JPH0223242A - Fuel control device - Google Patents

Fuel control device

Info

Publication number
JPH0223242A
JPH0223242A JP17093188A JP17093188A JPH0223242A JP H0223242 A JPH0223242 A JP H0223242A JP 17093188 A JP17093188 A JP 17093188A JP 17093188 A JP17093188 A JP 17093188A JP H0223242 A JPH0223242 A JP H0223242A
Authority
JP
Japan
Prior art keywords
air
sensor
fuel ratio
fuel
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17093188A
Other languages
Japanese (ja)
Inventor
Takashi Kikuchi
菊地 岳志
Kiyomi Morita
清美 森田
Yoshiyuki Tanabe
好之 田辺
Kazunobu Kameda
亀田 和伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP17093188A priority Critical patent/JPH0223242A/en
Publication of JPH0223242A publication Critical patent/JPH0223242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To take a feedback constant as an air density correction value and to make favorable air-fuel ratio control by continuing air-fuel ratio feedback control when an engine is in the idling state and a vehicle is running. CONSTITUTION:The respective detections signals from a throttle sensor 16 for detecting the opening of a throttle valve 14 disposed in an intake passage 12, an oxygen concentration sensor 22 disposed in an exhaust manifold 20, a top dead center sensor 26 disposed in a distributor 24, a crank angle sensor 28, a car velocity sensor 32 disposed in a transmission 80 and a neutral sensor 34 are input to a digital control circuit 40. On the other hand, a designated control signal is output to an injector 18 from a digital control circuit 40 to control the fuel injection quantity. In this case, when an engine is in the idling state and a vehicle is running, the air-fuel ratio feedback control is continued.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車用燃料制御装置に係り、特にアイドル状
態での降板時の気圧変化に対し、適正な燃料供給を行な
うことのできる燃料制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel control device for an automobile, and in particular to a fuel control device that can appropriately supply fuel in response to changes in air pressure when exiting a vehicle in an idling state. Regarding.

〔従来の技術〕[Conventional technology]

一般に、大気圧変化に対する燃料供給量の補正を行なう
ためには、空気密度計測を行なうが、これには高価なセ
ンサを必要とするため、低兼価なシステムの構成は困難
であった。
Generally, in order to correct the amount of fuel supplied in response to changes in atmospheric pressure, air density measurement is performed, but this requires an expensive sensor, making it difficult to construct a low-cost system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、アイドリング状態かつギアがニュート
ラル状態での空燃比フィードバック制御方式が、ある回
数又はある時間経過するまでフィードバック動作を行い
その後停止してしまうシステムに於いて、アイドリング
状態かつギアがニュートラル状態で降板した場合の大気
圧力変化について配慮されておらず、空燃比フィードバ
ック制御停止後、大気圧力変化により空燃比が勿化する
The above conventional technology is a system in which the air-fuel ratio feedback control method in an idling state and a gear in a neutral state performs a feedback operation until a certain number of times or a certain time elapses, and then stops. No consideration is given to changes in atmospheric pressure when the passenger leaves the plane, and after the air-fuel ratio feedback control is stopped, the air-fuel ratio changes due to changes in atmospheric pressure.

また、次に走行した場合、空気密度変化を補正しきれて
いないために、運転性が悪化するという問題があった。
Furthermore, when the vehicle runs next time, there is a problem in that drivability deteriorates because the change in air density has not been fully corrected.

