cable is fixed at the part where it intersects with the concentric cable. Features an air membrane structure roof.
JP29032989A 1989-11-08 1989-11-08 Air film structure roof Granted JPH02232483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29032989A JPH02232483A (en) 1989-11-08 1989-11-08 Air film structure roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29032989A JPH02232483A (en) 1989-11-08 1989-11-08 Air film structure roof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4166784A Division JPS60188579A (en) 1984-03-05 1984-03-05 Cable arrangement in air film structure roof

Publications (2)

Publication Number Publication Date
JPH02232483A true JPH02232483A (en) 1990-09-14
JPH0327708B2 JPH0327708B2 (en) 1991-04-16

Family

ID=17754665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29032989A Granted JPH02232483A (en) 1989-11-08 1989-11-08 Air film structure roof

Country Status (1)

Country Link
JP (1) JPH02232483A (en)

Also Published As

Publication number Publication date
JPH0327708B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
JP3231071B2 (en) Dome shaped roof structure
US3186522A (en) Structural surfaces
US3061977A (en) Spherically domed structures
CA1036890A (en) Inflatable shelter
US4260276A (en) Geodesic dome connector
JPH02304136A (en) Top part structure for dome frame
US2929473A (en) Structural framework
US3546826A (en) Frameless and trussless selfsupporting building
JPH02232483A (en) Air film structure roof
US4320603A (en) Roof construction
JPH0233826B2 (en)
JPH01295942A (en) Introduction of tensile force of radial expanded chord girder construction
JPH02232484A (en) Air film structure roof
US4578908A (en) Fabric roof structure
JP2663961B2 (en) How to build a dome
JPH0734541A (en) Dome roof structure
JPH0417681Y2 (en)
JPH0419124Y2 (en)
JP2878643B2 (en) Spherical mesh skeleton structure
JP3615025B2 (en) Construction method of single-layer lattice shell structure
US4552601A (en) Method of foaming a foamable composition in a sealed sack
JPH03221634A (en) Lightweight large roof structure
JPH01250544A (en) Tension introduction in tensed beam structure
JPS6164936A (en) Light weight large roof structure
JPH0427344B2 (en)