本発明は、前記従来の欠点を解消すべくなされたもので
、アイドリング状態かつギア位置がニュートラル状態で
降板した場合に、空燃比補正係数を学習することができ
、しかも、学習結果を、空気密度補正値とすることによ
り、全運転領域を補正可能であり、曳行な空燃比制御を
行うことができる内燃機関の燃料制御装置を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned drawbacks of the conventional technology, and it is possible to learn the air-fuel ratio correction coefficient when the vehicle is idling and the gear position is neutral. It is an object of the present invention to provide a fuel control device for an internal combustion engine that can correct the entire operating range by using a correction value and can perform precise air-fuel ratio control.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、アイドリング状態、ギア位置がニュートラ
ル状態である時に、車輌の速度を検出しある一定速度以
上ある時には、空燃比フィードバック制御を常時行い、
そのフィードバック定数を、空気密度補正値とすること
により、達成される。
The above purpose is to detect the speed of the vehicle when it is idling and the gear position is in neutral, and when the speed is above a certain level, to constantly perform air-fuel ratio feedback control.
This is achieved by using the feedback constant as an air density correction value.

〔作用〕[Effect]

アイドリング状態かつギア位置がニュートラル状態に於
いて、検出された車輌の速度がある値よりも大の時、空
気密度が変化する可能性があることを前提に以下の動作
を行う。
When the detected speed of the vehicle is greater than a certain value in the idling state and the gear position is in the neutral state, the following operation is performed on the premise that the air density may change.

燃料噴射量を空燃比センサによりフィードバック制御し
、理論空燃比近傍に保持する。それによって、空気密度
が変化した場合にも、常に理論空燃比に保つことができ
る。また、空燃比を理論空燃比に保つために必要とされ
た燃料噴射量の補正値を、全運転領域に反映させる。そ
れによって、運転領域赤変った場合に、あらかじめ空気
密度変化による燃料噴射補正量を捉えておくことができ
るので、常に正確に空燃比を保持することができる。
The fuel injection amount is feedback-controlled by an air-fuel ratio sensor to maintain it near the stoichiometric air-fuel ratio. Thereby, even if the air density changes, the stoichiometric air-fuel ratio can be maintained at all times. Further, the correction value of the fuel injection amount required to maintain the air-fuel ratio at the stoichiometric air-fuel ratio is reflected in the entire operating range. As a result, when the operating range changes to red, the fuel injection correction amount due to changes in air density can be determined in advance, so that the air-fuel ratio can always be maintained accurately.

〔実施例〕〔Example〕

以下、図面を参照して、本発明の一実施例を詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

本発明に係る燃料制御装置の一例は第1図に示す如く、
吸気通路12中に配設され、運転席に配設されたアクセ
ルペダル(図示省略)と連動して開閉するようにされた
、吸入空気の流量を制御するための絞り弁14と、該絞
り弁14の開度に比例した電圧出力を発生するポテンシ
ョメータを含むスロットルセンサ16と、吸気通路12
中に配設され、燃料を噴射するためのインジェクタ18
と、排気マニホルド20に配設された、排気ガス中の残
存酸素濃度から空燃比を検知するための酸素濃度センサ
22と、エンジン10のクランク軸の回転と連動して回
転するディストリビュータ軸を有するディストリビュー
タ24と、該ディストリビュータ24に内蔵された、前
記ディストリビュータ軸の回転に応じて上死点信号及び
クランク角信号を出かする上死点センサ26及びクラン
ク角センサ28と、変速機30の出力軸の回転数から車
両の走行速度を検出するための車速センサ32と、該変
速機30に配設されたギアがニュートラルであるか否か
を検知するニュートラルセンサ34と、運転席に配設さ
れたクラッチペダル(図示省略)を踏んでいるか否かを
検知するためのクラッチ接点、と、前記項目の入出力を
行うためのデジタル制御回路40より成る燃料制御装置
に於いて、吸入空気量は、スロットルセンサ16の出力
及びクランク角センサ28の出力から求められるエンジ
ン回転数により算出される。また、吸入空気量に見合っ
た燃料をインジェクタ38よリエンジンに供給する燃料
制御装置である。
An example of the fuel control device according to the present invention is as shown in FIG.
A throttle valve 14 for controlling the flow rate of intake air, which is disposed in the intake passage 12 and is opened and closed in conjunction with an accelerator pedal (not shown) disposed at the driver's seat; a throttle sensor 16 including a potentiometer that generates a voltage output proportional to the opening degree of the intake passage 12;
an injector 18 disposed therein for injecting fuel;
, an oxygen concentration sensor 22 disposed in the exhaust manifold 20 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas, and a distributor having a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10. 24, a top dead center sensor 26 and a crank angle sensor 28, which are built in the distributor 24 and output a top dead center signal and a crank angle signal according to the rotation of the distributor shaft, and an output shaft of the transmission 30. A vehicle speed sensor 32 for detecting the running speed of the vehicle from the rotation speed, a neutral sensor 34 for detecting whether the gear disposed in the transmission 30 is in neutral, and a clutch disposed at the driver's seat. In a fuel control device consisting of a clutch contact for detecting whether a pedal (not shown) is depressed, and a digital control circuit 40 for inputting/outputting the above items, the amount of intake air is determined by a throttle sensor. It is calculated from the engine rotation speed determined from the output of the crank angle sensor 16 and the output of the crank angle sensor 28. It is also a fuel control device that supplies fuel commensurate with the amount of intake air to the engine from the injector 38.

また、前記デジタル回路40の構成は第2図に示す如く
、絞り弁開度を検出するスロットルセンサ16の出力2
01と酸素濃度センサ22の出力202及びエンジンの
冷却水温度を検出するセンサの出力203をアナログ−
デジタル変換するための回路204と、エンジン10に
取付けられたディストリビュータ24に内蔵されたクラ
ンク角センサ28のパルス出力205及び、変速機30
に取付けられた車速センサ32のパルス出力206を計
数処理する部分208と、エンジン10に燃料を供給す
るためのインジェクタ18を駆動するためのパルスを生
成するための回路209により外部との入出力を制御す
る部分からなる。また前記入出力は、cpu211によ
り制御される。前記qpu211は、不揮発性メモリ(
ROM)210に書かれたプログラム及びデータにより
動作/演算を行う。
Further, the configuration of the digital circuit 40 is as shown in FIG. 2, as shown in FIG.
01, the output 202 of the oxygen concentration sensor 22, and the output 203 of the sensor that detects the engine cooling water temperature.
A circuit 204 for digital conversion, a pulse output 205 of a crank angle sensor 28 built into a distributor 24 attached to the engine 10, and a transmission 30.
A part 208 that counts and processes the pulse output 206 of the vehicle speed sensor 32 attached to the vehicle speed sensor 32 and a circuit 209 that generates pulses to drive the injector 18 for supplying fuel to the engine 10 are used to connect input and output to the outside. It consists of a controlling part. Further, the input/output is controlled by the CPU 211. The qpu211 is a non-volatile memory (
Operations/calculations are performed using programs and data written in the ROM (ROM) 210.

前記演算は、書き換え可能なRAMI  212及び、
バッテリによりメモリの内容をバックアップする事が可
能なRAM2 213を用いて行なわれるものからなる
The calculation is performed using a rewritable RAMI 212 and
It consists of a RAM2 213 that can back up the contents of the memory with a battery.

前記cpu211内で演算処理を行うための機能ブロッ
ク図を第3図に示す。
A functional block diagram for performing arithmetic processing within the CPU 211 is shown in FIG.

絞り弁開度α301及び、エンジン回転数N302によ
り基本燃料噴射量303を演算し、酸素濃度センサ出力
から検知される排気ガスの空燃比と目標空燃比との偏差
入304を入コントロール機能305により、エンジン
運転状態に応じたフィードフォワード及びフィードバッ
ク増減量補正を前記基本燃料噴射量303に加える事に
より燃料噴射量306を決定し、インジェクタ駆動部3
07によりインジェクタ18を駆動して、エンジンに燃
料を供給する。
A basic fuel injection amount 303 is calculated based on the throttle valve opening degree α 301 and the engine speed N 302, and a deviation input 304 between the exhaust gas air-fuel ratio detected from the oxygen concentration sensor output and the target air-fuel ratio is input by the control function 305. The fuel injection amount 306 is determined by adding feedforward and feedback increase/decrease corrections according to the engine operating state to the basic fuel injection amount 303, and the injector drive unit 3
07 drives the injector 18 to supply fuel to the engine.

前記入コントロール機能305は、入コントロール機能
停止・継続判定機能306により動作を決定される。゛
この人コントロール機能停止・継続判定機能は、アイド
ル検出袋[1308、車速309、及びカウンタ311
により停止・継続を判定する。
The operation of the input control function 305 is determined by the input control function stop/continuation determination function 306.゛This person control function stop/continuation judgment function is based on the idle detection bag [1308, vehicle speed 309, and counter 311
Determine whether to stop or continue.

眞記入コントロールの機能停止・継続判定は、第4図に
示すフローチャートの如く、始めに空燃比の偏差を学習
した同数を計数するためのカウンタCounter t
t Oと設定401する0次に、絞弁開度がアイドル位
置であるかどうかの判定402、エンジン回転数Neが
、アイドル回転数検出レベルIDKRPMより小である
かの判定403、及び、ギアの位置がニュートラルであ
るかどうかの判定404を行う。
As shown in the flowchart shown in Fig. 4, the function stop/continuation determination of the true entry control is performed using a counter for counting the same number of learned air-fuel ratio deviations.
Next, it is determined whether the throttle valve opening is at the idle position 402, whether the engine rotation speed Ne is smaller than the idle rotation speed detection level IDKRPM 403, and the gear A determination 404 is made as to whether the position is neutral.

前記判定項目のうち、1項目以上真でなければ別な処理
を行う所に移り、全てが真である時は下記の処理を行う
If one or more of the determination items is not true, another process is performed, and if all are true, the following process is performed.

車両の速度が入コントロール停止レベルCLr’VSP
より大であるかの判定405を行い、その結果が真であ
る時は、空燃比の偏差を学習406し、にBLRC1に
格納し、前記判定動作402から処理を繰り返す。また
、偽の時は学習カウンタCoun−terが学習終了検
出レベルIDCNTより大かの判定407を行い、偽の
時は、学習カウンタCounterに1を加え学習動作
LRC406を行い、前記判定動作402から処理を繰
り返し、真の時は、入コントロール機能を停止409し
、前記学習カウンタCounterをφに設定する処理
に戻り前記動作を繰り返す。
Vehicle speed enters control stop level CLr'VSP
If the result is true, the air-fuel ratio deviation is learned 406 and stored in BLRC1, and the process from the judgment operation 402 is repeated. Also, when it is false, it is determined whether the learning counter Counter is greater than the learning completion detection level IDCNT (407), and when it is false, it is incremented by 1 to the learning counter, a learning operation LRC406 is performed, and the process starts from the aforementioned determination operation 402. is repeated, and if true, the input control function is stopped 409, and the process returns to the process of setting the learning counter to φ, and the above operation is repeated.

以上説明した動作を、標高の高い所から低い所にギアを
ニュートラル位置で、エンジン回転がアイドリング状態
で下った場合を例にとって説明する。第5図に各々の動
作の関係を示す。アクセルペダルをOFFにした時、ア
イドルSWがONとなり、ギアをニュートラル位置にし
た時、ニュートラルSWがONとなる。またこの時に、
エンジン回転数がIDとRPM以下となった時にアイド
ル条件が成立する。この時点で、本発明による車速によ
って入コントロール機能を制御する事を使用しなければ
空燃比学習制御をIDCNT回行い、人をある値にクラ
ンプしてしまう。しかし、実際車両は坂を下っているた
め、空気密度が変化していくのであるから、空燃比A/
Fはリーンとなっていく、また、前記アイドル条件成立
時に本発明による車両の速度により入コントロールを行
った場合、車速か、入コントロール機能停止判定レベル
CLPUSPより小となるまでは、入コントロールを継
続しているため、空燃比A / F i−!理論空燃比
14.7に保つことが出来る。さらに、この時、酸素濃
度センサ22によりフィードバック制御して得られた増
減量を空気密度補正値にBLRCl  とし、次式によ
り燃料噴射パルス幅を算出し、アイドル状態以外の運転
領域に於いても、適切な空燃比に保つ事が可能である。
The above-described operation will be explained by taking as an example the case where the gear is in the neutral position and the engine speed is in an idling state from a high altitude to a low altitude. FIG. 5 shows the relationship between each operation. When the accelerator pedal is turned off, the idle switch is turned on, and when the gear is placed in the neutral position, the neutral switch is turned on. Also at this time,
The idle condition is established when the engine speed becomes equal to or less than ID and RPM. At this point, if controlling the input control function according to the vehicle speed according to the present invention is not used, the air-fuel ratio learning control will be performed IDCNT times, and the driver will be clamped to a certain value. However, since the vehicle is actually going downhill, the air density changes, so the air-fuel ratio A/
F becomes lean.Furthermore, if the vehicle speed according to the present invention is used to perform on-board control based on the vehicle speed when the idle condition is met, the on-board control will continue until the vehicle speed becomes smaller than the on-line control function stop judgment level CLPUSP. Therefore, the air-fuel ratio A/F i-! The stoichiometric air-fuel ratio can be maintained at 14.7. Furthermore, at this time, the increase/decrease obtained through feedback control by the oxygen concentration sensor 22 is set as the air density correction value BLRCl, and the fuel injection pulse width is calculated by the following formula. It is possible to maintain an appropriate air-fuel ratio.

T i =T p X LANDAX KBLRCI 
X KBLRC2ここにTi:燃料噴射パルス幅 TP :基本燃料噴射パルス幅 LANDA :フィードバック増減量 KBLRCI:空気密度補正値 KBLRC2:学習マツプ値 〔発明の効果〕 本発明に係り効果の一例は、第6図に示す如く、標高2
500mで空燃比が14.7であった時に、ギアをニュ
ートラル位置アイドリング状態で坂を標高1500mま
で降板した場合では、本発明を使用しなかった場合の空
燃比A/Fは16.3 とり−ンになる。一方、本発明
を使用した場合の空燃比A/Fは、理論空燃比14.7
 を保つことが可能であった。
T i = T p X LANDAX KBLRCI
X KBLRC2 where Ti: Fuel injection pulse width TP: Basic fuel injection pulse width LANDA: Feedback increase/decrease KBLRCI: Air density correction value KBLRC2: Learning map value [Effects of the invention] An example of the effects of the present invention is shown in Fig. 6. As shown, altitude 2
When the air-fuel ratio was 14.7 at 500 m, and the gear was idling in the neutral position and the slope was descended to an altitude of 1500 m, the air-fuel ratio A/F without using the present invention would be 16.3. Become a person. On the other hand, the air-fuel ratio A/F when using the present invention is the stoichiometric air-fuel ratio 14.7
It was possible to maintain

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のシステム構成図。 第2図は第1図のデジタル回路40の内部構成図、第3
図は本発明の機能ブロック図、第4図は第3図のフロー
チャート、第5図は本発明の一実施例のタイミングチャ
ート、第6図は本発明の効果を示す図である。 16・・・スロットルセンサ、22・・・酸素濃度セン
サ、早 図
FIG. 1 is a system configuration diagram of an embodiment of the present invention. Figure 2 is an internal configuration diagram of the digital circuit 40 in Figure 1;
4 is a flowchart of FIG. 3, FIG. 5 is a timing chart of an embodiment of the invention, and FIG. 6 is a diagram showing the effects of the invention. 16...Throttle sensor, 22...Oxygen concentration sensor, quick diagram

Claims (1)

【特許請求の範囲】 1、空気密度検出の出来ない燃料制御装置に於いて、エ
ンジンがアイドリング状態、かつ車両が走行中である場
合、空燃比フィードバック制御を継続して行なわせるこ
とを特徴とする燃料制御装置。 2、第1項に於いてO_2センサを有し、O_2センサ
による空燃比フィードバック制御を行つた際のフィード
バック定数を全運転領域に反映し、次の運転状態での燃
料噴射量を決定することを特徴とする燃料制御装置。 3、第1項または第2項に於いて、車速センサを有し車
速センサの信号により、空燃比フィードバック制御の継
続・停止の判定を行なうことを特徴とする燃料制御装置
。 4、第3項に於いて、空燃比フィードバック制御の継続
・停止を車速センサ信号の取込みに同期させて判定する
ことを特徴とする燃料制御装置。
[Claims] 1. In a fuel control device that cannot detect air density, when the engine is in an idling state and the vehicle is running, air-fuel ratio feedback control is continuously performed. Fuel control device. 2. In the first item, it is equipped with an O_2 sensor, and the feedback constant when performing air-fuel ratio feedback control by the O_2 sensor is reflected in the entire operating range to determine the fuel injection amount in the next operating state. Features fuel control device. 3. A fuel control device according to item 1 or 2, which has a vehicle speed sensor and determines whether to continue or stop the air-fuel ratio feedback control based on a signal from the vehicle speed sensor. 4. The fuel control device according to item 3, wherein the fuel control device determines whether to continue or stop the air-fuel ratio feedback control in synchronization with the acquisition of a vehicle speed sensor signal.
JP17093188A 1988-07-11 1988-07-11 Fuel control device Pending JPH0223242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17093188A JPH0223242A (en) 1988-07-11 1988-07-11 Fuel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17093188A JPH0223242A (en) 1988-07-11 1988-07-11 Fuel control device

Publications (1)

Publication Number Publication Date
JPH0223242A true JPH0223242A (en) 1990-01-25

Family

ID=15914019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17093188A Pending JPH0223242A (en) 1988-07-11 1988-07-11 Fuel control device

Country Status (1)

Country Link
JP (1) JPH0223242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179738A (en) * 2009-02-04 2010-08-19 Honda Motor Co Ltd Seat type storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179738A (en) * 2009-02-04 2010-08-19 Honda Motor Co Ltd Seat type storage device
US8016338B2 (en) 2009-02-04 2011-09-13 Honda Motor Co., Ltd. Seat-form storage apparatus

Similar Documents

Publication Publication Date Title
US4434768A (en) Air-fuel ratio control for internal combustion engine
US4771752A (en) Control system for internal combustion engines
US4590912A (en) Air-fuel ratio control apparatus for internal combustion engines
JPH01182552A (en) Device for controlling adaption of air-fuel ratio
US4800857A (en) Apparatus for learn-controlling air-fuel ratio for internal combustion engine
JPS618443A (en) Air-fuel ratio control device
JPS59194059A (en) Control method and device for air-fuel ratio and ignition timing
US4667631A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US4870586A (en) Air-fuel ratio control system for an internal combustion engine with an engine load responsive correction operation
JPH09189247A (en) Fuel injection control device of internal combustion engine
JPS6231179B2 (en)
US4730594A (en) Air fuel ratio control system for an internal combustion engine with an improved open loop mode operation
JPH0223242A (en) Fuel control device
JP3843492B2 (en) Engine intake control device
US5193509A (en) Fuel control system for automotive power plant
JPH0536613B2 (en)
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JPH04342857A (en) Electronic control device of internal combustion engine
JPS6065245A (en) Air-fuel ratio controller for internal-combustion engine
JPH068287Y2 (en) Air-fuel ratio controller
JPS6324142B2 (en)
JPH01224427A (en) Air-fuel ratio control device of internal combustion engine
JPS5990739A (en) Control-by-learning of air-fuel ratio of internal-combustion engine
JPS62240444A (en) Device for controlling interruptingly increasing quantity at the time of accelerating electronically controlled fuel injection type internal combustion engine
JPH068740U (en) Fuel control device for internal combustion engine